Handout on
 Crystal Symmetries and Energy Bands

In this lecture you will learn:

- The relationship between symmetries and energy bands in the absence of spin-orbit coupling
- The relationship between symmetries and energy bands in the presence of spin-orbit coupling

Symmetry and Energy Bands
The crystal potential $V(\vec{r})$ generally has certain other symmetries in addition to the lattice translation symmetry:

$$
V(\vec{r}+\vec{R})=V(\vec{r})
$$

For example, the 2D potential of a square atomic lattice, as shown, has the following symmetries:
a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

Let \hat{S} be the operator (in matrix representation) for any one of these symmetry operations then:

$$
\begin{aligned}
& \vec{r}^{\prime}=\hat{S} \vec{r} \\
& \Rightarrow V(\hat{\mathbf{S}} \vec{r})=V(\vec{r})
\end{aligned}
$$

$$
\hat{\boldsymbol{S}}^{T}=\overrightarrow{\boldsymbol{S}}^{-1} \Rightarrow \text { unitary }
$$

Crystal Point-Group Symmetry and Energy Bands

Let \hat{S} be the operator for a point-group symmetry operation, such that:

$$
\begin{aligned}
& \vec{r}^{\prime}=\hat{S} \vec{r} \quad\left\{\hat{S}^{T}=\vec{S}^{-1} \Rightarrow\right. \text { unitary } \\
& \Rightarrow V(\hat{S} \vec{r})=V(\vec{r})
\end{aligned}
$$

Suppose one has solved the Shrodinger equation and obtained

the energy and wavefunction of a Bloch State $\psi_{n, \vec{k}}(\vec{r})$

$$
\left[-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\vec{r})
$$

Now replace $\overrightarrow{\boldsymbol{r}}$ by $\hat{\mathbf{S}} \overrightarrow{\boldsymbol{r}}$ everywhere in the Schrodinger equation:

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2} \nabla_{\hat{S} \vec{r}}^{2}}{2 m}+V(\hat{S} \vec{r})\right] \psi_{n, \vec{k}}(\hat{S} \vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\hat{S} \vec{r}) \longrightarrow\left\{\begin{array}{l}
\nabla_{\hat{S} \vec{r}}^{2}=\nabla_{\vec{r}}^{2} \\
\begin{array}{l}
\text { Laplacian is } \\
\text { invariant }
\end{array} \\
\Rightarrow\left[-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\hat{S} \vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right.}
\end{aligned}
$$

Crystal Point-Group Symmetry and Energy Bands

$\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\hat{s} \vec{r})\right] \psi_{n, \vec{k}}(\hat{s} \vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\hat{s} \vec{r}) \Rightarrow\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\hat{s} \vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\hat{s} \vec{r})$
The above equation says that the function $\psi_{n, \vec{k}}(\hat{\boldsymbol{S}} \vec{r})$ is also a Bloch state with the same energy as $\psi_{n, \vec{k}}(\vec{r})$ (we have found a new eigenfunction!)

The question is if we really have found a new eigenfunction or not, and if so what is the wavevector of this new eigenfunction
We know that Bloch functions have the property that: $\psi_{n, \vec{k}}(\vec{r}+\vec{R})=\mathrm{e}^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}}(\vec{r})$ So we try this on $\psi_{n, \vec{k}}(\hat{S} \vec{r})$:

$$
\begin{aligned}
& \text { try this on } \psi_{n, \vec{k}}(S \vec{r}): \\
& \begin{aligned}
& \psi_{n, \vec{k}}(\hat{S}(\vec{r}+\vec{R}))=\psi_{n, \vec{k}}(\hat{S} \vec{r}+\hat{S} \vec{R}) \\
&=e^{i \vec{k} \cdot \hat{S} \vec{R}} \psi_{n, \vec{k}}(\hat{S} \vec{r})=e^{i\left[\hat{S}^{-1} \vec{k}\right] \cdot \vec{R}} \psi_{n, \vec{k}}(\hat{S} \vec{r})
\end{aligned}>\left\{\begin{array}{l}
\hat{S} \vec{R} \text { is also a lattice vector }
\end{array}\right.
\end{aligned}
$$

$\Rightarrow \quad \psi_{n, \vec{k}}(\hat{\boldsymbol{S}} \vec{r})$ is a Bloch function with wavevector $\hat{S}^{-1} \vec{k}$ and energy $E_{n}(\vec{k})$
$\Rightarrow \psi_{n, \vec{k}}(\hat{S} \hat{r})=\psi_{n, \hat{s}^{-1} \vec{k}}(\vec{r})$

Crystal Point-Group Symmetry and Energy Bands

So we finally have for the symmetry operation $\hat{\boldsymbol{S}}$:

$$
\Rightarrow \psi_{n, \vec{k}}(\hat{S} \hat{r})=\psi_{n, \hat{S}^{-1} \vec{k}}(\vec{r})
$$

We also know that the eigenenergy of $\psi_{n, \hat{S}^{-1} \vec{k}}(\vec{r})$ is $E_{n}(\vec{k})$
Therefore:

$$
E_{n}\left(\hat{S}^{-1} \vec{k}\right)=E_{n}(\vec{k})
$$

Or, equivalently:

$$
E_{n}(\hat{s} \vec{k})=E_{n}(\vec{k})
$$

Important Lessons:

1) If \hat{S} is a symmetry of the potential such that in real-space we have:

$$
v(\hat{s} \vec{r})=V(\vec{r})
$$

then the energy bands also enjoy the symmetry of the potential such that in \mathbf{k}-space:

$$
E_{n}(\hat{s} \vec{k})=E_{n}(\vec{k})
$$

2) Degeneracies in the energy bands can therefore arise from crystal point-group symmetries!

Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch state $\psi_{n, \vec{k}}(\vec{r})$ with energy $E_{n}(\vec{k})$:

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r}, t)=i \hbar \frac{\partial \psi_{n, \vec{k}}(\vec{r}, t)}{\partial t} \longrightarrow \psi_{n, \vec{k}}(\vec{r}, t)=\psi_{n, \vec{k}}(\vec{r}) e^{-i \frac{E_{n}(\vec{k})}{\hbar} t}
$$

After plugging the solution in the time-dependent equation, we get:

$$
\left[-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\vec{r})
$$

If we take the complex conjugate of the above equation, we get:

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}^{*}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}^{*}(\vec{r})
$$

We have found another Bloch function, i.e. $\psi_{n, \vec{k}}^{*}(\vec{r})$, with the same energy as $\psi_{n, \vec{k}}(\vec{r})$ Question: What is the physical significance of the state $\psi_{n, \vec{k}}^{*}(\vec{r})$?

Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch state $\psi_{n, \vec{k}}(\vec{r})$ with energy $E_{n}(\vec{k})$:

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r}, t)=i \hbar \frac{\partial \psi_{n, \vec{k}}(\vec{r}, t)}{\partial t} \longrightarrow \psi_{n, \vec{k}}(\vec{r}, t)=\psi_{n, \vec{k}}(\vec{r}) e^{-i \frac{E_{n}(\vec{k})}{\hbar} t}
$$

Lets see if we can find a solution under time-reversal (i.e. when \boldsymbol{t} is replaced by \boldsymbol{t}):

$$
\Rightarrow\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r},-t)=-i \hbar \frac{\partial \psi_{n, \vec{k}}(\vec{r},-t)}{\partial t}
$$

The above does not look like a Schrodinger equation so we complex conjugate it:

$$
\Rightarrow\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}^{*}(\vec{r},-t)=i \hbar \frac{\partial \psi_{n, \vec{k}}^{*}(\vec{r},-t)}{\partial t}
$$

This means that $\psi_{n, \vec{k}}^{*}(\vec{r},-t)$ is the time-reversed state corresponding to the state $\psi_{n, \vec{k}}(\vec{r}, t)$

$$
\psi_{n, \vec{k}}^{*}(\vec{r},-t)=\psi_{n, \vec{k}}^{*}(\vec{r}) e^{-i \frac{E_{n}(\vec{k})}{\hbar} t} \longrightarrow\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}^{*}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}^{*}(\vec{r})
$$

The function $\psi_{n, \vec{k}}^{*}(\vec{r})$ is the time-reversed Bloch state corresponding to $\psi_{n, \vec{k}}(\vec{r})$

Time Reversal Symmetry and Energy Bands

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}^{*}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}^{*}(\vec{r})
$$

We have found another Bloch function, i.e. $\psi_{n, \vec{k}}^{*}(\vec{r})$, with the same energy as $\psi_{n, \vec{k}}(\vec{r})$
The question is if we really have found a new eigenfunction or not, and if so what is the wavevector of this new eigenfunction
We know that Bloch functions have the property that: $\psi_{n, \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}}(\vec{r})$ So we try this on $\psi_{n, \vec{k}}^{*}(\vec{r})$:

$$
\psi_{n, \vec{k}}^{*}(\vec{r}+\vec{R})=\left[\psi_{n, \vec{k}}(\vec{r}+\vec{R})\right]^{*}=\left[e^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}}(\vec{r})\right]^{*}=e^{i[-\vec{k}] \cdot \vec{R}} \psi_{n, \vec{k}}^{*}(\vec{r})
$$

$\Rightarrow \psi_{n, \vec{k}}^{*}(\vec{r})$ is a Bloch function with wavevector $-\overrightarrow{\boldsymbol{k}}$ and energy $E_{n}(\vec{k})$
$\Rightarrow \psi_{n,-\vec{k}}(\vec{r})=\psi_{n, \vec{k}}^{*}(\vec{r})$ and $E_{n}(-\vec{k})=E_{n}(\vec{k})$
Important Lesson:
Time reversal symmetry implies that $E_{n}(-\overrightarrow{\boldsymbol{k}})=E_{n}(\overrightarrow{\boldsymbol{k}})$ even if the crystal lacks spatial inversion symmetry (e.g. GaAs, InP, etc)

Spin-Orbit Interaction in Solids

An electron moving in an electric field sees an effective magnetic field given by:

$$
\vec{B}_{\text {eff }}=\frac{\vec{E} \times \vec{P}}{2 m c^{2}} \longrightarrow\left\{\begin{array}{l}
\text { The additional factor } \\
\text { of } 2 \text { is coming from } \\
\text { Thomas precession }
\end{array}\right.
$$

The electron has a magnetic moment $\vec{\mu}$ related to its spin angular momentum \vec{S} by:

$$
\begin{array}{lll}
\vec{\mu}=-g \frac{\mu_{B}}{\hbar} \vec{S} \longrightarrow \hat{\vec{S}}=\frac{\hbar}{2} \hat{\bar{\sigma}} \quad \mu_{B}=\frac{e \hbar}{2 m} & g \approx 2 & \longrightarrow \hat{\vec{\mu}}=-\mu_{B} \hat{\bar{\sigma}} \\
\hat{\vec{\sigma}}=\hat{\sigma}_{x} \hat{x}+\hat{\sigma}_{y} \hat{y}+\hat{\sigma}_{z} \hat{z}\left\{\hat{\sigma}_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right. & \hat{\sigma}_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] & \hat{\sigma}_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{array}
$$

The interaction between the electron spin and the effective magnetic field adds a new term to the Hamiltonian:

$$
\hat{H}_{\text {so }}=-\vec{\mu} \cdot \vec{B}_{\text {eff }}=\mu_{B} \hat{\vec{\sigma}} \cdot \vec{B}_{\text {eff }}=\mu_{B} \hat{\vec{\sigma}} \cdot \frac{1}{2 m c^{2}}\left[\frac{\nabla V(\hat{\vec{r}})}{\mathrm{e}} \times \hat{\hat{P}}\right]=\frac{\hbar}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \hat{\vec{P}}]
$$

Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:

$$
\begin{gathered}
\hat{H}_{o} \psi_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\vec{r}) \\
{\left[-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})\right] \psi_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) \psi_{n, \vec{k}}(\vec{r})}
\end{gathered}
$$

Electron states with spin-up and spin-down were degenerate $\left\{E_{n, \uparrow}(\vec{k})=E_{n, \downarrow}(\vec{k})\right.$
In the presence of spin-orbit coupling the Hamiltonian becomes:

$$
\begin{aligned}
& \hat{H}=\hat{H}_{o}+\hat{H}_{\text {so }} \\
& \hat{H}_{s o}=\frac{\hbar}{4 m^{2} c^{2}} \hat{\bar{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \hat{\bar{P}}\right]=-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\bar{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]
\end{aligned}
$$

Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin states, or:
$\left.\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{c}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]=\alpha_{n, \vec{k}}(\vec{r})|\uparrow\rangle+\beta_{n, \vec{k}}(\vec{r}) \downarrow\right\rangle\left\{\begin{array}{l}\chi=\text { Quantum number for the two } \\ \text { spin degrees of freedom, usually } \\ \text { taken to be +1 or -1 }\end{array}\right.$

Spin-Orbit Interaction and Bloch Functions

$$
\begin{aligned}
& \hat{H}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}\left(\vec{k}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]\right. \\
& \left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\sigma} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}})_{\left.\times \vec{\nabla}_{\vec{r}}\right]}\right]\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]\right.
\end{aligned}
$$

For each wavevector in the FBZ, and for each band index, one will obtain two solutions of the above equation

We label one as $\chi=+1$ and the other with $\chi=-1$ and in general $E_{n,-\chi}(\vec{k}) \neq E_{n, \chi}(\vec{k})$
These two solutions will correspond to spins pointing in two different directions (usually collinear and opposite directions). Let these directions be specified by $\hat{\boldsymbol{n}}$ at the location \vec{r} :

$$
\begin{aligned}
& \hat{\hat{\sigma}} . \hat{n} \psi_{n, \vec{k}, \chi}(\vec{r})=+1 \psi_{n, \vec{k}, \chi}(\vec{r}) \\
& \hat{\bar{\sigma}} . \hat{n} \psi_{n, \vec{k},-\chi}(\vec{r})=-1 \psi_{n, \vec{k},-\chi}(\vec{r})
\end{aligned}
$$

Spin-Orbit Interaction and Lattice Symmetries

In the presence of spin-orbit interaction we have the Schrodinger equation:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]
$$

Lattice Translation Symmetry:

$$
\psi_{n, \vec{k}, \chi}(\vec{r}+\vec{R})=\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\vec{r}+\vec{R}) \\
\beta_{n, \vec{k}}(\vec{r}+\vec{R})
\end{array}\right]=\left[\begin{array}{c}
i \vec{k} \cdot \vec{R} \\
\alpha_{n, \vec{k}}(\vec{r}) \\
e^{i \vec{k} \cdot \vec{R}} \beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=e^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}, \chi}(\vec{r})
$$

Rotation Symmetry:
Let \hat{S} be an operator belonging to the rotation subgroup of the crystal point-group, such that:

$$
V(\hat{S} \vec{r})=V(\vec{r}) \quad\left\{\hat{S}^{T}=\vec{S}^{-1} \Rightarrow\right. \text { unitary }
$$

(The case of inversion symmetry will be treated separately)

Spin-Orbit Interaction and Rotation Symmetry

Suppose we have found the solution to the Schrodinger equation:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\vec{r}} v(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]
$$

And the solution is:

$$
\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right] \quad \Leftrightarrow \quad E_{n, \chi}(\vec{k})
$$

We replace \vec{r} by $\hat{\mathbf{S}} \overrightarrow{\boldsymbol{r}}$ everywhere in the Schrodinger equation:

$$
\begin{aligned}
& \left\{-\frac{\hbar^{2} \nabla_{\hat{S} \vec{r}}^{2}}{2 m}+V(\hat{S} \vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\hat{S} \vec{r}} V(\hat{S} \hat{\vec{r}}) \times \vec{\nabla}_{\hat{S} \vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right] \\
& \Rightarrow\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot \hat{S}\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]
\end{aligned}
$$

Spin-Orbit Interaction and Rotation Symmetry

$$
\left\{-\frac{\hbar^{2} \nabla_{r}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}} \cdot \hat{s}\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right]\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{s} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{s})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{s} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{\vec{r}})
\end{array}\right]
$$

The above equation does not look like the Schrodinger equation!
We define a unitary spin rotation operator $\hat{R}_{\hat{s}}$ that operates in the Hilbert space of spins and rotates spin states in the sense of the operator \hat{S}

Consider a spin vector pointing in the $\hat{\boldsymbol{n}}$ direction:

$$
\begin{aligned}
& \hat{\bar{\sigma}} \cdot \hat{n}\left[\begin{array}{l}
a \\
b
\end{array}\right]=+1\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& \Rightarrow \hat{\bar{\sigma}} \cdot \hat{n} \hat{R}_{\hat{S}}^{-1} \hat{R}_{\hat{S}}\left[\begin{array}{l}
a \\
b
\end{array}\right]=+1\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& \Rightarrow \hat{R}_{\hat{S}} \hat{\bar{\sigma}} \cdot \hat{n} \hat{R}_{\hat{S}}^{-1} \hat{R}_{\hat{S}}\left[\begin{array}{l}
a \\
b
\end{array}\right]=+1 \hat{R}_{\hat{S}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& \Rightarrow(\hat{\bar{\sigma}} \cdot \hat{S} \hat{n}) \hat{R}_{\hat{S}}\left[\begin{array}{l}
a \\
b
\end{array}\right]=+1 \hat{R}_{\hat{S}}\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

The spin rotation operators have the property: $\quad \hat{R}_{\hat{S}}(\hat{\bar{\sigma}} . \hat{n}) \hat{R}_{\hat{s}}^{-1}=\hat{\bar{\sigma}} . \hat{S} \hat{n}$

Spin-Orbit Interaction and Point-Group Symmetry

Start from:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} . \hat{S}\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \hat{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]
$$

Introduce spin rotation operator $\hat{R}_{\hat{S}}$ corresponding to the rotation generated by the matrix $\hat{\boldsymbol{S}}$:
$\hat{R}_{\hat{S}}^{-1}\left\{-\frac{\hbar^{2} \nabla_{r}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}} . \hat{S}\left[\nabla_{\vec{r}} v(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\} \hat{R}_{\hat{S}} \hat{R}_{\hat{s}}^{-1}\left[\begin{array}{c}\alpha_{n, \vec{k}}(\hat{s} \vec{r}) \\ \beta_{n, \vec{k}}(\hat{s} \vec{r})\end{array}\right]=E_{n, \chi}(\vec{k}) \hat{R}_{\hat{S}}^{-1}\left[\begin{array}{l}\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\ \beta_{n, \vec{k}}(\hat{S} \vec{r})\end{array}\right]$

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\} \hat{R}_{\hat{S}}^{-1}\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\hat{S} \hat{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k}) \hat{R}_{\hat{s}}^{-1}\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\hat{s} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{s} \vec{r})
\end{array}\right]
$$

The above equation shows that the new state:

$$
\hat{R}_{\hat{S}}^{-1}\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\hat{S} \hat{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right]
$$

satisfies the Schrodinger equation and has the same energy as the state: $\left[\begin{array}{l}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]$

Spin-Orbit Interaction and Point-Group Symmetry

Since:

The new state is a Bloch state with wavevector $\hat{\boldsymbol{S}}^{-1} \overrightarrow{\boldsymbol{k}}$

Summary:
If $\hat{\boldsymbol{S}}$ is an operator for a point-group symmetry operation then the two states given by:

$$
\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]
$$

have the same energy:

$$
\psi_{n, \hat{S}^{-1} \vec{k}, \chi^{\prime}}(\vec{r})=\hat{R}_{\hat{s}}^{-1}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\hat{S} \vec{r}) \\
\beta_{n, \vec{k}}(\hat{S} \vec{r})
\end{array}\right] \rightarrow\left\{\begin{array}{l}
\text { space) version of the original } \\
\text { Bloch state. Even the spin is } \\
\text { rotated appropriately by the } \\
\text { spin rotation operator. }
\end{array}\right.
$$

$$
E_{n, x^{\prime}}\left(\hat{s}^{-1} \vec{k}\right)=E_{n, x}(\vec{k})
$$

Spin-Orbit Interaction and Inversion Symmetry

Suppose the crystal potential has inversion symmetry:

$$
V(-\vec{r})=V(\vec{r})
$$

Suppose we have found the solution to the Schrodinger equation:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]
$$

And the solution is:

$$
\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right] \quad \Leftrightarrow \quad E_{n, \chi}(\overrightarrow{\boldsymbol{k}})
$$

We replace $\overrightarrow{\boldsymbol{r}}$ by $-\overrightarrow{\boldsymbol{r}}$ everywhere in the Schrodinger equation:
$\left\{-\frac{\hbar^{2} \nabla_{-\vec{r}}^{2}}{2 m}+V(-\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{-\vec{r}} V(-\hat{\vec{r}}) \times \vec{\nabla}_{-\vec{r}}\right]\right\}\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]$ $\Rightarrow\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]$

Spin-Orbit Interaction and Inversion Symmetry

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot\left[\nabla_{\vec{r}} V(\hat{\vec{r}}) \times \vec{\nabla}_{\vec{r}}\right]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(-\vec{r}) \\
\beta_{n, \vec{k}}(-\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(-\vec{r}) \\
\beta_{n, \vec{k}}(-\vec{r})
\end{array}\right]
$$

The above equation shows that the new state: $\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]$
satisfies the Schrodinger equation and has the same energy as the state: $\left[\begin{array}{c}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]$
Since:

$$
\left[\begin{array}{l}
\alpha_{n, \vec{k}}(-(\vec{r}+\vec{R})) \\
\beta_{n, \vec{k}}(-(\vec{r}+\vec{R}))
\end{array}\right]=e^{i(-\vec{k}) \cdot \bar{R}}\left[\begin{array}{c}
\alpha_{n, \vec{k}}(-\vec{r}) \\
\beta_{n, \vec{k}}(-\vec{r})
\end{array}\right]
$$

the new state is a Bloch state with wavevector $-\overrightarrow{\boldsymbol{k}}$
In most cases, the new state: $\left[\begin{array}{l}\alpha_{n, \vec{k}}(-\vec{r}) \\ \beta_{n, \vec{k}}(-\vec{r})\end{array}\right]$
has the same spin direction as the state: $\left[\begin{array}{l}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]$

$$
\psi_{n,-\vec{k}, \chi}(\vec{r})=\left[\begin{array}{c}
\alpha_{n, \vec{k}}(-\vec{r}) \\
\beta_{n, \vec{k}}(-\vec{r})
\end{array}\right]
$$

Spin-Orbit Interaction and Inversion Symmetry

Summary:
If the crystal potential has inversion symmetry then the two states given by:

$$
\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right] \quad \psi_{n,-\vec{k}, \chi}(\vec{r})=\left[\begin{array}{c}
\alpha_{n, \vec{k}}(-\vec{r}) \\
\beta_{n, \vec{k}}(-\vec{r})
\end{array}\right]
$$

have the same energy:

$$
E_{n, \chi}(-\vec{k})=E_{n, \chi}(\vec{k})
$$

Spin-Orbit Interaction and Time Reversal Symmetry

Consider the Bloch function:

$$
\left.\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}
\alpha_{n, \bar{k}}(\vec{r}) \\
\beta_{n, \bar{k}}(\vec{r})
\end{array}\right]=\alpha_{n, \vec{k}}(\vec{r}) \uparrow\right\rangle+\beta_{n, \vec{k}}(\vec{r})|\downarrow\rangle
$$

Suppose the Bloch function corresponds to the spin pointing in the direction of the unit vector $\hat{\boldsymbol{n}}$ at the location $\overrightarrow{\boldsymbol{r}}$:

$$
\hat{\bar{\sigma}} . \hat{n} \psi_{n, \vec{k}, \chi}(\vec{r})=\hat{\bar{\sigma}} . \hat{n}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=+1\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=+1 \psi_{n, \vec{k}, \chi}(\vec{r})
$$

What if we want the state with the opposite spin at the same location?
The answer is:

$$
-i \hat{\sigma}_{y} \psi_{n, \vec{k}, \chi}^{*}(\vec{r})=\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) \\
\alpha_{n, \bar{k}}^{*}(\vec{r})
\end{array}\right]
$$

Proof:

$$
\begin{aligned}
& \hat{\bar{\sigma}} \cdot \hat{n}\left[-i \hat{\sigma}_{y} \psi^{*}{ }_{n, \vec{k}, \chi}(\vec{r})\right]=-i\left[-\hat{\bar{\sigma}}^{*} \cdot \hat{n} \hat{\sigma}_{y} \psi_{n, \vec{k}, \chi}(\vec{r})\right] * \\
& =-i\left[-\hat{\sigma}_{y} \hat{\sigma}_{y} \hat{\vec{\sigma}}^{*} \cdot \hat{n} \hat{\sigma}_{y} \hat{\sigma}_{y} \hat{\sigma}_{y} \psi_{n, \vec{k}, \chi}(\vec{r})\right]^{*}=-i \\
& \left.=-i\left[\hat{\sigma}_{y} \psi_{n, \vec{k}, \chi}(\vec{r})\right]^{*}=-1\left[-i \hat{\sigma}_{y} \cdot \hat{\sigma} \psi_{n, \vec{k}, \chi}(\vec{r})\right]_{n, \vec{k}, \chi}(\vec{r})\right] \\
\{\hat{\vec{\sigma}} & \left.=\hat{\sigma}_{x} \hat{x}+\hat{\sigma}_{y} \hat{y}+\hat{\sigma}_{z} \hat{z} \Rightarrow \hat{\vec{\sigma}}^{*}=\hat{\sigma}_{x} \hat{x}-\hat{\sigma}_{y} \hat{y}+\hat{\sigma}_{z} \hat{z} \neq \hat{\bar{\sigma}}\right]
\end{aligned}
$$

Spin-Orbit Interaction and Time Reversal Symmetry

In the presence of spin-orbit interaction we have the Schrodinger equation:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right]\left\{\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \\
\beta_{n, \vec{k}}(\vec{r})
\end{array}\right]
$$

Suppose we have solved it and found the solution: $\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right] \Leftrightarrow E_{n, \chi}(\vec{k})$
We complex conjugate it:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})+i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}}^{*} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right]\left\{\begin{array}{c}
\alpha_{n, \vec{k}}^{*}(\vec{r}) \\
\beta_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{c}
\alpha_{n, \vec{k}}^{*}(\vec{r}) \\
\beta_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]
$$

It does not look like the original Schrodinger equation!
Note that:

$$
\begin{aligned}
& \hat{\bar{\sigma}}=\hat{\sigma}_{x} \hat{x}+\hat{\sigma}_{y} \hat{y}+\hat{\sigma}_{z} \hat{z} \\
& \Rightarrow \hat{\sigma}^{*}=\hat{\sigma}_{x} \hat{x}-\hat{\sigma}_{y} \hat{y}+\hat{\sigma}_{z} \hat{z} \neq \hat{\bar{\sigma}}
\end{aligned}
$$

Spin-Orbit Interaction and Time Reversal Symmetry

Given an eigenvalue matrix equation:

$$
A v=\lambda v
$$

One can always perform a unitary transformation with matrix T and obtain:

$$
\begin{aligned}
& T A T^{-1} T v=\lambda T v \\
& \Rightarrow B u=\lambda u
\end{aligned} \quad\left\{\begin{array}{l}
B=T A T^{-1} \\
u=T v
\end{array}\right.
$$

So try a transformation with the unitary matrix $-i \hat{\sigma}_{y}$ with the equation:
$\left(-i \hat{\sigma}_{y}\right)\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})+i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}}^{*} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right\}\left(+i \hat{\sigma}_{y}\right)\left(-i \hat{\sigma}_{y}\right)\left[\begin{array}{l}\alpha^{*}{ }_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}{ }_{n}(\vec{r})\end{array}\right]=E_{n, \chi}(\vec{k})\left(-i \hat{\sigma}_{y}\right)\left[\begin{array}{c}\alpha^{*}{ }_{n, \vec{k}}(\vec{r}) \\ \beta^{*}{ }_{n, \vec{k}}(\vec{r})\end{array}\right]$
$\Rightarrow\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right\}\left[\begin{array}{c}-\beta_{n, \vec{k}}^{*}(\vec{r}) \\ \alpha_{n, \vec{k}}^{*}(\vec{r})\end{array}\right]=E_{n, \chi}(\vec{k})\left[\begin{array}{c}-\beta_{n, \vec{k}}^{*}(\vec{r}) \\ \alpha_{n, \vec{k}}^{*}(\vec{r})\end{array}\right]$
We have found a new solution: $\left[\begin{array}{c}-\beta^{*}{ }_{n, \vec{k}}(\vec{r}) \\ \alpha^{*}{ }_{n, \vec{k}}(\vec{r})\end{array}\right]$
with the same energy $E_{n, \chi}(\vec{k})$ as the original solution: $\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{l}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]$
Question: What is the physical significance of the new solution?

Spin-Orbit Interaction and Time Reversal Symmetry

Under lattice translation we get for the new solution:

$$
\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}+\vec{R}) \\
\alpha_{n, \vec{k}}^{*}(\vec{r}+\vec{R})
\end{array}\right]=\mathrm{e}^{-i \vec{k} \cdot \overline{\vec{R}}}\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) \\
\alpha_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]
$$

So the new solution is a Bloch state with wavevector $-\vec{k}$

$$
\psi_{n,-\vec{k}, ?}(\vec{r})=\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) \\
\alpha_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]
$$

Note that the new solution found can also be written as:

$$
-i \hat{\sigma}_{y} \psi^{*}{ }_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) \\
\alpha_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]
$$

But as shown earlier, the above state has spin opposite to the state $\psi_{n, \vec{k}, \chi}(\vec{r})=\left[\begin{array}{c}\alpha_{n, \vec{k}}(\vec{r}) \\ \beta_{n, \vec{k}}(\vec{r})\end{array}\right]$
Therefore, the new solution is a Bloch state $\psi_{n,-\vec{k},-\chi}(\vec{r})$, i.e.:

$$
\psi_{n,-\vec{k},-\chi}(\vec{r})=-i \hat{\sigma}_{y} \psi_{n, \vec{k}, \chi}^{*}(\vec{r})=\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) \\
\alpha_{n, \vec{k}}^{*}(\vec{r})
\end{array}\right]
$$

And we have also found that its energy is the same as that of the state $\psi_{n, \vec{k}, \chi}(\vec{r})$:

$$
E_{n,-\chi}(-\vec{k})=E_{n, \chi}(\vec{k})
$$

Spin-Orbit Interaction and Time Reversal Symmetry

In the presence of spin-orbit interaction we have the time-dependent Schrodinger equation:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right]\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}, t) \\
\beta_{n, \vec{k}}(\vec{r}, t)
\end{array}\right]=i \hbar \frac{\partial}{\partial t}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}, t) \\
\beta_{n, \vec{k}}(\vec{r}, t)
\end{array}\right]
$$

Solution is:

$$
\begin{aligned}
& \text { on is: } \\
& \psi_{n, \vec{k}, \chi}(\vec{r}, t)=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}, t) \\
\beta_{n, \vec{k}}(\vec{r}, t)
\end{array}\right]=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) \mathrm{e}^{-i E_{n, \chi}(\vec{k}) t} \\
\beta_{n, \vec{k}}(\vec{r}) \mathrm{e}^{-i E_{n, \chi}(\vec{k}) t}
\end{array}\right]=\psi_{n, \vec{k}, \chi}(\vec{r}) \mathrm{e}^{-i E_{n, \chi}(\vec{k}) t}
\end{aligned}
$$

Lets see if we can find a solution under time-reversal (i.e. when t is replaced by $-t$):

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\bar{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right\}\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r},-t) \\
\beta_{n, \vec{k}}(\vec{r},-t)
\end{array}\right]=-i \hbar \frac{\partial}{\partial t}\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\vec{r},-t) \\
\beta_{n, \vec{k}}(\vec{r},-t)
\end{array}\right]
$$

The above does not look like a Schrodinger equation so we complex conjugate it:

$$
\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})+i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\vec{\sigma}}^{*} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right]\left[\begin{array}{c}
\alpha_{n, \vec{k}}^{*}(\vec{r},-t) \\
\beta_{n, \vec{k}}^{*}(\vec{r},-t)
\end{array}\right]=i \hbar \frac{\partial}{\partial t}\left[\begin{array}{c}
\alpha^{*}{ }_{n, \vec{k}}(\vec{r},-t) \\
\beta_{n, \vec{k}}^{*}(\vec{r},-t)
\end{array}\right]
$$

And it still does not look like the original Schrodinger equation!

Spin-Orbit Interaction and Time Reversal Symmetry

Given an eigenvalue matrix equation:

$$
A v=\lambda v
$$

One can always perform a unitary transformation with matrix T and obtain:

$$
\begin{aligned}
& T A T^{-1} T v=\lambda T v \\
& \Rightarrow B u=\lambda u
\end{aligned} \quad\left\{\begin{array}{l}
B=T A T^{-1} \\
u=T v
\end{array}\right.
$$

So try a transformation with the unitary matrix-i $\hat{\sigma}_{y}$ with the equation:

$$
\begin{aligned}
& \left\{-\frac{\hbar^{2} \nabla_{r}^{2}}{2 m}+V(\vec{r})+i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\dot{\sigma}}^{*} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right\}\left[\begin{array}{l}
\alpha^{\alpha_{n, \bar{k}}}(\vec{r},-t) \\
\beta_{n, \bar{k}}(\vec{r},-t)
\end{array}\right]=i \hbar \frac{\partial}{\partial t}\left[\begin{array}{c}
\alpha^{*}{ }_{n, \vec{k}}(\vec{r},-t) \\
\beta_{n, \vec{k}}^{*}(\vec{r},-t)
\end{array}\right] \\
& \left(-i \hat{\sigma}_{y}\right)\left\{-\frac{\hbar^{2} \nabla_{r}^{2}}{2 m}+V(\vec{r})+i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}}^{\star} \cdot[\nabla V(\hat{\dot{r}}) \times \vec{\nabla}]\right\}\left(+i \hat{\sigma}_{y}\right)\left(-i \hat{\sigma}_{y}\left[\begin{array}{l}
\alpha^{*}{ }_{n, \vec{k}}(\vec{r},-t) \\
\beta_{n, \vec{k}}^{*}(\vec{r},-t)
\end{array}\right]=i \frac{\partial}{\partial t}\left(-i \hat{\sigma}_{y}\right)\left[\begin{array}{l}
\alpha^{\alpha_{n, \vec{k}}}(\vec{r},-t) \\
\beta^{*_{n, \bar{k}}}(\vec{r},-t)
\end{array}\right]\right. \\
& \Rightarrow\left\{-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m}+V(\vec{r})-i \frac{\hbar^{2}}{4 m^{2} c^{2}} \hat{\hat{\sigma}} \cdot[\nabla V(\hat{\vec{r}}) \times \vec{\nabla}]\right\}\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r},-t) \\
\alpha_{n, k}^{*}(\vec{r},-t)
\end{array}\right]=i \hbar \frac{\partial}{\partial t}\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r},-t) \\
\alpha_{n, k}^{*}(\vec{r},-t)
\end{array}\right]
\end{aligned}
$$

The above equation now looks like the time-dependent Schrodinger equation

Spin-Orbit Interaction and Time Reversal Symmetry

Summary:

Corresponding to the Bloch state:

$$
\psi_{n, \vec{k}, \chi}(\vec{r}, t)=\left[\begin{array}{c}
\alpha_{n, \vec{k}}(\vec{r}, t) \\
\beta_{n, \vec{k}}(\vec{r}, t)
\end{array}\right]=\left[\begin{array}{l}
\alpha_{n, \vec{k}}(\vec{r}) e^{-i E_{n, \chi}(\vec{k}) t} \\
\beta_{n, \vec{k}}(\vec{r}) e^{-i E_{n, \chi}(\vec{k}) t}
\end{array}\right]=\psi_{n, \vec{k}, \chi}(\vec{r}) e^{-i E_{n, \chi}(\vec{k}) t}
$$

with energy:

$$
E_{n, \chi}(\overrightarrow{\boldsymbol{k}})
$$

the time-reversed Bloch state is:

$$
\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r},-t) \\
\alpha_{n, \vec{k}}^{*}(\vec{r},-t)
\end{array}\right]=\left[\begin{array}{c}
-\beta_{n, \vec{k}}^{*}(\vec{r}) e^{-i E_{n, \chi}(\vec{k}) t} \\
\alpha_{n, \vec{k}}^{*}(\vec{r}) \mathrm{e}^{-i E_{n, \chi}(\vec{k}) t}
\end{array}\right]=\psi_{n,-\vec{k},-\chi}(\vec{r}) \mathrm{e}^{-i E_{n, \chi}(\vec{k}) t}
$$

and the time-reversed state has the same energy as the original state:

$$
E_{n,-\chi}(-\vec{k})=E_{n, \chi}(\vec{k})
$$

Crystal Inversion Symmetry and Time Reversal Symmetry

Time reversal symmetry implies:

$$
E_{n,-\chi}(-\vec{k})=E_{n, \chi}(\vec{k})
$$

Inversion symmetry implies:

$$
E_{n, \chi}(-\vec{k})=E_{n, \chi}(\vec{k})
$$

In crystals which have inversion and time reversal symmetries the above two imply:

$$
E_{n,-\chi}(\vec{k})=E_{n, \chi}(\vec{k}) \longrightarrow \text { There is spin degeneracy! }
$$

In crystals which do not have inversion symmetry the above two do not guarantee spin degeneracy. In general:

$$
E_{n,-\chi}(\vec{k})_{\neq E_{n, \chi}(\vec{k}) \longrightarrow}^{\begin{array}{l}
\text { Bands with different spins } \\
\text { can have different energy } \\
\text { dispersion relations }
\end{array}}
$$

