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Handout 13

Properties of Electrons in Energy Bands

In this lecture you will learn:

• Properties of Bloch functions
• Average momentum and velocity of electrons in energy bands
• Energy band dispersion near band extrema
• Effective mass tensor
• Crystal momentum
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Bloch Functions: A Review

1) The quantum states of an electron in a crystal are given by Bloch functions 
that obey the Schrodinger equation:
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2) Under a lattice translation, Bloch functions obey the relation:
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3) Bloch functions can be written as the product of a plane wave times a lattice 
periodic function:
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where the wavevector      is confined to the FBZ and “n” is the band indexk

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4) Bloch function of wavevector      can be written as a superposition of plane 
waves with wavevectors that differ from      by reciprocal lattice vectors:
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Orthogonality:
Bloch functions are eigenstates of a Hermitian operator and therefore must be 
orthogonal. In “d ” dimensions:
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Bloch Functions: Orthogonality and Completeness

Both expression valid 
depending upon 
context

Completeness:
Bloch functions for ALL wavevectors in the FBZ and for ALL energy band satisfy 
the following completeness relation in “d ” dimensions: 
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Another Schrodinger-like Equation for Bloch Functions

The periodic part of a Bloch function satisfies a Schrodinger-like equation:
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Where the following two relations 
have been used:
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Bloch Functions and Electron Momentum

• For an electron with wavefunction given by a plane wave:

the quantity        is the momentum of the electron
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• A plane wave is an eigenfunction of the momentum operator with eigenvalue       :

• A Bloch function is a superposition of plane waves of different wavevectors:

So clearly it is not an eigenfunction of the momentum operator (i.e. it has no well 
defined momentum). So what exactly is the significance of the wavevector     that 
labels a Bloch function?

• As you will see, even the average momentum of an electron in a Bloch state is 
NOT given by       :
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Average Momentum and Velocity of Bloch States

We need to find the average momentum and average velocity of an electron in a 
Bloch state:
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Suppose we have solved the Schrodinger-like equation for a particular wavevector    :

Start from a very different point:
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Suppose now we want to solve it again for a neighboring wavevector              :kk




           rukkErurV
m

kk
kk

m
P

m
P

kknnkkn










 
















 ,,

222
ˆ

2
.

ˆ

2

ˆ

The “Hamiltonian” is:

 rV
m
k

k
m
P

m
P

Hk
ˆ

2
.

ˆ

2

ˆ
ˆ

222 



 



4

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Average Momentum and Velocity of Bloch States
The new “Hamiltonian” is:
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Treat this part as a perturbation 
to the old “Hamiltonian”

Using concepts from time-independent perturbation theory, the first order correction 
to the energy eigenvalue would be:
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As written, the above expression is approximate but becomes exact in the limit 0k


   

 

   
knknnk

knknnk

knkknnn

u
m

kP
ukE

uk
m

k
k

m

P
ukEk

uHukEkkEk




























,,

,,

,,

ˆ1
                         

..
ˆ

.                         

:0lim








ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Average Momentum and Velocity of Bloch States
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(Contd…)

 The average momentum of an electron in a Bloch state is:
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 The average velocity of an electron in a Bloch state is:
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Average Momentum and Velocity of Bloch States: 1D Example

The average velocity of an electron in a Bloch state is given 
by:
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Recall from E&M theory (ECE303) that the group velocity of a 
electric field wavepacket made of plane waves:
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Similarly, the “group velocity” of an electron wavepacket 
made up of Bloch states from the n-th band:

would be given by:
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Energy Bands of Si, Ge, and GaAs for Reference
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Energy Band Dispersion Near Band Extrema
Most of the times, it is useful to approximate the energy band dispersion near the 
band extrema (e.g. at bottom of the conduction band or at the top of the valence band)

Suppose the n-th band has an extrema at               . Therefore:okk
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Effective Mass Tensor
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Where the elements of the matrix          are defined as:
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M is called the “effective mass” tensor. M-1 is the 
“inverse effective mass” tensor 

Note that M-1 is symmetric:

And so M is also symmetric:
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Effective Mass Tensor and Electron Average Velocity
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The energy band dispersion near a band extremum (e.g. at bottom of the conduction 
band or at the top of the valence band) can be written as:

Since the average velocity of an electron in a Bloch state is given by:
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Example: Conduction Band of GaAs
Consider the conduction band of GaAs near the band 
bottom at the -point:
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This implies the energy dispersion relation is:
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The dispersion looks like that of a free-electron with a 
mass equal to “me” instead of m. In GaAs, me = .067 m
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The average momentum and velocity of an electron in a Bloch 
state near the conduction band bottom is given by:
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Example: Valence Band of GaAs – Heavy Hole Band

Consider the top most valence band (hh-band) of GaAs 
near the band maximum at the -point:
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The average velocity of an electron in a Bloch state near the 
valence band maximum is given by:
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The dispersion looks like that of a free-electron with a 
mass equal to “-mhh” instead of m. In GaAs, mhh = .5 m

0ok


Isotropic!
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Example: Valence Band of GaAs – Light Hole Band

Now consider the top most valence band (ℓh-band) of 
GaAs near the band maximum at the -point:

  voh EkE  0


























h

h

h

m

m

m

M







100

010

001
1

This implies:

   
h

v
h

zyx
vhh m

k
E

m

kkk
EkE





22

222222






The average velocity of an electron in a Bloch state near the 
valence band maximum is given by:

   
h

hkh m
k

kEkv















1

The dispersion looks like that of a free-electron with a 
mass equal to “-mℓh” instead of m. In GaAs, mℓh = .076 m

0ok


Isotropic!
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Example: Conduction Band of Silicon - I

  coc EkE 



















t

t

m

m

m

M

100

010

001
1



In Silicon there are six conduction band minima that occur 
along the six -X directions. For the one that occurs along 
the -X(2/a,0,0) direction:







 0,0,

2
85.0

a
ko



Not isotropic!

mℓ = 0.92 m
mt = 0.19 m

This implies:

       
t

ozz

t

oyyoxx
cc m

kk
m

kk

m
kk

EkE
222

222222 












The average velocity of an electron in a Bloch state near the 
conduction band bottom is given by:

   
     

t

ozz

t

oyyoxx

ckc

m
kk

m

kk

m
kk

kEkv
























        

1
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Example: Conduction Band of Silicon - II

  coc EkE 



















t

t

m

m

m

M

100

010

001
1



Now we look at the conduction band minimum that occurs 
along the -X(0,2/a,0) direction:







 0,

2
,085.0

a
ko



This implies:

       
t

ozzoyy

t

oxx
cc m

kk
m

kk

m
kk

EkE
222

222222 












The average velocity of an electron in a Bloch state near the 
conduction band bottom is given by:

   
     

t

ozzoyy

t

oxx

ckc

m
kk

m

kk

m
kk

kEkv
























        

1

Not isotropic!

mℓ = 0.92 m
mt = 0.19 m
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Example: Conduction Band of Germanium - I

  coc EkE 
























ttt

ttt

ttt

mmmmmm

mmmmmm

mmmmmm

M

323131313131

313132313131

313131313231
1







In germanium there are eight conduction band minima 
that occur at the L-points. For the one that occurs at the 
L(/a, /a, /a) point:









aaa
ko


,,



Not isotropic! Not even diagonal!
mℓ = 1.6 m
mt = 0.08 m

Since the inverse effective mass tensor is symmetric (it always 
is) one can rotate the co-ordinate system such that the inverse 
effective mass tensor is diagonal in the new co-ordinate system 
(Recall from linear algebra that a symmetric matrix can always 
be diagonalized by a rotation of the basis)

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Example: Conduction Band of Germanium - II
Define a new rotated co-ordinate system, call it the primed co-
ordinate  system, in which the x’-axis points in the                 
direction. Co-ordinate rotation is accomplished by a rotation 
matrix R: 

  31,1,1

     

     

       

     o
T

occ

o
T

occ

o
T

occ

o
T

occ

kkMkkEkE

kkRRMRkkREkE

kkRRMRRkkEkE

kkMkkEkE

''.'.''
2

'

....
2

..
2

..
2

1
2

11
2

111
2

1
2










































t

t

m

m

m

M

100

010

001

' 1
 In Ge:

mℓ = 1.6 m
mt = 0.08 m

Effective mass along the -L direction is mℓ and in the two 
directions perpendicular to this direction it is mt kx

ky

kz k’x

k’z

k’y



L
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Example: Conduction Band of Germanium - III

     o
T

occ kkMkkEkE ''.'.''
2

' 1
2 

 

       
t

ozz

t

oyyoxx
cc m

kk
m

kk

m
kk

EkE
2

''
2

''

2
''

'
222222 












In the primed (rotated) co-ordinate system, we have at the L-point:

The average velocity of an electron in a Bloch state near the 
conduction band bottom is then given by:

   
     

t

ozz

t

oyyoxx

ckc

m
kk

m

kk

m
kk

kEkv

''''''
        

'
1

' '
























Same procedure can be applied to the conduction band 
minima at the other L-points

kx

ky

kz k’x

k’
y

k’
z



L
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Average Momentum and Crystal Momentum
The wavevector      associated with a Bloch state                 is not the momentum of 
the electron and it is not even the average momentum of  the electron in the Bloch 
state

k
  rkn




,

 kE
m

P nkknkn






 ,,

ˆ 

The average momentum of an electron in a Bloch state is given as:

Near a band extrema, assuming:

We have for the average momentum:

 oknkn kkMmP





   .ˆ 1
,, 

Example: For GaAs conduction band, the average momentum of an electron near the 
band bottom equals:

k
m
m

P
e

knkn















,,

ˆ 

The quantity        is called the crystal momentum of an electron in an energy band. As 
we will see, it satisfies several conservation rules just like the actual momentum does 
for a free-electron. 

k




       o
T

oonn kkMkkkEkE


  ..
2

1
2
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Eg
(eV)

m
e

/ 
m

Effective Mass vs Bandgap
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Energy Band Dispersion Near Band Extrema: When Taylor 
Expansion Fails

Graphene is a classical example of the case when Taylor expansion fails
So a different strategy is needed near band extrema

 
 

 
     

 
































kc

kc
kE

kc

kc

EkfV

kfVE

pzB

pzA

pzB

pzA

ppp

ppp 












*




Suppose one is interested in band dispersion near 

Expand the function           near       as follows: 









a
ko 3

4
,0K


 kf


K


   
 yx

kk
nkinkinki

kikai

eeekkf



 

2
3

                         

K K
... 321 


kk


 K

   
22

2
3

                      

KK

yxppp

ppp

kkaVE

kkfVEkkE










  22K yxp kkvEkkE  


m/s10
2
3 6



ppaV
v

yk

xk
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Energy Band Dispersion Near Band Extrema



K

K’

K

K’

K’

K

M

FBZ
M

xk

yk

yk

xk

There are 6 one-third cones sitting inside 
the FBZ

 There are 2 full cones sitting inside the 
FBZ: one at the K-point and one at the K’-
point
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Energy Band Dispersion in Graphene: Massless Dirac Fermions

yk

xk

  22K yxpc kkvEkkE  


The average velocity of an electron in a Bloch state near the 
conduction band bottom is then given by:

   
22

ˆˆ1

yx

yx
ckc

kk

ykxk
vkEkv













  22K yxpv kkvEkkE  


Note that:     vkvkv vc 


All electrons in the conduction band (and in the valence 
band as well) move with the same speed (i.e. magnitude 
of the velocity) !!

This is similar to how massless particles, such as photons, behave

m/s106

Conduction band 
dispersion

Valence band 
dispersion

Similarly,

   
22

ˆˆ1

yx

yx
vkv

kk

ykxk
vkEkv














