Handout 14

Statistics of Electrons in Energy Bands

In this lecture you will learn:

\_

-
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/ Example: Electron Statistics in GaAs - Conduction Band
C

onsider the conduction band of GaAs near the band
bottom at the I'-point:
1m, 0 0
M= 0o 1Ym, o
0 0 1/me

This implies the energy dispersion relation near the
band bottom is:
2,2 2 2 2,2
. n“\ky + k;, + k
Ec(k)= E,. +(x—y2)= E, +ﬁ
2m, 2m,
Suppose we want to find the total number of electrons in
the conduction band:

We can write the following summation:

N=2x ¥ f[k)
kinFBZ

E-E,(eV)
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Example: Electron Statistics in GaAs - Conduction Band

N=2x ¥ £k i\

kinFBZ L
Where the Fermi-Dirac distribution function is: | \/Q

f.(k)- m {= t(Ec(k)-£¢)

E-E,(eV)

o = N ow
T
le
o)

!
)

KT Another way of writing it ) E
We convert the summation into an integral: e
L
3
N=2x 3 f(k)=2xv [ &K L =r

~ 3 P
kinFBZ FBZ (Zﬂ') 1+ exp E \k)-E¢ o T oao x
KT
Then we convert the k-space integral into an integral over energy:

.
N=2xv | &K !

rBz (27)° 1+exp[Ec‘H—EfJ
KT

We need to find the density of states function g (E) for the conduction band and
eed to find the limits of integration
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=EdE 9. (E)f(E -Ef)

Density of States in Energy Bands

Consider the 1D energy band that results
from tight binding:

E(kx)= Es -2Vsss cos(kx a)

dE .
= dk, = 2aV, sin(k, a)

We need to find the density of states
function g,p(E):

n/a z/a Es+2Vsss
2x y o2xL | M auyf IKe 2, K g
ky inFBZ —-x/a 2z 0 T z Es-2Vsss dE
Eg+2Ves,
—>L | gip(E)dE , ,
Es-2Veoy gn(E) | ,
= g1p(E) = : :

E

E \/(zvssm-)2 - (E - Es)2

0 T 0
Es-2Vgs, Es Eg+2Vg

—
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Example: Electron Statistics in GaAs - Conduction Band

3
N=2xv | &K L

?
_ = [dE g.(E)f(E-Ef)
FBZ (2ﬂ)3 1+ eXp(Ec k)- Ef] ? ¢ f
KT

@ Electrons will only be present near the band bottom

B
Energy dispersion near the band bottom is: Q.b&’so
2( 2 2 2 2,2
. n\ky + ki, + k k
E.(k)=E, +(x—y2)= E, +"
2m, 2m,

(parabolic and isotropic)

Since the electrons are likely present near the band bottom, we
can limit the integral over the entire FBZ to an integral in a
spherical region right close to the I'-point:

4z k2

3 dk f(E;(k)-Ey)

-
N=2xV | Lks
rBz (27)

f,(k)= 2xv |
T—point 74

o\
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Example: Electron Statistics in GaAs - Conduction Band

Ark?
3

N=2xV |
T'—point 8z

Since the Fermi-Dirac distribution will be non-zero only for small
values of k, one can safely extend the upper limit of the

ke F(E,()-E/)

integration to infinity:
0 2
N=2xV]| 4’”; dk f(E.(k)-Ey)
0 87

We know that:

2(, 2 2 2
_ né\ky + k;, + k 2y2
Ec(k)=Ec+(x—yz)=Ec+h k
2m, 2m,
2
_ |2me and dE _ 1"k dk
= k=" (E-E;) gk~ m,

We have finally:

o0 2
N= 2xv[4zk
0

- dk F(Ec(k)~E)=V JdE g,(E) f(E-
3 E.

E-E,(eV)

kz
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Example: Electron Statistics in GaAs - Conduction Band

6
We have finally: 5 "cm&/

N= 2xv°f4;”;2 dk f(E.(k)-E;)=V [dE g.(E) f(E-E;) /T\&\}/k
0o 8z E;

Where the conduction band density of states function is:

3/2
1 (2m
gc(E)=?( hze) E-E. -1l \

E
gc( ) o oo x
E

The density of states function looks like that of a 3D free electron gas except that
the mass is the effective mass m, and the density of states go to zero at the by

E-E,(eV)
o = N ow

dge energy E.
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Example: Electron Statistics in GaAs - Conduction Band

® 1 (2m\¥? :'\
n=[dE g.(E) f(E-E;) gc(E)=—2( 2) E-E, ‘[ow
E, 27 h 4

)

N
9¢(E) g’ /E,\ .
HE-E) | -0 ¢ orE
| f(E-Ef)~e KT . B
| / -1
T > -2+
Ef EC E -3
If E.—E; >> KT then one may approximate the Fermi-Dirac “ram T e x
function as an exponential:
1 (E-Ef) Maxwell-Boltzman
f(E - E¢)= 1+ ex (E _ Ef) = exp[— KT approximation
PUKT
o0 —_
n=JoE g,(E) 1(E-Er)= Ny oxp( - EoE))
E KT

c

3/2
mg KT Effective density of
. N. = 2| Me KT ective density o
Where: c |: 27 12 i| states (units: #/cm?)
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Example: Electron Statistics in GaAs - Valence Band and HCA

* At zero temperature, the valence band is completely filled and -\
the conduction band is completely empty | Gaas

N

w

* At any finite temperature, some electrons near the top of the 31
valence band will get thermally excited from the valence band and

=

occupy the conduction band and their density will be given by: § s _;f_ _or _lE
= G
E.-E : 1
n= Nc exp — M S0 E
KT >
* The question we ask here is how many empty states are left in =in
the valence band as a result of the electrons being thermally 3
excited. The answer is (assuming the heavy-hole valence band): 4
L (11 r (100 X
2x 3 [1-flEpm(K)-E)]

kinFBZ
* We call this the number of “holes” left behind in the valence
band and the number of these holes is P:

—_—

.
P=2x ¥  1-f(Epm(k)-Ef)=2xV | d’k [ 1-F(Epn(K)-E;)

kinFBZ rBz (27)°
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Example: Electron Statistics in GaAs - Valence Band and Hoh

d3k . ¢ /
P=2xV | 25| 1-(Enn(k)-E/)] N\
FBz (27) i \\
sk
@ Holes will only be present near the top of the valence band A/\
s ? e
31 1 *-1_- ----- ¢
LT: G E;
Energy dispersion near the top of the valence band is: @ gl —t E,
2(, 2 2 2 bolic approx. -1z
~ n“\ks + ki, + k n2k2 para pp
Ehh(k)=EV_ ( = Z)=Ev_ -2
2myy, 2my, Lk
Since the holes are likely present near the band maximum, we T T a0 x

can limit the integral over the entire FBZ to an integral in a
spherical region right close to the I'-point:

4z k?

P=2xV | !

e dk [1-f(Epp(k)- Ef)]
T'—point O7
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Example: Electron Staztistics in GaAs - Valence Band and Hch
A k

We know that: !

P=2xV I 3 dk [1—f(Ehh(k)—Ef)] 6 /
I'-point 87 5 [Gaas
Since the Fermi-Dirac distribution will be non-zero only for small 4
values of k, one can safely extend the upper limit of the 3l
integration to infinity: vy ;g
®© 2 ?: &
4dr k g B TE "]
P=2xV£ 8.3 dk [ 1-f(Epp(k)-Ef)] O i I

] 12(K2 + 2 + K2 242 N
N I R AL B -
2myy, 2mpy,
2
_ 2mhh and ﬁzh k dk
= k= 2 (E,-E) ak = mpy,
We have finally:
© 2
P-= 2xv14;”§ dk [1-f(Epy(k)-Ef)]
0 o7

= Vi[vdE gnn(E) [1- f(E-E; )]
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Example: Electron Statistics in GaAs - Valence Band and HOA

We have finally: 6
© 47 k2 s *c,m\

/
P= 2xV[~"" dk [1—f(Epy(k)-Ey)] o \\
0 87 B /\

= ijvdE gnn(E) [1-F(E - Ef)]

—00

E-E,(eV)
)
+
le
i

Where the heavy hole band density of states function is:

1 (2m,,\*? -
ghh(E)=ﬁ( hh) JE, -E e \

hz
ghh(E) o T oao x
\ i

[
EV
Note that the mass that comes in the density of states is the heavy hole effective

mass My, and the density of states go to zero at the band edge energy E,, and
he density of states increase for smaller energies

S—
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Example: Electron Statistics in GaAs - Valence Band and Holes

3/2
P=EfvdE gnn(E) [1-F(E-Ef)] ghh(E)=#(2mth E,-E

hZ
| GaAs \

—00
y

1m
=

E-E,(eV)
[
1
&
1
1

2

T
E, Ef E, E
Ak
If Ef —E, >> KT then one may approximate the Fermi-Dirac
function as an exponential:

1-fE-E;)=— ' _~ex (_(Ef_E)

- exp| J o g x
1+exp(%} KT \

Maxwell-Boltzman
= jdE gnn(E) N-f(E-Ef)]= Nhhexp[ MJ approximation for

-2+

-3

_® KT holes
KT 32
Where: Npp =2 % Effective density of
2r h states (units: #/cm?3)
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Example: Electron Statistics in GaAs - Valence Band and Holes
In most semiconductors, the light-hole band is degenerate with the heavy hole
band at the I'-point. So one always needs to include the holes in the Ilght -hole
valence band as well:4

[>/(\

% E E.
T = kL f
E,E; E, E : _'bf____' ’
E, E, B
p= [dE gun(E) [\-F(E-E¢)]+ [dE g,n(E) [1-F(E-Ey)] p
—0 -0 2
Ey -3
= [dE [gpn(E)+g.n(E)] [1-f(E - Ef)] »
—00 L (11 r (100 X
E, 9v(E)=9g/n(E)+9gnn(E)
= [oE g,(E) 1-F(E-E/)] T (am 32
_ h
=N, (Ef _Ev) 2z h
p =N, exp| — ? y Density
my KT 3/2 3/2 /3 of states
Where: N, =2 |:2;hzi| and  my, = (mhﬁ, + m(l/r )2 — effective
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(including both heavy and light holes) must be equal:

GaAs
=>p=n ar

Example: Electron Statistics in GaAs — Electrons and Holes \
At any temperature, the total number of electrons and holes /

=N, exp(— %) =N, exp[— %J Z :ﬂ e,

53
3» 12 —fy |- _f_ -
N, 2E;-E; - Ev) : 1
= Y =ex 0 B
N, p[ KT L
E.+E, KT N, -2
>E="C"Y+"log -V
= T2 Q[Nc] =18
O T x
Because the effective density of states gv(E)

for electrons and holes are not the
same (i.e. N, # N_), the Fermi level at
any finite temperature is not right in the
middle of the bandgap.

9.(E)

1
But at zero temperature, the Fermi-level ' E
is exactly in the middle of the bandgap T
EV Ef Ec
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6
(including both heavy and light holes) must be equal: ‘:\
GaAs

=> p=n=n; at-
where n; is called the intrinsic electron (or hole) density 3

Example: Electron Statistics in GaAs — Electrons and Hole\
At any temperature, the total number of electrons and holes /

B
.z

=>p=n=n; ;3 x:_,jh__’ft_
= pn=n? . 5
E-E,) E-E)Y_
N, ex —("7"JN ex (—"‘7’ = n? -
= Ny p( KT c €Xp| KT i _j_
= N,N, exp(— %J = n,-2 O T x

E,
=,/N,N,
=n exp[ 2KT]

Note that the smaller the bandgap the larger than intrinsic electron (or hole) density

S—
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/ Electron and Hole Pockets in GaAs

» At any non-zero temperature, electrons 6
occupy states in k-space that are located in 5 s EAS
a spherically symmetric distribution around
the T-point

J
N

¢ This distrbution is referred to as the

“electron pocket” at the T'-point -£

1Z b =|=
'

E-E,(eV)
o
‘D T T

* At any non-zero temperature, the holes 3

(heavy and light) also occupy states in k- S roa x
space that are located in a spherically
symmetric distribution around the I'-point

* This distribution is referred to as the “hole
pocket” at the I'-point

Qg pocket

-
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Shape of Fermi Surface/Contour and Mass Tensor: 2D Example

Energy Energy

When the energy dispersion relation is anisotropic, the distribution of carriers in
k-space, and the Fermi surface/contour, are not spherical/circular but become
ellipsoidal/elliptical

—
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Constant Energy Surfaces

Constant energy surfaces are in the reciprocal space and are such that the energy
of every point on the surface is the same.

For example, the conduction band energy dispersion:
2,2
o n‘k
E \k)]=E,+——
c( ) € 2m,
All points in k-space that are equidistant from the origin (I'-point)
have the same energy.
= Constant energy surfaces in 3D are spherical shells, and in 2D
are circles, with the origin as their center.

Equation of a Constant Energy Surface with Energy E_:

2,2
n“k 2 2 2 2m
Ec+2me =E, = kx+ky+kz=h—2(Eo—Ec)
\ )
Y
Equation of a sphere in |2m
k-space of radius = 1 hT(EO - EC)
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Constant Energy Surfaces
- h2K2 hzk;‘: 72K2
Now consider the energy band dispersion: Ec(k)= E.+ X 4+ + z
2my, 2my, 2m,,
Now the equation of a constant energy surface with energy E, is:
2,2 p2p2 .22 2 K2 2
Ec+hk"+ y+hkz=Eo = k—x+—y+k—z=%(Eo—Ec)
2my, 2my, 2m,, \ My, My, My h l
Y

Equation of an ellipsoid in k-space with semi-major
axes given by:

2m 2m 2m
\/ hzxx(Eo_Ec) \/ hzyy(Eo—Ec)J hzzz(Eo_Ec)

Fermi-Surfaces are Examples of Constant
Energy Surfaces:

2,2 2,2 2,2
LALS hk,,+hk,=

Ec +EF
2my, 2my, 2m,,

S—
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Silicon: Electrons in the Conduction Band

In Silicon there are six conduction band minima that occur 6
along the six I'-X directions. These are also referred to as the 5
six valleys. For the one that occurs along the I'-X(27/a,0,0)

. . 4
direction:

) K, =0.85 (2?” ,o,o) E.(k,)=E, ,
1/m, 0 0 Not isotropic! i 2
1 o 1
M7= 0 1Ym, 0 m,=0.92m <
0 0 1m, m;=0.19 m Q‘Q‘?‘o ¢
Y
This implies: '$°°\\ v
is implies: Q‘b‘
2 2(, ) -3
Ec(R)=Ec+h (kx_kOX)2+h (ky koy)2+h (kz_koz)2 -4
2m, 2m; 2m,

Expression for the electron density in the valley located at along
the I'-X(2n/a,0,0) direction can be written as:

9K e f)-)

k near k, (Zﬂ' )3

L (111) r (100) X
kz
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Silicon: Electrons in the Conduction Band
6

Define: m -
5
O = G —kox) @y = (ky —koy) :
m 3
q; =\/;t(kz_koz) <
This implies: ; 1
2 2 S0
2 —

Ec(R)=Ec+h (kx_kox)2+h (ky koy)z+h (kz—k,:,z)2 o
2m, 2my 2my Y
. n’q? o s

Ec(q) =E;+ om Dispersion is isotropic in g-space
-4

Therefore, expression for the electron density in the valley
located at along the I'-X(2n/a,0,0) direction can be written as:

d3k

> neir Eo (2”)3 f(Ec (E)_ Ef)

2 -
3
m,mgmy d°q ~
= [——5 2 —= F(E:(q)-E
K m3 ﬁnej.aro(2ﬂ)3 ( c( ) f)

L (111) r (100) X

S—
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Silicon: Electrons in the Conduction Band
6

3=
m,mgmy dq ~
3 2ﬁ I 3 f(Ec(q)_Ef) 3
m gnear 0 (Zﬂ ) 4
mmim; _T4r q? ’
~ 3 2l 3 da f(E.(q)-Ey) o 2
0 om ®
h; 1
Total electron density in the conduction band consists of Qg

contributions from electron density sitting in all the six
valleys:

m,mm, _©4rq? 2
n=6x MMMt 5% g f(E.(q)-Ef) N
m 0 8z

=n= [dE g.(E) F(E-E)
E

c

1 (2mg\*?
Where: gc(E)=—2 2( hzej JE-E;
z

Density
and: m, =6%3(m,mym,)"® —— of states

effective

mass

L@y r

(100) X
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Silicon: Electrons in the Conduction Band

@ E.-E 6
n=JdE g,&) rE-E0)= N, exp(- EoE))
E KT ST si
) KT 32 4
m -
Where: Ne=2|°—
2z h 3
. 2/3 1/3 s T
And: my =6 / (mgmtmt)/ <>‘.‘: | -Ef E,
R -t
Six electron pockets in FBZ: Qo t E,
There are six electron pockets .
in Silicon - one at each of the
valleys (conduction band 2
minima) Lam ) x

N oS The electron distribution in k-
} space in each pocket is not
spherical but ellipsoidal since

the electron masses in different
directions are not the same

S—
ECE 407 - Spring 2009 - Farhan Rana - Cornell University

12



Germanium: Electrons in the Conduction Band
6

FBZ, so one-half of each
electron pocket is not in the
FBZ and therefore one-half of
the electron distribution in each

E-E, (eV)

L-valley should not be counted
in the sum for calculating the -1
number of electrons:

N=2x ¥ flE(k)-E) -
kinFBZ

In germanium there are eight conduction band minima sl
that occur at the L-points \ Ge
The L-point is at the edge of the B

Eg

7

R
\

The other way to look at the problem is to realize that the
other-half of each pocket is also located in the FBZ on the
opposite side — so in reality there are four complete pockets
of electrons in the FBZ

“Lmn T oam x
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