Handout on

Crystal Symmetries and Energy Bands

In this lecture you will learn:

* The relationship between symmetries and
energy bands in the absence of spin-orbit
coupling

* The relationship between symmetries and
energy bands in the presence of spin-orbit
coupling
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Symmetry and Energy Bands

The crystal potential V/(F) generally has certain other
symmetries in addition to the lattice translation symmetry:

V(F+R)=V(F)

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

.

Let § be the operator (in matrix representation) for any one
of these symmetry operations then:

S = rotation by 90°
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Crystal Point-Group Symmetry
Point-Group Symmetry
The point group symmetry operation of a lattice are all those

operations that leave the lattice unchanged and at least one
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

Let S be the operator for a point-group symmetry F'= SF
operation, such that:

r

V(§F)=Vv(F)

The operator Sis unitary:

8T = §1 = unitary

$ = rgtation by 90°
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Crystal Point-Group Symmetry and Energy Bands
[ ] [ ]

[ ]
Let S be the operator for a point-group symmetry
operation, such that:
r'=8§r {§T =87 = unitary ° ° °
= V($7)=V(F) a
[ ] [ ] [ ]
Suppose one has solved the Shrodinger equation and obtained —
the energy and wavefunction of a Bloch State ¥, ¢ (l' a
[ 1252
Vs ~ _ P —
Lo A0 )= £l
Now replace r by S§r everywhere in the Schrodinger equation:
_ 2 2
Vé. =V
h2vz, ~ . . n Sr r
S — =\ R —
Vs V(Sr)l Vi (87)=EnK)v, s (67) — Laplacian is
L invariant
n?vz s . A
=\ 2m +V(I‘) V’n,E(sr)= En( )V/n,l?(sr)
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Crystal Point-Group Symmetry and Energy Bands
2g2 R R ~ A 2.2 i
Y +V(SF)} Vo i (67)= En(K)v, £ (67)= {- ~ +V(F)} Vi (87)= En(

The above equation says that the function y/n,,;(-§7') is also a Bloch state with the
same energy as ¥, E(F) (we have found a new eigenfunction!)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: Ynk (f + R)= e k.R l//,,,,;(f')

Sowetry thison y . (§F):

Y nk (3(7' +R ))= Vi (§F + §§) ——> = SRis also a lattice vector
Sk (ar)- oW R, (o) | K(ER)-(5R)A

V’n,E( F) is a Bloch function with wavevector $~'k and energy E, (E)
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Crystal Point-Group Symmetry and Energy Bands
So we finally have for the symmetry operation S:
=,k (87)=v, 5% (F)

We also know that the eigenenergy of ¥, s-1x (F)is E,,(ﬂ)
Therefore: ’

E,(§7'%)=E,(K)
Or, equivalently:
E, (‘§E)= En(a)

Important Lessons: \

1) If Sisa symmetry of the potential such that in real-space we have:
v($7)=Vv(7)
then the energy bands also enjoy the symmetry of the potential such that in k-space:
E,($k)=E, (k)

2) Degeneracies in the energy bands can therefore arise from crystal point-group
symmetries!
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Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch
state ¥/ E(F) with energy E,, (k :

- n*v? al/’n,ﬁ(f’t)
2m

ot
After plugging the solution in the time-dependent equation, we get:

E,(k)

) . —iEnlk)
Voi(F)=v, ;(Fle 7

+v(f)} v gEt)=in

2VE V) )= E0 )

If we take the complex conjugate of the above equation, we get:

+V(F) v o (F) = En(K)w, 4 (F)

We have found another Bloch function, i.e.¥p k (f) , with the same energy as ¥/, R(F)

Question: What is the physical significance of the state Ynk (f) ?
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Time Reversal Symmetry and Energy Bands
Suppose we have solved the time dependent Schrodinger and obtained the Bloch

state y/nlk (r) with energy E, (k :
Eplk)

- oy i t
Yn,k (I',t) = V/n,E(r) e 7

i ow, x(F,t
V() |y (70 =in "’"gt( )

Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):

[ n2v2 | oy, x(F:t)
ot

V() |y 7o) =

= -

The above does not look like a Schrodinger equation so we complex conjugate it:
a '/In’k (F’_t)
ot

This means that l//;’,; (7‘ ,—t) is the time-reversed state corresponding to the state ¥, ¢ (7,

= |-

om +V(F) |y, g (F-t)=in

-iﬂ‘at 2y2 . L\ x
VoiFt)=v,i(Fe " {‘ o TV )} Vi (F)=Enlk)y, £(F)

e function l//:,’,; (F) is the time-reversed Bloch state corresponding to v, E(F)
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Time Reversal Symmetry and Energy Bands

RG] AR A

We have found another Bloch function, i.e.¥p k (F) , with the same energy as ¥/, ,;(F)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: V/,,,,;(f + R’)= e k-R V’n,E(F)
So we try this on l//;’,; (7):

SR 2 ) I ) R
= l//;’,; (F) is a Bloch function with wavevector —k and energy En(ﬂ)

= v i(F)=v,i(F) and E,(-K)=E,(K)

Important Lesson: ~ ~
Time reversal symmetry implies that En(— k )= E,,( ) even if the crystal lacks
spatial inversion symmetry (e.g. GaAs, InP, etc)

N i
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Spin-Orbit Interaction in Solids

An electron moving in an electric field sees an effective magnetic field given by:

_ ExP { The additional factor

Besr = 2 of 2 is coming from
2mc Thomas precession

The electron has a magnetic moment /i related to its spin angular momentum S by:

fi=-g*t 26 mm, O B

2 a s aoa aoa . 01 R 0 —i . 10
O'=O'XX+O'yy+O'ZZ Oy = 10 o'y= i 0 G, = 0 -1

The interaction between the electron spin and the effective magnetic field adds a
new term to the Hamiltonian:

A _ 5 = - 1 VV(I':) 2 nooa [ - 3]
H., = —ji.B.ff = ugo.Bofsr = ugo . xP |= o.|[VVIF)xP
so H-Deff = HBO-Deff = KB 2 c2|: e i| 4m2c? ()
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Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:
HOy/n,R (F) = En (k) V/n,R (F)

{_th?Jrv(f)} Vo i (F)=En®)v, (7)

In the presence of spin-orbit coupling the Hamiltonian becomes:

H=H,+Hg,
a 5 2 a A —
Ago = #é. F.v()<p]- —i‘“jﬁé [oviF)xv,]

Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states
are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin

states, or:
% =Quantum number for the two

[ank(F B, ;
Ynk.z (F)= |:ﬂ:: (F):| =0,k (’)‘T> +B.k (r)‘¢> spin degrees of freedom, usually
’ taken to be +1 or -1
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Spin-Orbit Interaction and Bloch Functions

o) el e

s RO Y AR | R

2m 4m“c

For each wavevector in the FBZ, and for each band index, one will obtain two
solutions of the above equation

We label one as y = +1 and the other with 7 = -1 and in general E, -z (k);e E, x(l?)

These two solutions will correspond to spins pointing in two different directions
(usually collinear and opposite directions). Let these directions be specified by 5 at

the location r:

Qi

ﬁ Wn,l?,;((r‘) =+1 Wn,R,x(F)

Ay, )=y, (F)

Qi
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Spin-Orbit Interaction and Lattice Symmetries
In the presence of spin-orbit interaction we have the Schrodinger equation:

[ttt 1 o) Y o] s 20

Lattice Translation Symmetry:

- %,k (F + f‘,) ei‘;.kan,ﬁ' (F) ik.R =
Wn,l?,l (r M R)= |:ﬂn,k (F + f‘"):| = JikR n,k(ﬁ) =e " R'/,n,kyl(r)

Rotation Symmetry:

Let $ bean operator belonging to the rotation subgroup of the crystal point-group,
such that:

V(§F)= V(F) {.§T =$§~'= unitary

(The case of inversion symmetry will be treated separately)
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Spin-Orbit Interaction and Rotation Symmetry

Suppose we have found the solution to the Schrodinger equation:

(5 s o o ][50

And the solution is:
O[] = el

We replace 7 by Sr everywhere in the Schrodinger equation:

{ ZZVng v($F) i ’jzczé [V, v(SF) vs,]H;::g ):|=En LK) ;::E;ﬂ
[ v s“[va(f)xvf]}{;:ﬁ;ﬂ:E,,Z(—){;:ﬁgﬁgﬂ
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Spin-Orbit Interaction and Rotation Symmetry

RS e T

2m 4m

\
—

The above equation does not look like the Schrodinger equation!

We define a unitary spin rotation operator R‘? that operates in the Hilbert space of

spins and rotates spin states in the sense of the operator S S

Consider a spin vector pointing in the 1 direction:

il
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Spin-Orbit Interaction and Point-Group Symmetry
Start from:
n?v2 2 . oa 2 k(SF) _ i ( )
{ sz +V(I') am2c? o. S[V V(I')XV }|:ﬂ: k(sr)i| =E, ( )|:ﬂn k(SF)

Introduce spin rotation operator R corresponding to the rotation generated by
the matrix S:

A { VL (e~ 4,:202 G s[va(,)xvf]}ks@{;n,g (s;ﬂ e, ) ,Qgh H
(o v bt e e etoms o

The above equation shows that the new state:

s

oy i (F)
satisfies the Schrodinger equation and has the same energy as the state: { "’k(-)}

—
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Spin-Orbit Interaction and Point-Group Symmetry

i -l el

The new state is a Bloch state with wavevector S‘1k

Summary: \

If S isan operator for a point-group symmetry operation then the two states given by:

a2

This represents a rotated (in
.§F) space) version of the original
—> 4 Bloch state. Even the spin is
:] rotated appropriately by the
spin rotation operator.
have the same energy:

En,z'(é_%): En,;:(’;)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Spin-Orbit Interaction and Inversion Symmetry

Suppose the crystal potential has inversion symmetry:

V(=7)=V(F)

Suppose we have found the solution to the Schrodinger equation:
{_ V)i, o 6. [T Vv, ]}{Z'k‘gﬂ - En,l(l?){;:;gﬂ
And the solution is:
Wk, F)= {;::Eg} & En,lk)
We replace 7 by — F everywhere in the Schrodinger equation:
ot avten-i s lo e Ao ) e T, 0 e
o o vte)-1 o ble R ) A )
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Spin-Orbit Interaction and Inversion Symmetry
2v2 h2 2, F)] [ @i (=F)
{ 2m —+ V(r)—l m c O' [V V( )XV ]}|:ﬂn’k(— ’__)i| = E"'l(k)|:ﬂn’ﬁ(—F)
an,E(— F)i|

The above equation shows that the new state: { (= F)
n,k )
satisfies the Schrodinger equation and has the same energy as the state: LB ( )i|
a,il-F+R)] ) { k(-7 )}
=e -
Bril-(F+R)) Poi(="F)

the new state is a Bloch state with wavevector — k

a, k(- f)}

In most cases, the new state: ’ _
n ;;(— r)

Since:

a, i (F )}

has the same spin direction as the state: [,B

0 we can write: Yn-ky (F) = [79"’2 E: i-')i|
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Spin-Orbit Interaction and Inversion Symmetry

Summary:

If the crystal potential has inversion symmetry then the two states given by:
() (-F)
= n,k . a, g\=r
Vi AF)= = F)=| ™ _
n,k,z( ) |:'3n,l?(r)i| '/’n, ,Z( ) |:ﬂn,l? (_r i|
have the same energy:

En,z(_ E)= En,z(ﬂ)

N
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Spin-Orbit Interaction and Time Reversal Symmetry
Consider the Bloch function:

l//n,l?,l (F) = [Z:,k g)i| =k (F)‘ T> + ﬂn,l? (F)‘ J’>

Suppose the Bloch function corresponds to the spin pointing in the direction of the
unit vector i at the location F:

an,E(F)

A A — A A anE(F) —
Ny _; (F)=a.n 7", |=+1 N|=Hlw iz (F
G '/’n,kyl( )=0 |:ﬂn,l? (r)i| |:ﬂn,l?(r)i| '/’n,k,l( )
What if we want the state with the opposite spin at the same location?

The answer is: 3 i _B *n P (F)
16y ¥ i O)=| e
niox a*, i (F)
Proof:
i, v, O--il-6*hs, v, O
—-il6,6,6%h,6,0, v.r (P =-il6,0v, ¢ P
sy vy O = AL iy g )
{6=6,%+6,7+6,2 = &*=6,%-6,7+6,2%6 |
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Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the Schrodinger equation:

{_ h;:’ +V(F)- i‘“:,:czé vE)xe H;:gﬂ _ E,,,Z(I?){Z::i gﬂ

a, :(F -
Suppose we have solved it and found the solution: Wn,l?,l (i-’) — |: n,k( )i| o En,;(( )

ﬂn,l? (F)

We complex conjugate it:
a7 PN T, A ek )] N[a*, ; (F)
{_2!71+v(r)+’4m"’c20 .[VV(r)xV]}{ﬂ*nE(F) —En,z( ) pr (7

It does not look like the original Schrodinger equation!

Note that:

O=0xX+3,y+6,2

=0 =6xX-6yy+6,2#C

—
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = v
One can always perform a unitary transformation with matrix T and obtain:
TAT YTv =aTv B=TAT
=Bu=4u u=Tv

So try a transformation with the unitary matrix — ié"y with the equation:

o -2 cverei 2 vleolfois, Yo [ % 0] a0, 5ot 0]
:{_h:’V'1$+V(r)—l e v )xv}[ nk(g)} . (*)[_ﬂ*":‘(g)}
*nk (f)}

We have found a new solution: _
I: a*n k (r)

a i (F
P n,k
with the same energy E k) as the original solution: ¥ (r) e
n,z( ) nK.xy ﬂnk(’)

stion: What is the physical significance of the new solution?
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Spin-Orbit Interaction and Time Reversal Symmetry
Under lattice translation we get for the new solution:

B F+R)] ok R[ "Bk ()
a* i (r+R) a*,k @)
So the new solution is a Bloch state with wavevector — k
)= -B* i (F)
Yn-k20)=| o "o (F)
Note that the new solution found can also be written as:
" o [-B*,i(F)
AR P _
But as shown earlier, the above state has spin opposite to the state WH,E,Z (f) = |:ﬂn’lf (F)
n,k

Therefore, the new solution is a Bloch state Wn,—l?,—;: (7’) ,i.e.:

VnimyF)==i6y v ", (F)= {_aﬂ**”'}f(g)}

And we have also found that its energy is the same as that of the state v/, ¢ x(F):

En,—x(‘ E)= En,z(‘;)

—
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Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the time-dependent Schrodinger

T e 2 e st
@ t)} Pl 0 )

2m
Vi, (Frt)= { (7.1) (e o (k)

Solution is:
Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):
2y2 2 F—t F—t
IV v(E)-i- 6 o) % (rt) 'h "“(’ )
2m 4am3c k(r t) n,k (" t)
The above does not look like a Schrodinger equation so we complex conjugate it:

s RNISPN VR i RO ot o

d it still does not look like the original Schrodinger equation!

—\ _—iE,
'//n,l?,;((r)e L n,z(
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = Av
One can always perform a unitary transformation with matrix T and obtain:
TAT 'Tv = ATv B=TAT
=>Bu=Au u=Tv

So try a transformation with the unitary matrix— ié‘-ywith the equation:
A vt Rty

¢ ,-m{_ PV V)i e v )xv]} +,,,yx_ ,,,y{;* il g] -2 ’“y)[;*ni o :ﬂ
- s oo S 2

The above equation now looks like the time-dependent Schrodinger equation
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Spin-Orbit Interaction and Time Reversal Symmetry

Summary:

Corresponding to the Bloch state:

e @8] e,z @e ek
Vi, (Frt)= |:'Bn,l? , t)} = s E(F)e-iE,,,Z(E)t

with energy:

En,, (k)
the time-reversed Bloch state is:

B Et)] [~ Pl o
o)

)e—iE,,,x(I?)t

=¥k,

nx
_ \A—iEn, 4
— = ) ~ _ ~ F
a *n,E (r,—t) a *n . (F)e_’E"'Z( )t W"!_ks_l( )e

and the time-reversed state has the same energy as the original state:

En,—z(‘ R)= En,z(E)

—
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Crystal Inversion Symmetry and Time Reversal Symmetry

Time reversal symmetry implies:

En,—l(_ E)= En,;((ﬂ)

Inversion symmetry implies:

En,, (_ R) = En,x(-)

In crystals which have inversion and time reversal symmetries the above two imply:
En_, (E): E,, (R) —> There is spin degeneracy!

In crystals which do not have inversion symmetry the above two do not guarantee spin

degeneracy. In general:

E,,,_Z(k)# En,x(ﬂ) —> Bands with different spins
can have different energy
dispersion relations

—
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Crystal Inversion Symmetry and Time Reversal Symmetry

Cartoon (and much exaggerated) sketches of the conduction bands of Ge and GaAs
are shown below:

E E

£ (k) En,, ()

E, (k) oy ()

Ge GaAs

En,—z(E)= En,z(q) En,—z(k)** En,x(q)

—
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