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Handout 17

Lattice Waves (Phonons) in 1D Crystals: Monoatomic Basis and 
Diatomic Basis

In this lecture you will learn:

• Equilibrium bond lengths
• Atomic motion in lattices
• Lattice waves (phonons) in a 1D crystal with a monoatomic basis
• Lattice waves (phonons) in a 1D crystal with a diatomic basis
• Dispersion of lattice waves
• Acoustic and optical phonons
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The Hydrogen Molecule: Equilibrium Bond Length
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The equilibrium distance between the two 
hydrogen atoms in a hydrogen molecule is 
set by the balance among several different 
competing factors:

• The reduction in electronic energy due to 
co-valent bonding is 2Vss . If the atoms 
are too far apart, Vss becomes to small

• If the atoms are too close, the positively 
charged nuclei (protons) will repel each 
other and this leads to an increase in the 
system energy

• Electron-electron repulsion also plays a 
role
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A Mass Attached to a Spring: A Simple Harmonic Oscillator
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spring constant = k
(units: Newton/meter)

Dynamical Equation (Newton’s Second Law):

uk
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ud
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2 Restoring force varies linearly with 
the displacement “u ” of the mass 
from its equilibrium position

Solution:

     tBtAtu oo  sincos  where:
M
k

o 

PE varies quadratically with 
the displacement “u ” of the 
mass from the equilibrium 
position
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A 1D Crystal: Potential Energy

Consider a 1D lattice of N atoms:
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• The potential energy of the entire crystal can be expressed in terms of the positions 
of the atoms. The potential energy will be minimum when all the atoms are at their 
equilibrium positions.

• Let the displacement of the atom at the lattice site given by        from its equilibrium 
position be  

• One can Taylor expand the potential energy of the entire crystal around its minimum 
equilibrium value: 
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Potential energy varies quadratically with the displacements of the 
atoms from their equilibrium positions

Atoms can move only 
in the x-direction
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A 1D Crystal: Potential and Kinetic Energies

A1D lattice of N atoms:
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Potential Energy:
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Kinetic Energy:

• The kinetic energy of all the atoms is the sum of their individual kinetic energies
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A 1D Crystal: Dynamical Equation

A1D lattice of N atoms:
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Write Newtons law for the atom sitting at the site       :nR
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Remember that:

The restoring forces on the atoms vary linearly with the displacement of the atoms 
from their equilibrium positions 
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Dynamical Equation for Nearest-Neighbor Interactions

A1D lattice of N atoms:
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Assume nearest-neighbor interactions:

  njnjnjjn RRK ,1,1, 2,   
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dt
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This gives:

The constants “” provide restoring forces as if the atoms were connected together 
with springs of spring constant “”

We have N linear coupled differential equations for N unknowns

    1.......2,1,0,  NntRu n


The constant  is called “force constant” (not spring constant) in solid state physics
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Solution of the Dynamical Equation: Lattice Waves (Phonons)

A1D lattice of N atoms:
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Assume a solution of the form:

Represents a wave with 
wavevector    , frequency     , 
and amplitude    
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Note that:
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 .,Or: Slight abuse of notation
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A1D lattice of N atoms:

           tRutRutRutRu
dt
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Plug in the assumed solution:

To get:

           queququeququM aqiaqi  
11 ..2   

Which simplifies to:
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Solution of the Dynamical Equation: Lattice Waves (Phonons)

Since  is always positive, the 
negative sign is chosen when the 
sine term is negative
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A1D lattice of N atoms: xaa ˆ1 


1anRn




Solution is: and    tiRqi
n eequtRu n 

 ., 







2
.

sin
4 1aq
M




Solution of the Dynamical Equation: Lattice Waves (Phonons)
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• The lattice waves are like the compressional sound waves in the air 
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A1D lattice of N atoms: xaa ˆ1 


1anRn




Solution is: and

The relation:

represents the dispersion of the lattice 
waves or phonons
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Solution of the Dynamical Equation: Lattice Waves (Phonons)
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Solution is: and

For the shortest wavelength:

The largest wavevector is then:

The wavevector values can be restricted 
to the First BZ

• No new solutions are found for values of 
the wavevector outside the first BZ 
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Lattice Waves and the First BZ

x

Question: What is the shortest wavelength (or the largest wavevector) the lattice 
waves can have?

a
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Phase and Group Velocities

First 
BZ

Case I: For qx ≈ 0 (i.e. qx a << ):
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Linear 
dispersion

Phase velocity and group velocity of lattice waves 
are defined as:
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Periodic Boundary Conditions

In the solution:

allowed values of the wavevector depend on the boundary conditions

    tiRqi
n eequtRu n 

 .,

A1D lattice of N atoms: xaa ˆ1 


1anRn




Periodic Boundary Condition:

0 1N-1

The N-th atom is the same as the 0-th atom 
This implies:
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Counting and Conserving Degrees of Freedom
A1D lattice of N atoms: xaa ˆ1 


1anRn




• We started with N degrees of freedom which were related to the motion in 1D of N
different atoms
• The dynamical variables were the amplitudes of the displacements of N different 
atoms 

    1.......2,1,0,  NntRu n


We then ended up with lattice waves:

• There are N different lattice wave modes 
corresponding to the N different possible 
wavevector values in the first BZ
• The dynamical variables are the amplitudes of 
the N different lattice wave modes
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The number of degrees of freedom are the same before and after – as they should be!
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Counting and Conserving Degrees of Freedom

The atomic displacements, 

taken together provide a complete description of the motion of all the atoms in the 
crystal

In general, one can expand the atomic displacements in terms of all the lattice wave 
modes  (resembles a Fourier series expansion):

    1.......2,1,0,  NntRu n
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Therefore, the lattice wave amplitudes also provide a complete description of the 
motion of all the atoms in the crystal



9

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

A1D lattice of N red atoms and N blue atoms and N primitive cells:

xaa ˆ1 


x
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Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis

Unit cell

1M 2M

1n


2n


The nearest neighbor vectors are:

1d


2d


The basis vectors are:

1n


2n


The spring model for nearest neighbor interactions:

x

Let the displacement of the red atom in the n-th cell be:  tdRu n ,11




Let the displacement of the blue atom in  the n-th cell be:  tdRu n ,22




1d


2d
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Write the dynamical equations for both the atoms assuming nearest neighbor 
interactions

Assume a solution of the form:
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 This is again a wave-like solution 
with a wavevector     and 
frequency       and different 
amplitudes for the two atoms
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Notice the phases 
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The constants 1 and 2 are called “force constants” (not spring constants) in solid 
state physics

Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis
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Plug the solutions in the dynamical equations to get:
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Write the equations in a matrix form:
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This is  a 2x2 matrix eigenvalue equation that needs to be solved for each value of 
the wavevector to get the dispersion of the lattice waves

Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis
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The Dynamical Matrix

Or:    
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• The matrix            is called the dynamical matrix of the medium

• For any medium, in any dimension, the dispersion relations for the lattice 
waves (phonons) are obtained by solving a similar matrix eigenvalue equation
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Optical and Acoustic Phonons
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The frequency eigenvalues are:
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• The two frequency eigenvalues for each 
wavevector value in the FBZ give two phonon 
bands

• The higher frequency band is called the optical 
phonon band

• The lower frequency band is called the acoustic 
phonon band

Optical

Acoustic

FBZ
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Optical and Acoustic Phonons: Special Cases
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Optical and Acoustic Phonons: Special Cases
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Case I:            Acoustic Mode0q


Acoustic band (basis atoms move in-phase):
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Optical and Acoustic Phonons: Special Cases
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Case I:             Optical Mode0q


Optical band (basis atoms move 180o out-of-phase):
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Optical and Acoustic Phonons: Special Cases
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Optical and Acoustic Phonons: Special Cases
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Counting and Conserving Degrees of Freedom

• We started with 2N degrees of freedom which were related to the motion in 1D of 2N
different atoms
• The dynamical variables were the amplitudes of the displacements of 2N different 
atoms 

      1.......2,1,0,, 2211  NntdRutdRu nn


We then ended up with lattice waves:

• There are N different modes per phonon band 
corresponding to the N different possible wavevector 
values in the first BZ
• There are 2 phonon bands and therefore a total of 2N
different phonon modes 
• The dynamical variables are the amplitudes of the 2N
different phonon modes

The number of degrees of freedom are the same before and after – as they should be!
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Counting and Conserving Degrees of Freedom

The atomic displacements, 

taken together provide a complete description of the motion of all the 2N atoms in 
the crystal

In general, one can expand the atomic displacements in terms of all the lattice wave 
modes – all wavevectors and all bands:
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Therefore, the lattice wave amplitudes also provide a complete description of the 
motion of all the atoms in the crystal

      1.......2,1,0,, 2211  NntdRutdRu nn



