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Handout on

Crystal Symmetries and Energy Bands 

In this lecture you will learn:

• The relationship between symmetries and 
energy bands in the absence of spin-orbit 
coupling

• The relationship between symmetries and 
energy bands in the presence of spin-orbit 
coupling
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Symmetry and Energy Bands
The crystal potential            generally has certain other 
symmetries in addition to the lattice translation symmetry:

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

 rV


a

a

Let      be the operator (in matrix representation) for any one 
of these symmetry operations then:

Ŝ

   rVrSV

rSr









ˆ

ˆ'

   rVRrV




rSr
 ˆ'

r


Ŝ = rotation by 90o
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Crystal Point-Group Symmetry
Point-Group Symmetry
The point group symmetry operation of a lattice are all those 
operations that leave the lattice unchanged and at least one 
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

Let      be the operator for a point-group symmetry 
operation, such that:

Ŝ

   rVrSV


ˆ

rSr
 ˆ'

r


Ŝ = rotation by 90o

unitaryˆ 1  SST


The operator      is unitary:Ŝ

a

a
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Crystal Point-Group Symmetry and Energy Bands

a

a

Let      be the operator for a point-group symmetry 
operation, such that:

Ŝ


   rVrSV

SSrSr T







 

ˆ

unitaryˆˆ' 1

Now replace      by         everywhere in the Schrodinger equation:

       

       rSkErSrV
m
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Laplacian is 
invariant 

       rkErrV
m knnkn
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Suppose one has solved the Shrodinger equation and obtained 
the energy and wavefunction of a Bloch State  rkn


,
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               rSkErSrV
m

rSkErSrSV
m knnknknnkn
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2

ˆˆˆ
2 ,,

22

,,

22
 

























The above equation says that the function                   is also a Bloch state with the 
same energy as                 (we have found a new eigenfunction!)

 rSkn
 ˆ

,
 rkn


,

The question is if we really have found a new eigenfunction or not, and if so what is 
the wavevector of this new eigenfunction

We know that Bloch functions have the property that:    reRr kn
Rki

kn






,

.
,  

So we try this on                 : 

    
     rSerSe

RSrSRrS

kn
RkSi

kn
RSki

knkn













ˆˆ                  
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,
.ˆ

,
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 is a Bloch function with wavevector             and energy            rSkn
 ˆ

, kS
1ˆ  kEn



   rrS
kSnkn



1ˆ,,

ˆ
 

RS


ˆ is also a lattice vector

    RkSRSk


.ˆˆ. 1

Crystal Point-Group Symmetry and Energy Bands

 rSkn
 ˆ

,
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So we finally have for the symmetry operation      :Ŝ

   rrS
kSnkn



1ˆ,,

ˆ  

We also know that the eigenenergy of                     is              
Therefore: 

Or, equivalently:      

   kEkSE nn


1ˆ

 r
kSn


1ˆ,   kEn



   kEkSE nn


ˆ

Important Lessons:

1) If      is a symmetry of the potential such that in real-space we have:

then the energy bands also enjoy the symmetry of the potential such that in k-space:

2) Degeneracies in the energy bands can therefore arise from crystal point-group 
symmetries!  

Ŝ

   rVrSV


ˆ

   kEkSE nn


ˆ

Crystal Point-Group Symmetry and Energy Bands
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Time Reversal Symmetry and Energy Bands
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Suppose we have solved the time dependent Schrodinger and obtained the Bloch 
state                with energy             :

   
 
t

kE
i

knkn

n

ertr 
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After plugging the solution in the time-dependent equation, we get:

If we take the complex conjugate of the above equation, we get: 

       rkErrV
m knnkn

  *
,

*
,

22

2
 













We have found another Bloch function, i.e.               , with the same energy as rkn
*

,  r
kn




,


Question: What is the physical significance of the state                 ? rkn
*

,
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Lets see if we can find a solution under time-reversal (i.e. when t is replaced by –t): 
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The above does not look like a Schrodinger equation so we complex conjugate it:
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This means that                    is the time-reversed state corresponding to the state
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The function                is the time-reversed Bloch state corresponding to   rkn
*
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Suppose we have solved the time dependent Schrodinger and obtained the Bloch 
state                with energy             :
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Time Reversal Symmetry and Energy Bands

 trkn ,*
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Time Reversal Symmetry and Energy Bands
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We have found another Bloch function, i.e.               , with the same energy as rkn
*

,  r
kn




,


The question is if we really have found a new eigenfunction or not, and if so what is 
the wavevector of this new eigenfunction

We know that Bloch functions have the property that:    reRr kn
Rki

kn






,

.
,  

So we try this on                : 

           rereRrRr kn
Rki

kn
Rki

knkn
 





 *

,
.

*

,
.*

,
*
,  

 rkn
*

,

 is a Bloch function with wavevector           and energy            rkn
*

, k


  kEn


       kEkErr nnknkn

    and*
,, 

Important Lesson: 
Time reversal symmetry implies that                                  even if the crystal lacks 
spatial inversion symmetry (e.g. GaAs, InP, etc)

   kEkE nn
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Spin-Orbit Interaction in Solids
An electron moving in an electric field sees an effective magnetic field given by:

22mc

PE
Beff


 


The additional factor 
of 2 is coming from 
Thomas precession

The electron has a magnetic moment       related to its spin angular momentum      by:

Sg B




   ̂
2

ˆ 
S  ˆˆ 

B2
2

 g
m
e

B


The interaction between the electron spin and the effective magnetic field adds a 
new term to the Hamiltonian:
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P
e
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m knnkn
r  


,,

22

2
 













Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:

Electron states with spin-up and spin-down were degenerate

     rkErH knnkno
 

,,
ˆ  

In the presence of spin-orbit coupling the Hamiltonian becomes:

     rrrso

soo

rV
cm

iPrV
cm

H

HHH
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Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states 
are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin 
states, or:
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=Quantum number for the two 
spin degrees of freedom, usually 
taken to be +1 or -1

   kEkE nn


  ,,
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Spin-Orbit Interaction and Bloch Functions
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For each wavevector in the FBZ, and for each band index, one will obtain two 
solutions of the above equation

We label one as = +1 and the other with = -1 and in general

n̂

   kEkE nn


 ,, 

These two solutions will correspond to spins pointing in two different directions 
(usually collinear and opposite directions). Let these directions be specified by     at 
the location    :
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Spin-Orbit Interaction and Lattice Symmetries
In the presence of spin-orbit interaction we have the Schrodinger equation:

Lattice Translation Symmetry:
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Rotation Symmetry:

Let      be an operator belonging to the rotation subgroup of the crystal point-group, 
such that:

Ŝ

     unitaryˆˆ 1  SSrVrSV T 

(The case of inversion symmetry will be treated separately)
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Suppose we have found the solution to the Schrodinger equation:

Spin-Orbit Interaction and Rotation Symmetry
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We replace      by        everywhere in the Schrodinger equation:r
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And the solution is:
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The above equation does not look like the Schrodinger equation!

We define a unitary spin rotation operator        that operates in the Hilbert space of 
spins and rotates spin states in the sense of the operator 

Consider a spin vector pointing in the      direction:n̂

SR ˆ
ˆ
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The spin rotation operators  have the property:   nSRnR
SS

ˆˆ.ˆˆˆ.ˆˆ 1
ˆˆ   

Ŝ

Spin-Orbit Interaction and Rotation Symmetry
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Start from:

Introduce spin rotation operator         corresponding to the rotation generated by 
the matrix     : 

SR ˆ
ˆ
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The above equation shows that the new state:
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The new state is a Bloch state with wavevector kS
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If      is an operator for a point-group symmetry operation then the two states given by:Ŝ
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have the same energy:

Spin-Orbit Interaction and Point-Group Symmetry

This represents a rotated (in 
space) version of the original 
Bloch state. Even the spin is 
rotated appropriately by the 
spin rotation operator.
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Spin-Orbit Interaction and Inversion Symmetry

Suppose we have found the solution to the Schrodinger equation:
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We replace      by        everywhere in the Schrodinger equation:r
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And the solution is:
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Suppose the crystal potential has inversion symmetry:
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Spin-Orbit Interaction and Inversion Symmetry

The above equation shows that the new state:
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the new state is a Bloch state with wavevector k
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In most cases, the new state:

has the same spin direction as the state:
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Spin-Orbit Interaction and Inversion Symmetry

   kEkE nn
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Summary:

If the crystal potential has inversion symmetry then the two states given by:
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have the same energy:



11

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

 
 
      








 rr

r

r
r knkn

kn

kn
kn





 






,,
,

,
,, 


 

Consider the Bloch function:

Suppose the Bloch function corresponds to the spin pointing in the direction of the 
unit vector       at the location     : n̂
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What if we want the state with the opposite spin at the same location?

The answer is:
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Spin-Orbit Interaction and Time Reversal Symmetry

zyx zyx ˆˆˆˆˆˆˆ  
  ˆˆˆˆˆˆˆ*ˆ   zyx zyx
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In the presence of spin-orbit interaction we have the Schrodinger equation:

We complex conjugate it:
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Suppose we have solved it and found the solution:  
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It does not look like the original Schrodinger equation! 

Note that:

 ˆˆˆˆˆˆˆ*ˆ 
 zyx zyx

zyx zyx ˆˆˆˆˆˆˆ  


Spin-Orbit Interaction and Time Reversal Symmetry
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

One can always perform a unitary transformation with matrix T and obtain:
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We have found a new solution:

with the same energy                 as the original solution:
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Question: What is the physical significance of the new solution?
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Spin-Orbit Interaction and Time Reversal Symmetry
Under lattice translation we get for the new solution:
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So the new solution is a Bloch state with wavevector k
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Note that the new solution found can also be written as:
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But as shown earlier, the above state has spin opposite to the state  
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Therefore, the new solution is a Bloch state                       , i.e.:  rkn
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And we have also found that its energy is the same as that of the state                  : rkn
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Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the time-dependent Schrodinger 
equation:
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Lets see if we can find a solution under time-reversal (i.e. when t is replaced by –t): 
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The above does not look like a Schrodinger equation so we complex conjugate it:
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And it still does not look like the original Schrodinger equation! 

Solution is:
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

One can always perform a unitary transformation with matrix T and obtain:

vAv 
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1

Tvu

TATB


 1

So try a transformation with the unitary matrix          with the equation: 
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The above equation now looks like the time-dependent Schrodinger equation
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Spin-Orbit Interaction and Time Reversal Symmetry
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Corresponding to the Bloch state:

with energy:

 kEn


,

the time-reversed Bloch state is:
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and the time-reversed state has the same energy as the original state:

   kEkE nn


 ,, 

Summary:
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Time reversal symmetry implies:

   kEkE nn


 ,, 

Inversion symmetry implies:

   kEkE nn


 ,, 

Crystal Inversion Symmetry and Time Reversal Symmetry

In crystals which have inversion and time reversal symmetries the above two imply:

   kEkE nn


 ,,  There is spin degeneracy!

In crystals which do not have inversion symmetry the above two do not guarantee spin 
degeneracy. In general:

   kEkE nn


 ,,  Bands with different spins 

can have different energy 
dispersion relations
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Crystal Inversion Symmetry and Time Reversal Symmetry

Cartoon (and much exaggerated) sketches of the conduction bands of Ge and GaAs
are shown below: 

GaAsGe

k

EE

k

 kEn


,

 kEn


,
 kEn


,
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,

   kEkE nn


 ,,    kEkE nn


 ,, 


