Handout 16

Electrical Conduction in Energy Bands

In this lecture you will learn:

* The conductivity of electrons in energy bands
* The electron-hole transformation

* The conductivity tensor

* Examples

* Bloch oscillations
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Inversion Symmetry of Energy Bands

Recall that because of time reversal symmetry:

l//*n,—l?(i;) =¥nk (f) En(_ i‘;)= En(_’)

We know that:

\7,,([?)=%VE E, (k)

Energy

/

Now let k go to — k in the above equation: \
Vnl-K)= 19 4 En(-K)
= —%V,; E,(-k)
= _%VE En(k) \
= _Vn(R)
T
a

= V(- k)= ~Vn(K) -

A
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Current Density for Energy Bands
Energy

In Drude model, the electron current density was given as:
J=n(-e)v \ /

For a free electron gas the current density was given as:

#(K)v(k)

J=(-e)2x Z f(K)vlk ()=—2ex1(

energy bands

Now we want to find the current density due to electrons in \
z
a

A

The current density due to electrons in the n-th band can be -
written in a manner similar to the free-electron case:

- (e)2x fo(k) v (K)

v k|nFBZ

—2ex | IK £ (®)vaR)

FBZ (2 7:)3 n
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Current Density for a Completely Filled or Empty Bands
Consider a completely filled band for which fn(R)= 1 forall Energy

kin FBZ
Application of an external field will not change anything! \/
3 3
d k -
J =-2ex j' folk)V lk)=-2ex | —= V =0
( )3 ( ) ( ) FBZ(27T)3 n( ) _____.____E_f..

where | have used the fact:

‘7n(— k)= _Vn(k)
= Completely filled bands do not contribute to electrical
current or to electrical conductivity \/
Of course, if fn(l?)= 0 forall k in FBZ: _

=-2ex o’k volk)=
Jy=—2e Féz(”)af(k) aK)=0

o[y

= Completely empty bands do not contribute to electrical current or to electrical
conductivity

nly partially filled bands contribute to electrical current and to electrical conductivi
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Current Density and Electron-Hole Transformation

Consider the expression for the current density for a partially Energy
filled band:

()FBZ() fa(k)Vn (K) ()
=2(e)x [ LK -1, (k)-1]7, (k)

FBZ (2 )

/5{%/() zex 1 K bt 0]

=2(+e)x j ( )3 [1 f ( )]Vn(l?)—> () B * Ky

The final result implies that since the current density of a filled band is zero, the
current density for any band can always be expressed in two equivalent ways:

a) As an integral over all the occupied states assuming negatively charged
particles (as in (1) above)

a) As an integral over all the unoccupied states assuming positively charged
particles (as in (2) above)
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Current Density and Electron-Hole Transformation \
One has two choices when calculating current from a partially filled band:
The Electron Choice: Energy
The current density is given by:

Jn=2(e)x | “;n()Aﬁ

FBZ

« Current is understood to be due to negatively charged
electrons

« This choice is better when the electron number is smaller
than the hole number

The Hole Choice:
The current density is given by:

3 - R _
A =2(+e)xFéZ(Zﬂ‘)(3[1—fn(k)]\7,,( )

e Current is understood to be due to positively charged fictitious particles
called “holes”

This choice is better when the hole number is smaller than the electron
umber
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Metals, Semiconductors, and Insulators
Materials can be classified into three main categories w.r.t. their electrical properties:
Metals: In metals, the highest filled band is partially filled (usually half-filled)
Semiconductors: In semiconductors, the highest filled band is completely filled (at
least at zero temperature)
Insulators: Insulators are like semiconductors but usually have a much larger

bandgap Energy

é ! ! : "k,
Metal Semiconductor Insulator /
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Inclusion of Scattering in the Dynamical Equation

/

In the presence of a uniform electric field the crystal momentum satisfies the

dynamical equation: Energy
d nk(t _
d k() =-eE
dt Conduction
Now we need to add the effect of electron scattering. band
As in the free-electron case, we assume that 7

scattering adds damping:
d nk(t)___ g _lk@)-K]

kX
dt T hh valence
- = band
The boundary condition is that: k(t = 0) =k
Note: the damping term ensures that when the field is turned
'eh valence|

off, the crystal momentum of the electron goes back to its
original value ) band
Steady State Solution: k(t =)=k _eTEg Ey

h
In the presence of an electric field, the crystal momentum of every electron is shifted
by an equal amount that is determined by the scattering time and the field strength
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Electrical Conductivity: Conduction Band
Consider a solid in which the energy dispersion for conduction Energy

band near a band minimum is given by:
~ . WL T o Conduction
EC(k)=Ec(ko)+?(k—ko) v .(k—ko) band
The velocity of electrons is:
Vo(k)=m".n(k-k,) o
o

The current density is:

- d3k [\ (-
Jo=-2ex | . @nf (k) v, (k)

In equilibrium, for every state with crystal momentum (E - I?o) that is occupied, the
state — |k — k,, ) is also occupied and these two states have opposite velocities.

Therefore in equilibrium:

, d*k (o (x
k Jc=—2exneajrkowfc(k)vc( )=0 /
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/ Electrical Conductivity: Conduction Band Enh
Now assume that an electric field is present that shifts the

Conduction
crystal momentum of all electrons: band
ky I
k(t=0)=k-S"E E
f.(k)_ ’ K, K
Vs -~ -~ N \ o
L \ ‘ \
o |k ' & kK, L'k
S ‘_fa— - x e X
E=E, %
Electron distribution in k-space Electron distribution is shifted in
when E-field is zero k-space when E-field is not zero
Distribution function: f, (E) Distribution function: fc(l? + % EJ

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution is shifted as shown
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Electrical Conductivity: Conduction Band

Current Density:
. &k (- ers). (-
Jo=-2ex | o fc[k+—TEJ ve(K)
near ko (271') h
Do a shift in the integration variable:

. Pk o\ (: etz
Jo=—2ex | ZE f(k)v (k——E)
c near Eo (2”)3 C( ) [ )

- 3K . . . - oer =
Jo=-2ex | L’gfc( )M'1.h(k—k°—ﬂE) fc[k+7E)
nearl?o(Zﬂ') n

~ d3k /|4
Je=e?r|2x | L flk)|M1.E
€ |: near ko (2”)3 C( ):|

Je=ne’rM . E

Wthe conductivity is now a tensor given by: & =n ezz- M_‘I
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Electrical Conductivity Example: Conduction Band of GaA\
6
Consider the conduction band of GaAs near the T"-point: :\
GaAs

N\
Ym, 0 0 i
M= o 1Ym, 0 Isotropic! NE
0 0 VYm, e /\
3 ;l | Ee
- .. :’; 17 Eg
This implies: ) , i .
Jo=ne*’ M. E -1
Jyo 1me, 0 0 ][E, -2
Jye|l=ne*r| 0 vYm, o |E, g 8
Jze 0 0 1VYm.||E, o roam x
E
2 x
_ ne-t Ey o E
me
EZ
ne’r
=>o0=
me
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occur along the six I'-X directions. For the one that occurs
along the I'-X(2x/a,0,0) direction: 4|

Electrical Conductivity Example: Conduction Band of Silich
6
In Silicon there are six conduction band minima (valleys) that r \
Si
P 2z 3
=) k,=0.85 ?,0,0
1/m[ 0 0 Not isotropic!

-1
M7= 0 Ym 0 mp=0.92m
0 0 1Um,| m=019m

E-E,(eV)

This implies that for this valley:

- n 4 =
Jo=2e%M' E )
6 L (1) 1 (100) X

Jxe Ym, 0 0 |[E,
n

Jyo|=ge7| O Ym0 |E,

Jre 0 0 Ym|E,

The factor of 6 is there because only 1/6t" of the total
conduction electron density in Silicon is in one valley
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Electrical Conductivity Example: Conduction Band of Silicon

To find the conductivity tensor for Silicon one needs to sum over the current
density contributions from all six valleys:

Iy 2/m, +4/m, 0 0 E,
Jyel= % er 0 2/m, +4/m;, 0 E, Isotropic!
Jze 0 0 2/m,+4/m, || E,
n ez EX =
=P E, |=cE

1 1 1 2
— = —| —+— [ = Conductivity effective mass
m, 3{m, my

After adding the current density contributions from all six
valleys, the resulting conductivity tensor in Silicon is isotropic
and described by a conductivity effective mass
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Electrical Conductivity: Valence Band

Consider a solid in which the energy dispersion for valence band
near a band maximum is given by: Energy
2
_. ~ (- -\ 1 (i
E, (k)= Ev(ko)+?(k— k) .M. (k-k,)
The velocity of electrons is:
v,(K)=m".n(k-k,)
The current density is (using the electron-hole transformation):
) K ¢ ()0, (K)=2ex ) LAY PP

3 3
near k, (2”) near kg, (2”)
In equilibrium, for every state with crystal momentum (R - Eo) that is unoccupied,

(I? 5 is also unoccupied and these two states have opposite

the state — |k — k,,
velocities.

Therefore in equilibrium:
- d3k N (-
JV_2exnea{ﬁow[1_fV(k)]VV(k)_0 /
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°>w
x|

Valence
band

J,=-2ex

Electrical Conductivity: Valence Band E_"A
ko k

Now assume that an electric field is present that shifts the
—
E

crystal momentum of all electrons in the valence band:
Valence
band

K(t=o)=k-°"E

Rl BN )
b S o Eq, /l kx - kx
E=E, %
Hole distribution in k-space Hole distribution is shifted in k-space
when E-field is zero when E-field is not zero
Distribution function: 1—f, | k + eh—r E')

Distribution function: 1— fv(a)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution (and hole distribution) is shifted as shown
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Electrical Conductivity: Valence Band
Current Density:

‘ oo [ el
Jy=2ex [ —=|1-f,|k+—E ||V, \k
Y near ko (271')3 Y h V( )

Do a shift in the integration variable:

- d3k N (- erz

Jy=2ex [ S Q-1 K)v (k——Ej

v nearEo (2”)3[ V( )] v h

. d3k N4 (o . erg 1-f,(k+S7 E

Jo=2ex | LCf-f,K)]|mM Al K-k, -2TE h
nearl?o(2”) h

.

J,=-e%|2x | FK g )||m.E
near k, (2”)

J,=-pe?*rm E

=0 .E

Where the conductivity is now a tensor given by: & =—p ezr M_1
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Electrical Conductivity Example: Heavy-Hole Band of GaAs
6

Consider the heavy-hole band of GaAs near the I'-point: . ;}A /
- 1/mhh 0 0 s
v = 0 —1/mp, 0 Isotropic! N \/\
0 0 —1my, g /13 /\ _
: 15
This implies: i {" o )
Jhn=-Ppn s M7 E s
Jx.hh -Ymp, 0 0 Ey -2f
Jynn|=-Pmne’z| 0  —tYmp, 0 E, -3
Jz,hh 0 0 —Vmy, || E, “oam oo x

ezr Ex =
= 7”’;; E, |=cE
hh E
z

2
_Pnn€T
Mpyp

=0

S—
ECE 407 - Spring 2009 - Farhan Rana - Cornell University



Electrical Conductivity Example: Light-Hole Band of GaAs

6
Consider the light-hole band of GaAs near the I'-point: i X/
GaAs
-1my, 0 0 ik
M= 0 —-1m,, 0 Isotropic! NE
o 0 -ym, : P
3 &
- Lo & 1 E
This implies: i , | .
J. = 2 mp-1 B _E ok
[h——p[heTM .E=0E
2 -2
er
—~g=Pne€r o
mgp
-4
The total valence band conductivity of GaAs can be written as the R G
sum of the contributions from the heavy-hole and the light-hole kz
bands:
2 2
er er
o = Phn 4+ Pen

Mpp myp

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

The Phenomenology Of Transport

The presence of external fields, and scattering, the following relations work for
electrons in any energy band near the band edge (assuming parabolic bands):

d nk(t) __, g_nlk(e)-K]

dt T
v (K(©)= M1 (k(O)-K,)

Ja(t)=-2ex Féz(::‘)i (k) v, (k(t)=+2€ xpéz(:;;i 1-£, (k)] v (K(t))

The first two can also be written as:

m. 9 [V (k(0)- Vn(E)L _eE_M- [V k() - v (k)]

dt T

Problem: One needs simple models for current transport so that non-specialists, like
circuit designers, can understand devices and circuits without having to understand
energy bands
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Drift Velocity and Mobility for Electrons

We define the drift velocity for the electrons in the conduction band (for parabolic

bands) as:
Ve(t)= Ve k(t))-v, (k)
The drift velocity is independent of wavevector for parabolic bands and satisfies:

M. d\?e(t)z_eE__M.\?e(t)

dt T “

In steady state:

Ve(t - 00) =V, (E(t - oo))—\?c(l?)= —erM . E= —He- E { He = mobility tensor

Once the drift velocity is calculated, the electron current density is: 0
. 3k 2\ (2 Pk . (\ (& N
To©=-20x | &K £ (®)v,(k@)=—2ex | &K fc(k)[vc(k(t))_vc(k)%ﬁ()]
Bz (27) Bz (27)
ik
=-2ex [ o k)o@ =n(-e)ve(t) ——— @
FBz (27)

Electrons in the conduction band are to be thought of as negatively charged particles.
n case of multiple electron pockets, current density contributions are calculated
arately for each and added in the end.
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Drift Velocity and Mobility for Holes
We define the drift velocity for the “holes” in the valence band (assuming parabolic
bands) as:
va(t)=v, (k(1)-v, (k)
The drift velocity is independent of wavevector and satisfies the equation:

(—M).%’t'(t)=+eE—M )

Where realizing that the inverse effective mass tensor will have negative diagonal
terms for valence band, | have multiplied throughout by a negative sign, with the
result that the charge “-e” becomes “+e”

In steady state: v (t - )= —er M. E= Zn-E { Hp = mobility tensor

Once the drift velocity is calculated, the hole current density is:

. d3k
Jp()=+2ex |
" rBz (27)°

[1-1,&)]v, (k)= p (+ ) vi(t) ——— @

Holes in the valence band are to be thought of as positively charged particles. In
case of degenerate valence band maxima, the heavy and light hole current density
ontributions are calculated separately and added in the end.
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The Case of No Scattering: Bloch Oscillations

Consider an electron in a 1D crystal subjected to a uniform
electric field. The energy band dispersion and velocity are:

Ep(ky)=Es—2 Vg, cos(kya) Energy
1dE,(k

v,(ky)= %#
X

In the absence of scattering, the crystal momentum
satisfies the dynamical equation:

= 2a Vg, sin(k,a)

d 1ke(t) _ o /
dt
:>kx(t)=e§°t+kx(t=0) —
The time-dependent velocity of the electron is: —g % X
v, (t) = 2a Vi, sin(k, (t)a) FBZ
=2aV,, sin(e ahE" t+ky(t= O)aj —_—
E=-E,x
Periodic!
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The Case of No Scattering: Bloch Oscillations

A periodic velocity means that the electron motion in real space is also periodic:

d);iSt) =vp(t)=2a Vg, sin(e LL P ky(t= O)aj
T

= wdt:x(t=T)_x(t=o)=o where the period Tis: T = 2z h
o dt eak,

Reciprocal space:

—
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Conductivity of Electrons in Graphene

=K
(I? ~Ep, +hv\/(kx —kox ) +(ky _koy)2 } dispersion

(kx _kox))?"'(ky _koy )}7

ko
Conduction band
Ec

VC(E)=1VE Ec(k)

h ) \/(kx_kox)2+(ky_koy)2
K-k, Ak

=V ——=V—
k—ko|  |AK|

The dynamical equation for the
crystal momentum still works: K
— k - k Ak.V
T=_e,:__hk(t) LI -
T

d 7ik(t)

Ak

= K(t=w)=k-°"E K
K!
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Conductivity of Electrons in Graphene Energy
_ k—etE/n—k,

- - er = (i
k(t= =k-—E v l\k(t)=v——2%
(t=w) A —) c( ()) ‘k—erE/h—ko
Velocity magnitude remains
ky the same but the velocity ky
direction changes er g k
fe (ﬁ) / h k
s~ ~ k
(7 ;> °

’ \ \
. ) ey
SNd - 4 kX —_— \\__ / kx
ko E = EXX Eo
Electron distribution in k-space Electron distribution is shifted in

when E-field is zero k-space when E-field is not zero

Distribution function: f, (E) Distribution function: fc(l? + % EJ

Current density can be obtained by the familiar expression:

2 pockets or valleys 2 spins

N/ 2% (. erE) /.
J=-ex2x2x [ K f[k+e’E]\7(k)
nearl?o(Zﬂ') h

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

13



