Handout 12

Energy Bands in Group IV and lll-V Semiconductors

In this lecture you will learn:

* The tight binding method (contd...)

* The energy bands in group IV and group llI-V semiconductors with
FCC lattice structure

* Spin-orbit coupling effects in solids

—
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FCC Lattice: A Review

Most group VI and group lll-V semiconductor, such as Si, Ge, GaAs, InP, etc have
FCC lattices with a two-atom basis

Face Centered Cubic (FCC)

Lattice: / T / S Unit Cell
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Lattices of Group IV Semiconductors
(Silicon, Germanium, and Diamond) | ;

)
Diamond lattice (Si, Ge, and Diamond) R
- e n.
5 8 srree0 1o
bk X e \
£ 4
0 —
y* ny 3
\\
g ’I

Nearest neighbor vectors

iy = %(1,1,1) iy = %(- 1,-11)

Basis vectors a
i 5o a - a -~ _a 4
d=0 d; = 2(1’1’1) n; = Z(— 11,-1) M= 4(17 1, 1)

* The underlying lattice is an FCC lattice with a two-point (or two-atom) basis.

* Each atom is covalently bonded to four other atoms (and vice versa) via sp3
bonds in a tetrahedral configuration
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Lattices of lll-V Binaries (GaAs, InP, InAs, AlAs, InSb, etc)

Zincblende lattice (GaAs, InP, InAs) np
’ " i,
X .\4(—‘ \

Y/ Nearest neighbor vectors

iy = %(1,1,1) iy = %(— 1,-11)
Basis vectors a
g, = g, =2 - _4a Ay == (1,-1,-1
di=0  dy=2(11) Ay =2 (-11-1) s 4 -1-1)
* The underlying lattice is an FCC lattice with a two-point (or two-atom) basis. In

contrast to the diamond lattice, the two atoms in the basis of zincblende lattice are
different — one belongs to group lll and one belongs to group V

* Each Group lll atom is covalently bonded to four other group V atoms (and vice
versa) via sp3 bonds in a tetrahedral configuration
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Example: Tight Binding Solution for GaAs

* Each Ga atom contributes one 4s-orbital and three n
4p-robitals _
mn
* Each As atom also contributes one 4s-orbital and x
three 4p-robitals
= Each primitive cell contributes a total of eight _
orbitals that participate in bonding y*¥ Ry n3
1 ¢s¢(F) © Esg 5 gsa(F) © Esa
2 dpe(F) © Epg 6 dpxalf) © Epp
3 ¢pyc(F) © Epg 7 ¢pya(F) © Epa
4 4p6(F) © Epg 8 gpa(F) © Epa

One can write the trial tight-binding solution for wavevector k as:

ik.Rpy

4 ~ oo 8 S
u/:z(?)=§em [.Zfi¢j(F-Rm)>+e'k'd2j§5°i¢j(’-Rm—dz)> }

J=
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Example: Tight Binding Solution for GaAs
(=Rl el £ ) r—Ro-aa) |
Jj=

Plug the solution above into the Schrodinger equation to get:

Cq
C2
C3
Cy

XXX XXX X X

Cq
C2
C3
Cs
Cs
Ce
C7

Cg

XXX X X X X X
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Tight Binding Solution for GaAs: The Matrix

V.

Esg 0 0 0 ~Vsso00(K) B a1(k) Vj%" 0(k) vj’%" (k)
0 Epg 0 0 - vf/%" ailk)| igolk) | Vags(k) | v2ealk)
Vv, i ~ R ~
0 0 Epe 0 - j/%a gz( ) v, gs(k) Vi go(k) v, g4(k)
0 0 0 E, i _ ~ R
i —%93( | voook) | vaaulk) | vagolk)
H =

Esa 0 0 0

Hermitian 0 Epa 0 0

0 0 Epa 0

0 0 0 Epa

go(‘;)=eik.ﬁ1 Lelk-fia  oik.fi3  gik.iiy gz(‘;)=eik.ﬁ1 _eik-fiy  oik.fiy _oik.ig

91(‘)=eil?.ﬁ1 _eik iy _gik.fiy 4 oik.iig ga(E)=eiE.ﬁ1 Leik iy _gik.fiy _gik.ig
1 2 1 1
V1= 3Vops — 3 Vopn Va2 =3 Voo +3Vopr
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/ Tight Binding Solution for GaAs
0 L
A

x
N

K_;\
-
|

£

P i

Parameter values for GaAs:

ESG =-11.37eV ESA =-17.33 eV
Epg = -4.90 eV Epa=-791eV 25

f

-
x

Tight Binding Soluti
Ve, =1.70 eV Vppo = 3.44 eV ‘ght Binding Sefution

po =215V Vipr = 0.89 eV
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Tight Binding Solution for GaAs: States at the I'-Point

0
At the T-point: K _A:
-5 _\/—
9ok =0)=4 S
o1(k)= 92(K)= ()= 0 N
c-15
= Energy eigenvalues can be found analytically w
20 /
1
Two of the eigenvalues at the I'-point are: 25 f
L T

%

. Esg +E Esc —Esca )
Ef(k=0)=( 862 SA)i\/[ sG ) SGAJ +(4vsscr)2

are made up of ONLY s-orbitals from the Ga and As atoms

The Bloch function of the lowest energy band and of the conduction band at I'-point

VekeolF) = = len [F - Rn) + 5 | 45(F - R~ 2) ]
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Tight Binding Solution for GaAs: States at the I'-Point

Six remaining eigenvalues at the I'-point are:

. Epg +E Epg —Epp \?
Es7a(k=0)=[ P62 PA)i\/[ PG2 PAJ +(4V1)2
234

Each eignevalue above is triply degenerate

/
A

0 2
The Bloch function of the highest three energy %__J——:
bands and of the three valence bands at I'-point are -5 /
made up of ONLY p-orbitals from the Ga and As =
atoms B .10 7‘¥
>
o
4 215 1
o w
1 1E K ‘¢j(r_R”')> 20
l//v k=o(’_)_ZW \-_/1-
m (F-Rp—ds)
+ ZCJM(’ m = ) -25

—
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Improved Tight Binding Approaches

* Need to include the effect of spin-orbit-coupling on the valence bands

Spin orbit coupling lifts the degeneracy of the valence bands

* Need to include more orbitals (20 per primitive cell as opposed to 8 per primitive cell)
* Use better parameter values

Simplest TB Approach Improved TB Approach with SO-Coupling
(Figure not on the same scale)

2/\/\:

E "=1424ev
gap

t A =0.312)eV
v

Energy (eV)
o =
energy (eV)

S
~
—
>
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Spin-Orbit Interaction in Solids

An electron moving in an electric field sees an effective magnetic field given by:

_ ExP { The additional factor

Besr = 2 of 2 is coming from
Thomas precession

The electron has a magnetic moment /i related to its spin angular momentum S by:

2 a s aoa aoa . 01 R 0 —i . 1 0
O'=O'XX+O'yy+O'ZZ Oy = 10 O'y= i 0 G, = 0 -1

The interaction between the electron spin and the effective magnetic field adds a
new term to the Hamiltonian:

O:: ﬂB=7m gzz — ﬁz_ﬂBé

A 5 = - 1 VV(I'S) 2 nooa [ - 3]
H., = —ji.B.ff = ugo.Bofsr = ugo . xP |= o.|[VVIF)xP
so H-Deff = HBO-Deff = KB 2 c2|: e i| 4m2c? ()
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Spin-Orbit Interaction in Solids: Simplified Treatment

Near an atom, where electrons spend most of their time, the potential varies mostly
only in the radial direction away from the atom. Therefore:

h g vl VO bop] [i-ixpi
H e — _[er P]: _ r P L:r)(P is the
%0 am?c? i ( )x am3c%r or a-rx orbital angular

no1ev(r). = 1 1av(r)z 7 momentum of
- 55~ ()a.L= 75 ()S.L an electron near
4m*“c*r or 2m*ccr or an atom
Recall from quantum mechanics that the total angular momentum j is:
J=L+$S

= J?=[?+§? +283.Ii
40 lpop-g)
2
Therefore:

g . 1+ 1 ov(r)
S am2c?r or

Y
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Spin-Orbit Interaction in Solids: Simplified Treatment
For an electron in a p-orbital:

(8 (P)|?| ¢ (7)) = n20(¢ + 1) = 20

For an electron in a s-orbital:

(85 (F)IE2| g5 (F)) = n20(t +1)=0

And we always have for an electron:
<§2> =n2s(s+1)= %hz
If the electron is in s-orbital then: <J2 -2 §2> =0 = <FISO> =0

If the electron is in p-orbital then: <J2 2 §2> 0 > <I:Iso> #0

= The energies of the Bloch states made up of p-orbitals (like in the case of the

three degenerate valence bands at the I" point in GaAs) will be most affected by
spin-orbit coupling

—
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Energy (eV)

Tight Binding Vs Pseudopotential Technique

Simplest TB Approach

=_

]

GaAs

—
b

ENERGY (eV)

A Little More Sophisticated Approach
Nonlocal Pseudopotential Method

|
»
T

1
=
T

"

-8

A A X UK z

GaAs Energy Bands
(Chelikowski and Cohen, 1976)
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Energy Bands of Silicon and Germanium

Germanium Energy Bands
(Chelikowski and Cohen, 1976)

Silicon Energy Bands
(Chelikowski and Cohen, 1976)
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Appendix: Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:
HOy/n,R (f) = En (k) V/n,R (F)

{_th?Jrv(f)} vo i (F)=En®)v, (7)

In the presence of spin-orbit coupling the Hamiltonian becomes:

H=H,+Hg,
a 5 2 a A —
Ago = #é. F.v()<p]- —i‘“jﬁé [oviF)xv,]

Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states
are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin
states, or:

- a, i (F ~ ~ X =Quantum number for the two
Ynk.z (F)= |:ﬂn,f (F):| =0,k (’)‘T> +B.k (r)‘¢> spin degrees of freedom, usually
n.k taken to be +1 or -1
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Appendix: Spin-Orbit Interaction and Bloch Functions

4

k] ene el
(2 vy s s ot

2m 4m*c

For each wavevector in the FBZ, and for each band index, one will obtain two
solutions of the above equation

We label one as y = +1 and the other with 7 = -1 and in general E, -z (k);e E, x(l?)

These two solutions will correspond to spins pointing in two different directions
(usually collinear and opposite directions). Let these directions be specified by 1 at

the location r:

Qi

ﬁ Wn,l?,;((r‘) =+1 Wn,R,x(F)

Ay, )=y, (F)

Qi
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Appendix: Spin-Orbit Interaction and Lattice Symmetries
In the presence of spin-orbit interaction we have the Schrodinger equation:

[ttt oo Y o] s 20

Lattice Translation Symmetry:

- %,k (F + f‘,) ei‘;.kan,ﬁ' (F) ik.R =
Wn,l?,l (r M R)= |:ﬂn,k (F + f‘"):| = JikR n,k(ﬁ) =e " R'/,n,kyl(r)

Rotation Symmetry:

Let $ bean operator belonging to the rotation subgroup of the crystal point-group,
such that:

V(§F)= V(F) {.§T =$§~'= unitary

(The case of inversion symmetry will be treated separately)
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Appendix: Spin-Orbit Interaction and Rotation Symmetry

Suppose we have found the solution to the Schrodinger equation:

(5 s o oo ][50 e

And the solution is:
=[] = el

We replace 7 by Sr everywhere in the Schrodinger equation:

{ ZZVng v($F) i ’jzczé [V, v(SF) vs,]H;::g ):|=En LK) ;::E;ﬂ
[ v s“[va(f)xvf]}{;:ﬁ;ﬂ:E,,Z(—){;:ﬁgﬁgﬂ
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Appendix: Spin-Orbit Interaction and Rotation Symmetry

{—h;vj+V(F)—i4 ::zcz é.8[v.v(F)x V,]}{;:: gﬂ —E, (k){ﬂ Ez:ﬂ

The above equation does not look like the Schrodinger equation!

We define a unitary spin rotation operator R‘? that operates in the Hilbert space of

spins and rotates spin states in the sense of the operator S S

Consider a spin vector pointing in the 1 direction:

il
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Appendix: Spin-Orbit Interaction and Point-Group Symmetry

Start from:
n?v2 2 .4 2 n, k(SF) _ i ( )
{ sz +V(I') am2c? o. S[V V(I')XV H:ﬂn k(sr) =E, ( ) ﬂn k(SF)

Introduce spin rotation operator R corresponding to the rotation generated by
the matrix S:

A { VL (e~ 4,:202 G s[va(,)xvf]}ks@{;n,g (s;ﬂ e, ) ,Qgh H
(o v bt e e etoms o

The above equation shows that the new state:

]

'Bnk(sr)

oy i (F)
satisfies the Schrodinger equation and has the same energy as the state: { "’k(-)}

—
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Appendix: Spin-Orbit Interaction and Point-Group Symmetry

k?[anj(s:(@é))]_em E[an,f(éf )}e"é“” s1l;:§:ﬂ

Since:

5o (8 +R)

The new state is a Bloch state with wavevector §‘1E

Summary: \

If S isan operator for a point-group symmetry operation then the two states given by:

a2

This represents a rotated (in
.§F) space) version of the original
—> 4 Bloch state. Even the spin is
:] rotated appropriately by the
spin rotation operator.
have the same energy:

En,z'(é_%): En,;:(’;)
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Appendix: Spin-Orbit Interaction and Inversion Symmetry

Suppose the crystal potential has inversion symmetry:
V(-F)=V(r)

Suppose we have found the solution to the Schrodinger equation:
n2v2 n? a, i (F) [, ;(F)
- +V(r)-i——0o.|Vs V(F)x Vi TN |=E,  \k o
And the solution is:
= Ak (F) -
P r)= ’ . < E
V/n,k,z( ) {ﬂn,k(’)} n,x( )
We replace I by —F everywhere in the Schrodinger equation:

R Rl LR | NG el

,k
R R P Y 0 W
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Appendix: Spin-Orbit Interaction and Inversion Symmetry
n2v2 hz 2, F)] [ @i (-F)
{ 2m +V(r)—l m c O' [V V( )XV ]}|:ﬂn’k(—l—')i|_En’l(k)|:ﬂn’k(—F)
an,E(— F)i|

The above equation shows that the new state: { (- F)
n,k )
satisfies the Schrodinger equation and has the same energy as the state: LB ( )i|
anil-F+R)] ) { k(-7 )}
=e -
Bril-(F+R)) Foi(=F)

the new state is a Bloch state with wavevector — k

a, k(- 7)}

In most cases, the new state: ’ _
n ;;(— r)

Since:

a, i (F )}

has the same spin direction as the state: [,B

0 we can write: Yn-ky (F) = [79",2 E: i-')i|
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Appendix: Spin-Orbit Interaction and Inversion Symmetry

Summary:

If the crystal potential has inversion symmetry then the two states given by:
() (-F)
= n,k . a, g\=r
Vi AF)= = F)=| ™ _
n,k,z( ) |:'3n,l?(r)i| '/’n, ,Z( ) I:ﬂn,l? (_r i|
have the same energy:

En,z(_ E)= En,z(ﬂ)

N

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Consider the Bloch function:

l//n,l?,l (F) = [Z:,k g)i| =Cnk (F)‘ T> * 'Bn,l? (F)‘ J’>

Suppose the Bloch function corresponds to the spin pointing in the direction of the
unit vector i at the location F:

. sk (F) a, i (F) _
Ny _; (F)=a.n 7", |=+1 o=ty g (F
7 Wn'k'l( ) 7 |:ﬂn,l? (I')i| |:ﬂn,E(r) Wn,k,z( )
What if we want the state with the opposite spin at the same location?

The answer is: 3 i _B *n P (F)
16y Vi O)=| e
niox a*, i (F)
Proof:
gifis, v, O)--il-6*hs, v, O
—-il6,6,6%h6,6,0, v, (P =-il6,0v, ¢ P
sy vy O = AL iy 1 )
{6=6,k+6,7+6,2 = 6*=6,%-6,7+6,2%6 |

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the Schrodinger equation:

{_ h;:’ +V(F)- ,-4”’?:(:23 vE)xe H;:gﬂ _ E,,,Z(I?){Z::i gﬂ

a, :(F -
Suppose we have solved it and found the solution: Wn,l?,l (i-’) — |: n,k( )i| o En,;(( )

ﬂn,l? (F)

We complex conjugate it:
a7 N C A ek )] N[a*, ; (F)
{_Zm+v(r)+’4mz’c20 .[VV(r)xV]}{ﬂ*nE(F) —En,z( ) pr (7

It does not look like the original Schrodinger equation!

Note that:

O=0xX+6,y+6,2

=0 =6xX-6yy+6,2#C

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = v
One can always perform a unitary transformation with matrix T and obtain:
TAT YTv =aTv B=TAT
=Bu=4u u=Tv

So try a transformation with the unitary matrix — ié"y with the equation:

o -2 cverei 2 vleolfois, Yo [ % 0] a0, 5ot 0]
:{_h:’V'1$+V(r)—l e v )xv}[ nk(g)} . (*)[_ﬂ*":‘(g)}
*nk (f)}

We have found a new solution: _
I: a*n k (r)

a i (F
P n,k
with the same energy E k) as the original solution: ¥ (r) e
n,z( ) nK.xy ﬂnk(’)

stion: What is the physical significance of the new solution?
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Appendix: Spin-Orbit Interaction and Time Reversal Symmem

Under lattice translation we get for the new solution:

B F+R)] ok R[ "Bk ()
a* i (r+R) a*,k @)
So the new solution is a Bloch state with wavevector — k
)= -B* i (F)
Yn-k20)=| o "o (F)
Note that the new solution found can also be written as:
" o [-B*,i(F)
AR P _
But as shown earlier, the above state has spin opposite to the state WH,E,Z (f) = |:ﬂn’lf (F)
n,k

Therefore, the new solution is a Bloch state Wn,—l?,—;: (7’) ,i.e.:

Vnimy O =iy v* i, (F)= {_aﬂ**”"f(g)}

And we have also found that its energy is the same as that of the state v/, x(F):

En,—x(‘ E)= En,z(‘;)

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

15



Appendix: Spin-Orbit Interaction and Time Reversal Symmetry

In the presence of spin-orbit interaction we have the time-dependent Schrodinger
equation:

{_ V)i, e v )va :g 3} il L,:E::ﬂ
Solution is: ) (D) (7)o En .z (Kt O
V720 { k(@ t)} nk(ﬂ)e_'E ARk )

Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):
2y2 2 F—t rF—t
IV v(E)-i- 6 o) % (r 1) 'h "“(’ )
2m 4am3c k(r t) n,k (" t)
The above does not look like a Schrodinger equation so we complex conjugate it:

s RN SPN VR i T ot o

d it still does not look like the original Schrodinger equation!

—\ _—iE,
'//n,l?,;((r)e L n,z(
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = Av
One can always perform a unitary transformation with matrix T and obtain:
TAT 'Tv = ATv B=TAT
=>Bu=Au u=Tv

So try a transformation with the unitary matrix— ié‘-ywith the equation:
A vt Rty

¢ ,-m{_ PV V)i e v )xv]} +,,,yx_ ,,,y{;* il g] -2 ’“y)[;*ni o :ﬂ
- s oo S 2

The above equation now looks like the time-dependent Schrodinger equation

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry

Summary:

Corresponding to the Bloch state:

e @8] e,z @e ek
Vi, (Frt)= |:'Bn,l? , t)} = s E(F)e-iE,,,Z(E)t

with energy:

En,, (k)
the time-reversed Bloch state is:

B Et)] [~ Pl o
o)

)e—iE,,,x(I?)t

=¥k,

nx
_ \A—iEn, 4
— = ) ~ _ ~ F
a *n,E (r,—t) a *n . (F)e_’E"'Z( )t W"!_ks_l( )e

and the time-reversed state has the same energy as the original state:

En,—z(‘ R)= En,z(E)

—
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Appendix: Crystal Inversion Symmetry and Time Reversal Symmetry

Time reversal symmetry implies:

En,—l(_ E)= En,;((ﬂ)

Inversion symmetry implies:

En,, (_ R) = En,z(-)

In crystals which have inversion and time reversal symmetries the above two imply:
En_, (E): E,, (R) —> There is spin degeneracy!

In crystals which do not have inversion symmetry the above two do not guarantee spin

degeneracy. In general:

E,,,_Z(k)# En,x(ﬂ) —> Bands with different spins
can have different energy
dispersion relations

—
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Appendix: Crystal Inversion Symmetry and Time Reversal Symmetry

Cartoon (and much exaggerated) sketches of the conduction bands of Ge and GaAs
are shown below:

E E

Ge GaAs

En,—z(E)= En,z(q) En,—z(k)** En,x(q)

—
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