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Handout 11

Energy Bands in Graphene: Tight Binding and the 
Nearly Free Electron Approach

In this lecture you will learn:

• The tight binding method (contd…)
• The -bands in graphene

FBZ

Energy
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Graphene and Carbon Nanotubes: Basics
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• Graphene is a two dimensional 
single atomic layer of carbon 
atoms arranged in a Honeycomb 
lattice (which is not a Bravais 
lattice)

• The underlying Bravais lattice is 
shown by the location of the black 
dots and is a hexagonal lattice

• There are two carbon atoms per 
primitive cell, A and B (shown in 
blue and red colors, respectively)

• Graphene can be rolled into 
tubes that are called carbon 
nanotubes (CNTs)

CNT CNT

a = 2.46 A
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Graphene: Sp2 Hybridization

• All carbon atoms are all sp2 hybridized (one 2s orbital together with the 2px and 
the 2py orbitals generate three sp2 orbitals)

• All sp2 orbitals form -bonds with the sp2 orbitals of the neigboring carbon atoms

• The bonding orbital associated with each -bond is occupied by two electrons 
(spin-up and spin-down)

• There is one electron per carbon atom left in the 2pz orbital
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Graphene: 2pz Orbitals

x

y

• The 2pz orbital stick out of the plane of the chain and form -bonds with 
neigboring 2pz orbitals

• The -bonding results in energy bands (-bands) that we will study via tight 
binding

-bonding:

• Each carbon atom contributes one 
2pz-orbital that participates in 
bonding

 Each primitive cell contributes 
two 2pz-orbitals that participate in 
bonding
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Graphene: Some Useful Vectors

A B
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These will be useful for 
writing the final solution 
in a compact form

a = 2.46 A
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Graphene: Tight Binding Solution
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• Each basis atom contributes one 2pz-orbital that 
participates in bonding

 Each primitive cell contributes two 2pz-orbitals 
that participate in bonding

    ppzBppzA ErEr 


                  

           
m

mpzB
dki

pzBmpzA
dki

pzA

Rki

k dRrekcdRrekc
N

e
r

m

2
.

1
.

.
21

 


 

One can then write the trial tight-binding solution for 
wavevector     as:k



a = 2.46 A
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Plug the solution into the Schrodinger equation:

     rkErH kk
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And then, one by one, multiply by from the left by 
the bra’s corresponding to every orbital in one 
primitive cell to generate as many equations as the 
number of orbitals per primitive cell

Multiply the equation with                        and:
• keep the energy matrix elements for orbitals that are nearest neighbors, and
• assume that the orbitals on different atoms are orthogonal
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Graphene: Tight Binding Solution

Notice that the final result can be written in 
terms of the nearest neighbor vectors

a = 2.46 A
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A BMultiply the equation with                           and:
• keep the energy matrix elements for orbitals that are 
nearest neighbors, and
• assume that the orbitals on different atoms are 
orthogonal
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Step 2:
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Notice that the final result can be written in 
terms of the nearest neighbor vectors

Graphene: Tight Binding Solution
a = 2.46 A
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Write the equations obtained in a matrix form: 
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Where the function           is:
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And the corresponding eigenvectors are:

Graphene: Tight Binding Solution

a = 2.46 A
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• Bandgaps open at the M-points between the first and the second bands

• No bandgaps open at the K-points and the K’-points 
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Graphene: -Energy Bands
Energy

FBZ
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Graphene: -Energy Bands

In generating the plots I chose energy zero such that:

And for graphene:

0pE

eV 0.3ppV

• Since graphene has two 
electrons per primitive cell 
contributing to -bonding, the 
lower -band will be 
completely filled at T ≈ 0K

• The location of Fermi level 
near T ≈ 0K is shown by the 
dashed curve

ppV3
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To compare the nearly-free-electron approach (NFEA) to tight-binding (TB) I assumed 
the DC potential in NFEA to be:

And in graphene:

Graphene: A Comparison of NFEA and TB
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Why the Zero Bandgap in Graphene?
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a = 2.46 AThe answer from tight binding:

The two atoms in a primitive cell are identical. If they were 
different then there would be a non-zero bandgap:
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The answer from the nearly-free-electron approach:

As you saw in your homework, if the crystal potential lacked inversion symmetry w.r.t. 
the y-axis (i.e.                                     ) then there would be a non-zero bandgap. 

Of course, if the two atoms in the primitive cell were different then the crystal would 
lack inversion symmetry! So both the approaches explaining the zero bandgap are 
consistent. 
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Pseudospin in Graphene
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And the corresponding eigenvectors are:

a = 2.46 A

Compare with the case of 1/2 spin particles with spins in the x-y plane:
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