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Handout 10

The Tight Binding Method (Contd…)
And 

Crystal Symmetries and Energy Bands 

In this lecture you will learn:

• The tight binding method (contd…)
• The -bands in conjugated hydrocarbons
• The relationship between symmetries and 
energy bands
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Tight Binding for a Square Lattice with a Two-Atom Basis

Consider a 2D square lattice with a two-atom basis:
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• The primitive vectors and basis vectors are 
as follows:

• Each basis atom contributes one s-orbital that 
participates in bonding
 Each primitive cell contributes two s-orbitals 
that participate in bondinga
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One can write the trial tight-binding solution for wavevector     as:k
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Analysis of the Tight Binding Solution
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(1) Summation over all 
primitive cells

(2) Common phase factor 
for each primitive cell

(4) A phase factor for each orbital that is 
related to the position of the orbital within 
the primitive cell w.r.t. lattice point

(3) Summation over all orbitals within a primitive 
cell with undetermined coefficients
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Tight Binding Solution
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Plug the solution into the Schrodinger equation:      rkErH kk


  ˆ

Multiply the equation with                         and:
• keep the energy matrix elements for orbitals that are 
nearest neighbors, and
• assume that the orbitals on different atoms are 
orthogonal

 1drSA




           kckEkcdkdkVkcE SASBssSASA


 21 .cos.cos4 

Step 1:

And then, one by one, multiply by from the left by the 
bra’s corresponding to every orbital in one primitive 
cell to generate as many equations as the number of 
orbitals per primitive cell

           21
.... .cos.cos421212121 dkdkeeee ddkiddkiddkiddki 

 

where the following identity has been used:
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Tight Binding Solution
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Multiply the equation with                         and:
• keep the energy matrix elements for orbitals that are 
nearest neighbors, and
• assume that the orbitals on different atoms are 
orthogonal
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Step 2:

Write the equations obtained in a matrix form: 
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Tight Binding Solution

a

a

1d


1a


2a


2d


A

B

FBZ

   
   

 
     

 



























kc

kc
kE

kc

kc

EdkdkV

dkdkVE

SB

SA

SB

SA

SBss

ssSA 












21

21

.cos.cos4

.cos.cos4





SASB EE 



4

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Polyacetylene

Polyacetylene is a one-dimensional conducting hydrocarbon polymer 

H

C

x
• Carbon atoms are all sp2 hybridized (one 2s orbital 
together with the 2px and the 2py orbitals generate three sp2 
orbitals)

• Two sp2 orbitals form -bonds with the sp2 orbitals of the 
neigboring carbon atoms and one remaining sp2 orbital 
forms a -bond with the 1s orbital of the hydrogen atom

• The bonding orbital associated with each -bond is 
occupied by two electrons (spin-up and spin-down)

• There is one electron per carbon atom left in the 2pz orbital
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-Bands in Polyacetylene

x

HH 2pz orbitals

• The 2pz orbital stick out of the plane of the chain and form -bonds with 
neigboring 2pz orbitals

• The p-bonding results in energy bands that we will study via tight binding

The primitive cell of the 1D chain is as shown below (it consists of two carbon 
atoms and two hydrogen atoms)
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-Bands in Polyacetylene
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Two carbon atoms per primitive cell implies we have a 1D crystal with a two-atom 
basis with basis vectors:
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• Each basis atom contributes one 2pz-orbital that participates in bonding
 Each primitive cell contributes two 2pz-orbitals that participate in bonding
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One can write the trial tight-binding solution for wavevector     as:k

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-Bands in Polyacetylene
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Plug the solution into the Schrodinger equation:      rkErH kk


  ˆ

And then, one by one, multiply by from the left by the bra’s corresponding to every 
orbital in one primitive cell to generate as many equations as the number of orbitals 
per primitive cell

Multiply the equation with                         and:
• keep the energy matrix elements for orbitals that are nearest neighbors, and
• assume that the orbitals on different atoms are orthogonal

 rpzA



Step 1:

         kckEkcdkVkcE pzApzBpppzAp


 2.cos2 
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-Bands in Polyacetylene
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Multiply the equation with                         and:
• keep the energy matrix elements for orbitals that are nearest neighbors, and
• assume that the orbitals on different atoms are orthogonal
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Write the equations obtained in a matrix form: 
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-Bands in Polyacetylene

 
 

 
     

 































kc

kc
kE

kc

kc

EdkV

dkVE

pzB

pzA

pzB

pzA

ppp

ppp 












2

2

.cos2

.cos2





Solutions are:

   2.cos2 dkVEkE ppp




 
 
 
          

1

1

2
1

                 
1

1

2
1










































kc

kc

kc

kc

pzB

pzA

pzB

pzA









Energy

   
a


   
a



xk

• There is no bandgap between the 
upper and lower bands!

• Since each primitive cell contributes 
two electrons, the lower band is 
completely filled and the upper band is 
completely empty at T=0K 
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Other Conducting -Conjugated Molecules and Polymers
Polyacetylene:

C C

CC

C C

CC

C C

CC

Benzene:

PPV (Polyphenylene Vinylene):

Used in polymer light 
emitting diodes (PLEDs)

N

Al

O

Alq3:
Both used in organic light 
emitting diodes (OLEDs)

N

Triphenylamine:
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Tight Binding Bands For Germanium

FBZ (for FCC lattice)

2

2

11

1

2

1

1

1

2

1

1

Energy (eV)Tight Binding Bands for Ge

Germanium:

Electron Configuration: 1s2 2s2 2p6   3s2 3p6 3d10 4s2 4p2

Atomic number: 32

Number of electrons in the outermost shell: 4
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Symmetry and Energy Bands
The crystal potential            generally has certain other 
symmetries in addition to the lattice translation symmetry:

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

 rV


a

a

Let      be the operator (in matrix representation) for any one 
of these symmetry operations then:

Ŝ

   rVrSV

rSr









ˆ

ˆ'

   rVRrV




rSr
 ˆ'

r


Ŝ = rotation by 90o
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Crystal Point-Group Symmetry
Point-Group Symmetry
The point group symmetry operation of a lattice are all those 
operations that leave the lattice unchanged and at least one 
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

Let      be the operator for a point-group symmetry 
operation, such that:

Ŝ

   rVrSV


ˆ

rSr
 ˆ'

r


Ŝ = rotation by 90o

unitaryˆ 1  SST


The operator      is unitary:Ŝ

a

a
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Crystal Point-Group Symmetry and Energy Bands

a

a

Let      be the operator for a point-group symmetry 
operation, such that:

Ŝ


   rVrSV

SSrSr T




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 

ˆ

unitaryˆˆ' 1

Now replace      by         everywhere in the Schrodinger equation:
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
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
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


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r
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rS
ˆ

22
ˆ rrS

 

Laplacian is 
invariant 

       rkErrV
m knnkn
r  

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Suppose one has solved the Shrodinger equation and obtained 
the energy and wavefunction of a Bloch State  rkn


,
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               rSkErSrV
m

rSkErSrSV
m knnknknnkn

  ˆˆ
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

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





The above equation says that the function                   is also a Bloch state with the 
same energy as                 (we have found a new eigenfunction!)

 rSkn
 ˆ

,
 rkn


,

The question is if we really have found a new eigenfunction or not, and if so what is 
the wavevector of this new eigenfunction

We know that Bloch functions have the property that:    reRr kn
Rki

kn






,

.
,  

So we try this on                 : 

    
     rSerSe

RSrSRrS

kn
RkSi

kn
RSki

knkn












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ˆˆˆ

,
.ˆ

,
ˆ.

,,

1









 is a Bloch function with wavevector            and energy            rSkn
 ˆ

, kS
1ˆ  kEn



   rrS
kSnkn



1ˆ,,

ˆ
 

RS


ˆ is also a lattice vector

    RkSRSk


.ˆˆ. 1

Crystal Point-Group Symmetry and Energy Bands

 rSkn
 ˆ

,
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So we finally have for the symmetry operation      :Ŝ

   rrS
kSnkn



1ˆ,,

ˆ  

We also know that the eigenenergy of                     is              
Therefore: 

Or, equivalently:      

   kEkSE nn


1ˆ

 r
kSn


1ˆ,   kEn



   kEkSE nn


ˆ

Important Lessons:

1) If      is a symmetry of the potential such that in real-space we have:

then the energy bands also enjoy the symmetry of the potential such that in k-space:

2) Degeneracies in the energy bands can therefore arise from crystal point-group 
symmetries!  

Ŝ

   rVrSV


ˆ

   kEkSE nn


ˆ

Crystal Point-Group Symmetry and Energy Bands
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Time Reversal Symmetry and Energy Bands

   
 
t

tr
itrrV

m
kn

kn 
















,
,

2
,

,

22











Suppose we have solved the time dependent Schrodinger and obtained the Bloch 
state                with energy             :

   
 
t

kE
i

knkn

n

ertr 



  
 ,, , 

 r
kn




,
  kEn



       rkErrV
m knnkn
r  


,,

22

2
 













After plugging the solution in the time-dependent equation, we get:

If we take the complex conjugate of the above equation, we get: 

       rkErrV
m knnkn

  *
,

*
,

22

2
 













We have found another Bloch function, i.e.               , with the same energy as rkn
*

,  r
kn




,


Question: What is the physical significance of the state                 ? rkn
*

,
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Lets see if we can find a solution under time-reversal (i.e. when t is replaced by –t): 

   
 
t

tr
itrrV

m
kn

kn 
















,
,

2
,

,

22











The above does not look like a Schrodinger equation so we complex conjugate it:

   
 
t

tr
itrrV

m
kn

kn 
















,
,

2

*
,*

,

22











This means that                    is the time-reversed state corresponding to the state

   
 
t

kE
i

knkn

n

ertr 



  
 *

,
*
, ,         rkErrV

m knnkn
  *

,
*
,

22

2
 













The function                is the time-reversed Bloch state corresponding to   rkn
*

,

   
 
t

tr
itrrV

m
kn

kn 
















,
,

2
,

,

22











Suppose we have solved the time dependent Schrodinger and obtained the Bloch 
state                with energy             :

   
 
t

kE
i

knkn

n

ertr 



  
 ,, , 

 r
kn




,
  kEn



Time Reversal Symmetry and Energy Bands

 trkn ,*
,

  trkn ,,


 r
kn




,

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Time Reversal Symmetry and Energy Bands

       rkErrV
m knnkn

  *
,

*
,

22

2
 













We have found another Bloch function, i.e.               , with the same energy as rkn
*

,  r
kn




,


The question is if we really have found a new eigenfunction or not, and if so what is 
the wavevector of this new eigenfunction

We know that Bloch functions have the property that:    reRr kn
Rki

kn






,

.
,  

So we try this on                : 

           rereRrRr kn
Rki

kn
Rki

knkn
 





 *

,
.

*

,
.*

,
*
,  

 rkn
*

,

 is a Bloch function with wavevector           and energy            rkn
*

, k


  kEn


       kEkErr nnknkn

    and*
,, 

Important Lesson: 
Time reversal symmetry implies that                                  even if the crystal lacks 
spatial inversion symmetry (e.g. GaAs, InP, etc)

   kEkE nn





