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Handout 16

Electrical Conduction in Energy Bands

In this lecture you will learn:

• The conductivity of electrons in energy bands 
• The electron-hole transformation
• The conductivity tensor
• Examples
• Bloch oscillations
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Inversion Symmetry of Energy Bands

Recall that because of time reversal symmetry:
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Current Density for Energy Bands

For a free electron gas the current density was given as:
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In Drude model, the electron current density was given as:
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Now we want to find the current density due to electrons in 
energy bands

The current density due to electrons in the n-th band can be 
written in a manner similar to the free-electron case:
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Current Density for a Completely Filled or Empty Bands
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 Completely filled bands do not contribute to electrical 
current or to electrical conductivity

where I have used the fact:
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 Completely empty bands do not contribute to electrical current or to electrical 
conductivity

Only partially filled bands contribute to electrical current and to electrical conductivity
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Consider a completely filled band for which                    for all       
in FBZ

Application of an external field will not change anything!

  1kfn


k


 
   

 
  0

2
2

2
2

FBZ
3

3

FBZ
3

3

 kv
kd

ekvkf
kd

eJ nnnn













3

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Current Density and Electron-Hole Transformation
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Consider the expression for the current density for a partially 
filled band:

The final result implies that since the current density of a filled band is zero, the 
current density for any band can always be expressed in two equivalent ways:

a) As an integral over all the occupied states assuming negatively charged 
particles (as in (1) above)

a) As an integral over all the unoccupied states assuming positively charged 
particles (as in (2) above)
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Current Density and Electron-Hole Transformation

The Electron Choice:
The current density is given by:

The Hole Choice:
The current density is given by:
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 Current is understood to be due to negatively charged 
electrons 
 This choice is better when the electron number is smaller 
than the hole number

 Current is understood to be due to positively charged fictitious particles 
called “holes”

 This choice is better when the hole number is smaller than the electron 
number

One has two choices when calculating current from a partially filled band: 
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Metals, Semiconductors, and Insulators
Materials can be classified into three main categories w.r.t. their electrical properties: 
Metals: In metals, the highest filled band is partially filled (usually half-filled)
Semiconductors: In semiconductors, the highest filled band is completely filled (at 
least at zero temperature) 
Insulators: Insulators are like semiconductors but usually have a much larger 
bandgap 
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Inclusion of Scattering in the Dynamical Equation

In the presence of a uniform electric field the crystal momentum satisfies the 
dynamical equation:
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Now we need to add the effect of electron scattering.
As in the free-electron case, we assume that 
scattering adds damping:
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Note: the damping term ensures that when the field is turned 
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Electrical Conductivity: Conduction Band
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The velocity of electrons is:

Consider a solid in which the energy dispersion for conduction 
band near a band minimum is given by:
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In equilibrium, for every state with crystal momentum                 that is occupied, the 
state                    is also occupied and these two states have opposite velocities.

Therefore in equilibrium:
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Electrical Conductivity: Conduction Band
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Now assume that an electric field is present that shifts the 
crystal  momentum of all electrons:
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Current Density:

Do a shift in the integration variable:
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Where the conductivity is now a tensor given by: 12  Men 
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Electrical Conductivity: Conduction Band
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Electrical Conductivity Example: Conduction Band of GaAs

Consider the conduction band of GaAs near the -point:
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Electrical Conductivity Example: Conduction Band of Silicon
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In Silicon there are six conduction band minima (valleys) that 
occur along the six -X directions. For the one that occurs 
along the -X(2/a,0,0) direction:
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The factor of 6 is there because only 1/6th of the total 
conduction electron density in Silicon is in one valley 
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Electrical Conductivity Example: Conduction Band of Silicon
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After adding the current density contributions from all six 
valleys, the resulting conductivity tensor in Silicon is isotropic 
and described by a conductivity effective mass

To find the conductivity tensor for Silicon one needs to sum over the current 
density contributions from all six valleys:

Isotropic!
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Electrical Conductivity: Valence Band
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The velocity of electrons is:

Consider a solid in which the energy dispersion for valence band 
near a band maximum is given by: Energy
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The current density is (using the electron-hole transformation):
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In equilibrium, for every state with crystal momentum                 that is unoccupied, 
the state                    is also unoccupied and these two states have opposite 
velocities.

Therefore in equilibrium:
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Electrical Conductivity: Valence Band

Valence 
band

Energy

k


ok


Now assume that an electric field is present that shifts the 
crystal  momentum of all electrons in the valence band:
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Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution (and hole distribution) is shifted as shown
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Current Density:

Do a shift in the integration variable:
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Electrical Conductivity: Valence Band
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Electrical Conductivity Example: Heavy-Hole Band of GaAs

Consider the heavy-hole band of GaAs near the -point:
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Electrical Conductivity Example: Light-Hole Band of GaAs

Consider the light-hole band of GaAs near the -point:
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The total valence band conductivity of GaAs can be written as the 
sum of the contributions from the heavy-hole and the light-hole 
bands:
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The Phenomenology Of Transport

The presence of external fields, and scattering, the following relations work for 
electrons in any energy band near the band edge (assuming parabolic bands):

    


ktk
Ee

dt
tkd





 



     on ktkMtkv





  .1

 
 

    
 

     tkvkf
kd

etkvkf
kd

etJ nnnnn








 1

2
2

2
2

FBZ
3

3

FBZ
3

3



The first two can also be written as:

           


kvtkvM
Ee

dt
kvtkvd

M nnnn







 .
.

Problem: One needs simple models for current transport so that non-specialists, like 
circuit designers, can understand devices and circuits without having to understand 
energy bands
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Drift Velocity and Mobility for Electrons
We define the drift velocity for the electrons in the conduction band (for parabolic 
bands) as: 

      kvtkvtv cce




The drift velocity is independent of wavevector for parabolic bands and satisfies: 

   

tvM

Ee
dt
tvd

M ee


.
. 

Once the drift velocity is calculated, the electron current density is:

 
 

    
 

         

 
        tventvkf

kd
e

kvkvtkvkf
kd

etkvkf
kd

etJ

eec

cccccce
















FBZ
3

3

FBZ
3

3

FBZ
3

3

2
2

2
2

2
2





(1)

(2)

0

       EEMekvtkvtv ecce


..1   

In steady state:

e = mobility tensor

Electrons in the conduction band are to be thought of as negatively charged particles. 
In case of multiple electron pockets, current density contributions are calculated 
separately for each and added in the end.

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

We define the drift velocity for the “holes” in the valence band (assuming parabolic 
bands) as: 

      kvtkvtv vvh




The drift velocity is independent of wavevector and satisfies the equation: 

       


tvM
Ee

dt
tvd

M hh


.
.




Once the drift velocity is calculated, the hole current density is:

 
 

         tveptkvkf
kd

etJ hvvh 





1
2

2
FBZ

3

3



Holes in the valence band are to be thought of as positively charged particles. In 
case of degenerate valence band maxima, the heavy and light hole current density 
contributions are calculated separately and added in the end.

(1)

(2)

Where realizing that the inverse effective mass tensor will have negative diagonal 
terms for valence band, I have multiplied throughout by a negative sign, with the 
result that the charge “-e” becomes “+e”   

  EEMetv hh


..1   In steady state: h = mobility tensor

Drift Velocity and Mobility for Holes
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xk

Energy

FBZ

a
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

The Case of No Scattering: Bloch Oscillations

Consider an electron in a 1D crystal subjected to a uniform 
electric field. The energy band dispersion and velocity are:

xEE o ˆ


In the absence of scattering, the crystal momentum 
satisfies the dynamical equation:

 

   0



tkt
eE

tk

eE
dt

tkd

x
o

x

o
x





   akVEkE xsssxn cos2 

The time-dependent velocity of the electron is:

    

  





 



atkt
Eae

Va

atkVatv

x
o

ss

xssn

0sin2        

sin2






     akVa
dk
kdE

kv xss
x

xn
xn sin2

1




Periodic!
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The Case of No Scattering: Bloch Oscillations

      

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

  atkt

Eae
Vatv

dt
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x
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ssn 0sin2




A periodic velocity means that the electron motion in real space is also periodic:

      00  txTtxdt
dt
tdxT

o

where the period T is:
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t  Tt 
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t 
2
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4
3T
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Reciprocal space:

Real space:
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Conductivity of Electrons in Graphene
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The dynamical equation for the 
crystal momentum still works:

    
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dt
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Conductivity of Electrons in Graphene
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Current density can be obtained by the familiar expression:
2 spins2 pockets or valleys
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Velocity magnitude remains 
the same but the velocity 
direction changes


