Handout 10

The Tight Binding Method (Contd...)
And
Crystal Symmetries and Energy Bands

In this lecture you will learn:

* The tight binding method (contd...)

* The n-bands in conjugated hydrocarbons
* The relationship between symmetries and
energy bands
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Tight Binding for a Square Lattice with a Two-Atom Basis

Consider a 2D square lattice with a two-atom basis:

1 %" «The primitive vectors and basis vectors are

[0} . o as follows:
a az o a 51 =ax 52 =a }7
RN - - a, - a.

al o BQ () di=5x  dp=2y
S o « Each basis atom contributes one s-orbital that
d participates in bonding

o (0] [0} = Each primitive cell contributes two s-orbitals

a that participate in bonding

#sa(F) < Esa
#s8(F) & Esp

One can write the trial tight-binding solution for wavevector k as:

ik.Rp

V/E(F)=%e N I:CSA(’?)eiE'&1 ¢SA(F_Rm —31)4' CSB(’?)@"}'J2 ¢SB(F_
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Analysis of the Tight Binding Solution

ik.Ry N s L N s L
vi(F)= %eT [CSA("')G'kT'd1 bsalF — R —dy)+ Cs:s("')e/'k'd2 ¢SB(F—Rm—d2)]

(1) Summation|over all | /

primitive cells (3) Summation over all orpitals within a primitive
cell with undetermined cpefficients

— ——
(2) Common phase factor [0} R o
for each primitive cell az
e o e
a
a
(4) A phase factor for each orbital that is ° 3 ° b
related to the position of the orbital within o 2 A o
the primitive cell w.r.t. lattice point ) d, ' e
(] (0] o
a
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Tight Binding Solution \
H)‘V/k(f»

Plug the solution into the Schrodinger equation: H ‘y/E(F» = E(

And then, one by one, multiply by from the left by the N o
bra’s corresponding to every orbital in one primitive e - e
cell to generate as many equations as the number of o + o)
orbitals per primitive cell 52
Step 1: . ¢ a
Multiply the equation with (gsa(F - dy)| and: al o 8O )
* keep the energy matrix elements for orbitals that are > A
nearest neighbors, and ® d *——6—
» assume that the orbitals on different atoms are o o 1
orthogonal b
a
Esa csa(k)-4Vs, cos(k.d;) cos(k.dz) esp(k) = E(k) esalk)

where the following identity has been used:

ei E .(&1+&2)+ei k (&1—82)+ eiE .(—81+82)+ei E .(—81—&2) = 4COS(R . &1)COS(E . Jz)
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Tight Binding Solution

Step 2: . PY | ° °
Multiply the equation with (¢sg(F — )| and: o o
* keep the energy matrix elements for orbitals that are a,
nearest neighbors, and Py 3 o> ©
* assume that the orbitals on different atoms are a 1
orthogonal 0o B O o
~ - - _ 2 A
Esg csa(k)- 4Vss, cos(k.dy) cos(k.d; ) csa(k) M 70 G
= E(K) csg (k) o 0 0
a
Write the equations obtained in a matrix form:
Esa — 4V, cos(k.d;) cos(k.d, )} [cSA (k)} _£(®) {cSA( )
- 4Vssa cos(k.d1) cos(k.dz) ESB cSB(k cSB(k)_
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Tight Binding Solution

\_
-

o | o o
o WL o
a
' Era
a' o BO ]
P S
mE .
(] (0] ()
a
Egsa — 4V, cos(k.d;) cos(k.d, )| [ csa(k) _ (%) csa (k)]
-4V, cos(l?.81) cos(l?.&z) Esg csglk csg (k)]
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Polyacetylene

Polyacetylene is a one-dimensional conducting hydrocarbon polymer
H H

C c
Cc [

y
H H I

* Carbon atoms are all sp2 hybridized (one 2s orbital
together with the 2p, and the 2py orbitals generate three sp2
orbitals)

* Two sp2 orbitals form c-bonds with the sp2 orbitals of the
neigboring carbon atoms and one remaining sp2 orbital
forms a 6-bond with the 1s orbital of the hydrogen atom

* The bonding orbital associated with each c-bond is
occupied by two electrons (spin-up and spin-down)

* There is one electron per carbon atom left in the 2p, orbital
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n-Bands in Polyacetylene .
H H 2p, orbitals

* The 2p, orbital stick out of the plane of the chain and form n-bonds with
neigboring 2p, orbitals

* The p-bonding results in energy bands that we will study via tight binding

The primitive cell of the 1D chain is as shown below (it consists of two carbon
atoms and two hydrogen atoms)

H H
c c
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n-Bands in Polyacetylene

X

Two carbon atoms per primitive cell implies we have a 1D crystal with a two-atom
basis with basis vectors:
a

di=0  dy=5%
* Each basis atom contributes one 2p,-orbital that participates in bonding
= Each primitive cell contributes two 2p,-orbitals that participate in bonding
¢pzA(F) o E, ¢sz(F) o E,
One can write the trial tight-binding solution for wavevector k as:

ik.Rp R - N e B =
A0 kil N ) PO 0 POSON (5 PP RN S )|

m
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n-Bands in Polyacetylene

[ ]

Plug the solution into the Schrodinger equation: H |y (F)) = E(I?)‘y/k (F))

And then, one by one, multiply by from the left by the bra’s corresponding to every
orbital in one primitive cell to generate as many equations as the number of orbitals
per primitive cell

Step 1:

Multiply the equation with <¢pzA(f)‘ and:

* keep the energy matrix elements for orbitals that are nearest neighbors, and
* assume that the orbitals on different atoms are orthogonal

Ep cpzA(l?)— 2V, cos(l?.c?z)csz(l?) - E(k) cpzA(a)

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University




n-Bands in Polyacetylene

Step 2:
Multiply the equation with <¢sz(F) and:

* keep the energy matrix elements for orbitals that are nearest neighbors, and
* assume that the orbitals on different atoms are orthogonal

Ep csz (R)_ 2vpp7r cos(R'EZ ) cpzA(R') = E(E) csz(a)
Write the equations obtained in a matrix form:

E, -2V, cos(k.d, )} {cpzA(E)} ) E(I?){ pzA(R)}

-2V, cos(k.d,) E, Cozn(K

szB k
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n-Bands in Polyacetylene

{ E, -2V, cos(k.d, )} {cpzA(E)} _ E(E){cpm (R)}

-2V, cos(E.Jz E, Cpozalk

Solutions are:

E(k)=E, 2V, cos(k.d,) Energy
] -
] -

* There is no bandgap between the
upper and lower bands!

|

* Since each primitive cell contributes

two electrons, the lower band is -
completely filled and the upper band is
completely empty at T=0K
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Other Conducting n-Conjugated Molecules and Polymers
Polyacetylene:

Both used in organic light
emitting diodes (OLEDs)

’e

Benzene: Alq3:

Al

Triphenylamine:

PPV (Polyphenylene Vinylene):

Used in polymer light
emitting diodes (PLEDs)
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Tight Binding Bands For Germanium

Germanium:
Atomic number: 32
Electron Configuration: 1s2 2s22pf 3s2 3p® 3d'? 4s2 4p?

Number of electrons in the outermost shell: 4

k2 Tight Binding Bands for Ge Energy (eV)

e

12

A
Y7

|£ _‘JNI)-\[NI_‘I
-
|
=

FBZ (for FCC lattice)

-~ L

X K,U

-
—
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Symmetry and Energy Bands

The crystal potential V(F) generally has certain other
symmetries in addition to the lattice translation symmetry:

v(F+R)=V(F)

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees

b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

Let § be the operator (in matrix representation) for any one

of these symmetry operations then:

$ = rgtation by 90°

v($F)=Vv(F)
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Crystal Point-Group Symmetry .
Point-Group Symmetry >
The point group symmetry operation of a lattice are all those

operations that leave the lattice unchanged and at least one
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

-

Let § be the operator for a point-group symmetry F'=§F
operation, such that:
v($7)=Vv () R

S =rqgtation by 90°

The operator Sis unitary:

ST = 87" = unitary

—
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Crystal Point-Group Symmetry and Energy Bands
[ ] [ ]

N [ ]
Let S be the operator for a point-group symmetry
operation, such that:
7= 8§F {ér =$§7"= unitary ° ° °
= V(§F)=V(F) a
[ ] [ ] [ ]
Suppose one has solved the Shrodinger equation and obtained —
the energy and wavefunction of a Bloch State ¥/, \r a
nve . . B,
o0 i 0)- £l
Now replace 7 by S§F everywhere in the Schrodinger equation:
2 2
Vé. =V;
hzv B} . §
Vs v
om T V(Srj| ¥, k(Sr) (k)'//n,E (Sr) — > 7 Laplacianis
L invariant
nvE A . A
== 2m +V(r) Wn,R(Sr)= En( )Wn,E(Sr)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Crystal Point-Group Symmetry and Energy Bands
252 . . = . 2y2 =
o V187)|ye(67)= 571 = V10 67~ £ B

The above equation says that the function v, k(Sr) is also a Bloch state with the
same energy as ¥, ¢\r) (we have found a new eigenfunction!)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: l//n,,;(f + f\’)= e'k-R

Sowe try thison y ¢ (§f):
Ynk (é(f +R ))= Yn ,;(gf + éf\') ———> — $Ris also a lattice vector

kSR, (s7)=clSRLR, {sr) {E.(s“ﬁe)=(§—uz).ﬁ

> ¥, k(‘ ) is a Bloch function with wavevector $~'k and energy E, (E)

= V’n,E(AF)= Yo%k (F)

—
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Crystal Point-Group Symmetry and Energy Bands
So we finally have for the symmetry operation S:
=>Vnk (§F)= V6% (F)
We also know that the eigenenergy of l//n,§—1,; (7) is E, (E)
Therefore:
E,($7'%)=E, (k)
Or, equivalently:
En(8K)= Eq(K)

Important Lessons:

1) If Sisa symmetry of the potential such that in real-space we have:
v($7)=Vv(7)

then the energy bands also enjoy the symmetry of the potential such that in k-space:

E,(8K)=E, (k)
2) Degeneracies in the energy bands can therefore arise from crystal point-group
symmetries!
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Time Reversal Symmetry and Energy Bands
Suppose we have solved the time dependent Schrodinger and obtained the Bloch

_iEnlk),

state ¥ -(r) with energy E \k) :
n,k n
V’n,E(F’t)=V’n,E(F)e h

[_ n2v? +v(f)} v ()= A gt(F,t)

After plugging the solution in the time-dependent equation, we get:

If we take the complex conjugate of the above equation, we get:

2m

{_ n2v2 +v(F)} vz (F)=Eq(R)v ()

We have found another Bloch function, i.e.¥p k (F) , with the same energy as ¥/, ,;(F)

Question: What is the physical significance of the state Yk (F) ?
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Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch
state ¥/ E(F) with energy E,, (k :

nv? N1 (%))
{— - +V(F) |y, x(F.t)=in "6t

E,(k)

B o —itnE
Voi(Ft)=v,;(Fle 7

Lets see if we can find a solution under time-reversal (i.e. when t is replaced by —f):

N 0y, g(F-t)
V@) gt = - Yk O

=
The above does not look like a Schrodinger equation so we complex conjugate it:
- 2 2 -— a * ~ - _t
nev? e oy, p(Fet)
+V(r p\r—t)=ih—————
Vot V(E) v Fimt) = in
This means that V’;,E (f,—t) is the time-reversed state corresponding to the state v/, E(F’

-ﬂ@t { h2y2

* _ * ~ =1
Voi(Ft)=y,;(Fle 7 2m

= |-

+v(f)} v )= Ea Ry 1)

e function Ynk (7) is the time-reversed Bloch state corresponding to v, E(F)

—
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Time Reversal Symmetry and Energy Bands

{_ h;:: +V(F)} vz (F)=En(k)w £ (F)

We have found another Bloch function, i.e.¥p k (f) , with the same energy as ¥/, R(F)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: V’n,E(F + f\’)= ei k- y/n,E(r)

So we try this on l//:,,,; (F):

VaiE+R)=ly i (F+R)| = [‘9”;"Ea Vnk (7)] =e'HH LRy L)
= l//:,,,; (F) is a Bloch function with wavevector —k and energy En(q)
= v, i ()=, () and E,(-k)=E,(K)

Important Lesson: . .
Time reversal symmetry implies that E,,(— k)= E,,( ) even if the crystal lacks
spatial inversion symmetry (e.g. GaAs, InP, etc)

N 4
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