Handout 15

Dynamics of Electrons in Energy Bands

In this lecture you will learn:

* The behavior of electrons in energy bands subjected to uniform
electric fields

* The dynamical equation for the crystal momentum

* The effective mass tensor and inertia of electrons in energy bands
* Examples

* Magnetic fields

* Appendix: Electron dynamics using gauge invariance arguments,
Berry’s phase, and Berry’s curvature
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Electron Dynamics in Energy Bands

1) The quantum states of an electron in a crystal are given by Bloch functions
that obey the Schrodinger equation:

Ay, i(F)=Enk)y, i (F)
where the wavevector k is confined to the FBZ and “n” is the band index

2) Under a lattice translation, Bloch functions obey the relation:
P ik.R =
Wn,E(r+R)= e Wn,E(r)

Now we ask the following question: if an external potential is added to the crystal
Hamiltonian,

A +U(F,t)
then what happens? How do the electrons behave? How do we find the new
energies and eigenstates?

The external potential could represent, for example, an applied E-field or an
applied B-field, or an electromagnetic wave (like light)
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Periodicity of Energy Bands

Recall from homework that the energy bands are lattice-periodic in the reciprocal
space,

En(Kk+G)=En(K)

When a function in real space is lattice-periodic, we can expand it in a Fourier
series,
iGj.F

VF+R)=V(F) = v(F)=xV(G))e
J

= When a function is lattice-periodic in reciprocal space, we can also expand it in
a Fourier series of the form,

Ek+6)=E,(k) = E,K)= ZJ_:E,,(Rj)eiRi &

- _J
Y

Fourier representation of energy bands
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A New Operator - |
Consider the following mathematical identity (Taylor expansion):
1
f(x+a)=Ff(x)+f(x)a+ Ef"(x) a% + ..
d
a?
=e 9 f(x)
Generalize to 3 dimensions:

f(F+a)=e?V £(F)

Now go back to the relation:

) = En(k)=3E,R)e i

J

E,(k+G)=E,(
and consider the operator:

E,(- W) =3EnR;)e™ Y
J

We apply this operator to a Bloch function from the same band (i.e. the n-th
band) and see what happens:

En(-V)y, i (F)= ;En(fe,-)e'*f Yy, i(F)=7
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A New Operator - I

R;.V

én(_iV)V’n,E(F)=§En(Rj)e 7y, k()

The result above implies that the action of the operator E',, (=iV) on aBloch function
belonging to the same band (i.e. n-th band) is that of the Hamiltonian!

E,(- )y, i(F)=Ay, :(F)=E,(K)v, ;(F)

This also implies that if we have a superposition of Bloch functions from a single
band then:

H 3 ck)y, (F=E,(-v) = C(l?)w,,,,;(F)

kinFBZ kinFB
= 3 clk)Eq(k )m(f)
kinFBZ
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The Case of Uniform Electric Field

Statement of problem: Need to solve,

R . = Energy |
[H+eE.F]W(F,t)=ih7‘9”’;:’t) !

given that at time t = 0 the state of the electron is a Bloch
function with wavevector k,

y(F.t=0)=y, ;(F)

Assumption: Assume that the state at any later time is going
to be a Bloch function or a linear combination of Bloch
functions belonging to the same band (valid for weak E-

Then one can replace the Hamiltonian with E, (- iV),

fields) \
z
a

[

[H+eE r ]y/(r t)=in 6y/(r )

\ [En(—iV)+eE F ]y,(, t) in ay/(r t)
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The Case of Uniform Electric Field
[Eq(-iv)+eE .7 |u(F 6)=in %

Try the following time-dependent solution with a time-dependent energy:
= = i t v — v
y(F,t)=y, «(F) exp| - £I(E(t )+eE. r)dt
0
First see how the assumed solution behaves under a lattice translation:

y/(F +R, t) =Vnk (F + f\’) exp{— %E(E(t')+ eE . (F + ﬁ’)) dt'}

= ei(ﬁ_eftj' R )

So the assumed solution looks like a Bloch function with a time dependent k-vector:

- - eE
k(t)=k ———
() h

But we still don’t know what is the time-dependent energy E(t)
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The Case of Uniform Electric Field
Take the trial solution and plug it into the equation:

[En(_iV)+eE.l:‘: ]W(F,t)=ihw

LHS (first term):

RHS:

ih@:[E(tHeE‘.i Jw(#.)
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The Case of Uniform Electric Field
Putting it together:

[Ea- )+ e .7 Jy(rt)=in V0D

N [ En(l?—eTE_t)+eE'.f— }y/(?,t)= [E(t)+eE .7 |u(F.1)

= E(f)= E,,(I? - "TE‘)

The time-dependent energy is consistent with our solution being a Bloch function
with a time-dependent k-vector,

k(t)=k -

eEt
/]
So the solution for the initial condition:

w(F,t=0)=y, ;(F)

is approximately a Bloch function with a time-dependent k-vector:

V6.0~ i) 0] - [ k() |
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The Case of Uniform Electric Field

Final result: In the presence of a uniform electric field the electrons in energy bands
have a time-dependent crystal momentum that satisfies the dynamical equation:

E «&—

d nk(t = X Energy
T()=‘e E f
/ Incé’easing
time
= The rate of change of the crystal momentum is equal /t=0

to the force on the electron

Note that (perhaps) the more intuitive result that the rate ‘
of change of the average electron momentum equals the

applied force DOES NOT hold,

d WrOPY(rRY) |, g
dt

The dynamical equation is instead given in terms of
the crystal momentum

T
a
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What Happened to Ehrenfest’s Theorem of QM?

In quantum mechanics, Ehrenfest’s theorem is the closest to Newton’s second law.

Ehrenfest’s theorem: For a time dependent quantum state, the rate of change of the
average momentum equals the average force:

daﬂﬂ%ﬁwﬁﬂ»=wc¢wﬂmwﬁﬂ»

We saw that for electrons in solids, in the presence of a uniform applied E-field,
the following equation does not hold:

AVEIPYEL L 7,0) -0 Eplr,t) = -0 E

The reason is that in solids, in the presence of an applied E-field, the electrons not
only feel the force from the applied E-field but they also feel the force from the
periodic atomic potential. If all forces are correctly taken into account then, of
course, Ehrenfest’s theorem would hold. But it is more useful and simpler to use
the dynamical equation involving the crystal momentum:

dnk(t) _ _ g /
dt
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Another Look at the Dynamical Equation: Energy Conservatm

dnk®) _ o g

One can also derive the dynamical equation: E

dt

from arguments involving energy conservation Energy
Consider an electron with an initial Bloch state with

wavevector K. Suppose in the presence of an E-field the :
wavevector is time-dependent - but we don’t know what is f — 1 6E
the time dependence: d E(t) . T

dt : :
In time 5t the electron energy will increase by: ’ \
)]

o€ =VE,(K).? 5t(t) ot

The increase in electron energy also equals the work done \/
by the E-field on the electron in time &t
z z
a a

6E =Vp(k).(-eE) t —@

Equating (1) and (2) gives:
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Effective Mass Tensor and Acceleration

Consider a solid in which the energy dispersion near a band
extremum is given by:

()= Enlko) o (k- k) " (=) :

The average velocity is: 4

E-E,(eV)

d V,(K(@®)_ 1 d 7 K(D)
dt dt

In the presence of an E-field the crystal momentum changes as:

Vo(K)=m" 5 (K-k,) d
s
Consequently, the rate of change of the velocity satisfies: - i\

dnk(t)_ __ g

- 100
p e E L (1) r© (100) X
Therefore: - .
d Vn(k(t)) = M—1 dh k(t) - M—1 _ eE
dt ©dt '
= 9Valt) 21O —eM ' E
dt

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

applied force is governed by the effective mass tensor.

Effective Mass Tensor and Acceleration \
dv(t 1 = dv(t _ ¢
ﬁ:—eMﬁE Or: M.¢=—eE sk
dt dt Ge

4
The acceleration of electrons in energy bands in response to an N K
The above relation shows that the effective mass tensor, which up .‘A\
to this point just represented coefficients for Taylor expansion of Ef
the energy dispersion relation, is also a measure of the inertia of

electrons in energy bands just like ordinary mass is a measure of
the inertia of free electrons.

E-E, (eV)

k.
Ey

~1f

-3

Written out in component form we have:

“Cmnroam x
In general, the electrons are
v 1m 1m 1m E ’
xn(t) My Ymyy Ymy || Ey accelerated in a direction
dt Vy,n(t) =-€ 1/myx 1/myy 1/myz E, different from the direction
Vz.n(t) Vmy Ymy, Ym,, || E,| of the force due to the

applied E-field !
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Example: Conduction and Heavy-Hole Valence Bands of GaAs

Consider the conduction band of GaAs near the band

bottom at the I'-point: Energy
Ym, 0 0
-1
M7= 0 11Ym, 0 Conduction
0 0 1/ m, band
2
dv(t 4 = _
T;()=—eM 1 E=--°E
m, K,
L,
Now consider the heavy-hole valence band of GaAs hh valence
near the band maximum at the I'-point: band
- 1/mhh 0 0
M= o -1Ym,, 0
th valence|
0 0 —Ump, 4 hva
dvp,(t . B, )
9Vinl®)_ oyt E- © g E
dt mpp, X

Electrons in the valence band are accelerated in the direction opposite to the
orce acting upon them due to the applied E-field
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Example: Conduction Band of Silicon

In Silicon there are six conduction band minima (valleys) 5 s \
that occur along the six I'-X directions. For the one that +L
occurs along the I'-X(2x/a,0,0) direction:
3
- 2
— K, =0.85 (l,o,o) o 2F
a 2 g
. e > 1 ) 3
1m, 0 0 Not isotropic! : bt“ )
- 0 g,
M=l 0 Ym, 0 mp=0.92m L
0 0 1 /mt m=019m
This implies: I
-3
Vyclt 1m 0 0 E
xie(t) /m, x “ram o x
ot vyc(t)|=—e| 0 1Ym, 0 [|E,
Vo e(t) 0 0 1Ym||E,
Electrons in this valley have larger inertia (i.e. larger mass)
for E-field applied in the x-direction (i.e. the longitudinal
direction) and smaller inertia (i.e. smaller mass) for E-field

applied in the y- or z-directions (i.e. the transverse
irections)
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Generalization to Include Applied Magnetic Fields

We had for only electric fields:

(assuming parabolic
v = energy band dispersion) = (i .
d r;l:(t) Lo ee— 1 ¢ v':}:((t)L e

Magnetic fields can also be included as follows:

AIK) - o €07, k()5

l (assuming parabolic
band di i = (i
energy band dispersion) " dv,,(k(t))

e =—eE-e Vn(k(t))x B

Note: If the energy band dispersion is not parabolic (as in graphene) then the
equations on the right hand side have no meaning
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Appendix: Electron Dynamics from Gauge Invariance
Consider the Schrodinger equation for an electron in a solid:

{f’:’ +V(f')1 w7 t)=in %

We have seen that the stationary solutions are the Bloch states:

Or since: y/,, ¢ (F)=—~=

2m

In the presence of electromagnetic vector and scalar potentials the time-dependent
Schrodinger equation becomes:

~b

P+eA

2m : +V(?)_ e¢(f’,t) w(F,t)=in oy(F.1)
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Appendix: Electron Dynamics from Gauge Invariance

+eAlr,t

o

wV)-eglf. )| wir. )= in 200

The Schrodinger equation is invariant (i.e. does not change) under the following
auge transformation: —(a ~(a -
gau9 AlF,t)—> A(F,t)+vr(F,t)

#F.t)- ¢(ﬁ,t)_ﬂ?’_t)

ot
e, .
) -i%H(re)
v(iF,t)>e " y(F,t)
Now get back to the problem of an electron in an applied electric field. The Schrodinger
equation is:

{:::J'V(?)* 9’5'-?} w(F,t)=in %

Perform the following gauge transformation to eliminate the scalar potential in favor
of the vector potential:

f(F,t)=—E.rt

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Electron Dynamics from Gauge Invariance

We get:
3 _ ez Lz
P — eEt A :gE.rt N g lgE.rt -
(—)im +V[F) e Ty t)=in se D
Let:

iCE.Ft
¢(F!t)=eh l//(F,t)
P — eEt S\ PEUNE-Y ()
= (—f+ vir r,t)=in—"—"27
oo -+ V() 6. 0)=in 2
Now we have to solve a time-dependent equation BUT the Hamiltonian is now lattice
periodic! Assume, in the spirit of Bloch’s analysis, solution of the form:
it
ik.F —% [E(t")dt"

#(F,t)==—u(Fle "

W

And plug the assumed form in the above equation to get:
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Appendix: Electron Dynamics from Gauge Invariance

M)i +V(F)|u(F) = E(t)u(F)

2m

If one now defines a time-dependent wavevector as follows:

nk(t) = 7k — eEt
Then the above equation is just the familiar equation for the periodic part of a Bloch
function whose wavevector is time dependent:

P + nk(t)

o =+ V() Uy 0 (F) = En (k(O) 1 ()

So the answer is: .
o i 4\ gt
~ ekt —gj'E,,(k(t ))dt

¢(F.t) W"n,l?(t)(f)e

And finally the solution of the original problem is (as expected):
it - it .

_igélft . ikt ) —égE,,(k(t'))dt' ) —é(j)E,,(k(t'))dt'

#(F,t)= v ”n,E(t)(’ =Vnio)Fe
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(F,t)=e

Appendix: Electron Dynamics and Berry’s Phase

Note that the solution: t =
[En(k(e))at

. i
ik.F -
ho

97, ) =t (e Hk(t)= 1k — eEt

is not an exact solution of the equation:
(Boektf | o . 04(.1)
+Vi\r F,t)=in—"~
2m ( ) ¢( ) ot
It misses a very important phase factor even if the time dependence is not fast

enough to cause transitions between states. To capture this we try:
- it - .
y olk-F ) -é [En(k(t))dt"+iy, £ ()
¢(r, )_ N2 un,E(t)(r)e

Plugging it in, multiplying both sides by u *
fact that:

n.k(t) (F), integrating, and using the

.Uh

+ 1k(t)
2m

V() |ty ) = En (K(O) 1 50 F)

e get (PTO):
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Appendix: Electron Dynamics and Berry’s Phase

7ni®) g N . )
5t S AT g (F) ) (F)= (Ui ‘a‘un,l?(t)>

G=k(t)

t 0 ; _
= 7ni(t)=1] d (Unk(e) 5 Unice)) = smiion (tng Vg|tng )
G-k i di )
_q=E(tI=o)=E na 4 ‘|: Ag =ilung Vg|ung)

The final complete solution is then: y
_i%EFt o k(1) _é [En(k(t))dt+ 7,5
vrt)=e " g(Ft) ="t (e
it
Thpn (<)ot & /7ni(®)
L—— Berry’s phase

The extra phase factor is called the Berry’s phase and appears in many places in
physics (and in optics)

=V i) (Fle

t is appropriate to write the Berry’s phase as, 7, . (t)=7, (k(t)), since it depends
the trajectory of the time-dependent wavevector in reciprocal space
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Appendix: Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the
absence of it

Consider an electron packet:

0(F,t)=j(z”;(2 ( )//nk(t)(r)e

e ,k(t), e Reesing (D)
(2 )2 ( ) n,E(t) rje 0

and assume that the function f(k) peaks when k = k,

;E (k(e)dt*+irn (K(t))

=l

In the absence of Berry’s phase the group velocity of the packet can be found from
the usual stationary phase argument:

Vg(ﬁo)(;_go)=;;’tzdt-( £, (K - Et/)--E, (K, - eEt/n))

vy lbo)= 1vEL ),
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Appendix: Bloch Velocity and Berry’s Phase

In the presence of Berry’s phase the group velocity of the packet from the stationary
phase argument gives an extra term:

volko Mk —ko)= V4, (K, k-ko)- & (k- eEe/n)-7, (K, - oEt/1)]

Nfe o = L G=k—eEt/h G=ko—€Et/h
volko Mk~ Ko)=194E,(K), (k-K,)- gt{q T Apgdi— A,,’q.dq]
° ﬁ=k (.l=ko

The second term in brackets represents the rate of change of the (oriented) area
of the figure below and equals:

d | a=k-eEt/n _ _ G=Ko—eEt/h _ ~ - e~ (-~ -

g . Lz Ap -G - ) =IE° Anq | =~V xAngl, o .|:£Ex (k—k, )}

ez 7 = -
- (%Equ xAngla J( —Ko,) k —eEt/n

ko —eEt/n

The packet group velocity is then: ° /

- 1 - e % ~
Vg(k0)=%VREn(k}Ro+£Ex(Vﬁ XAn,(', 17=Eo] k

ko
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Appendix: Berry’s Phase and Berry’s Curvature
So, more generally, one can write the velocity of Bloch electrons (in the presence of
a field as):

Vn(K)= %V:}En(’?)-%x (V< An)
The quantity:
Qn(k)=vi <A,
is called Berry’s curvature and plays an important role in many different places in

solid state physics (spin Hall effect for example)

If a solid possesses time reversal symmetry (all materials in the absence of an external
magnetic field): ~ - (e
Qn(‘ k)= _Qn(k)

If a solid possesses inversion symmetry (like Si, Ge):

It follows that if a solid possesses both time reversal symmetry and inversion
symmetry (like Si, Ge):

Q,(k)=0
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