Handout 1

Drude Model for Metals

In this lecture you will learn:

* Metals, insulators, and semiconductors
* Drude model for electrons in metals

* Linear response functions of materials

Paul Drude (1863-1906)
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Inorganic Crystalline Materials

lonic solids Covalent solids

Mostly insulators |
Example: NaCl, KCI

Semiconductors Insulators Metals
Si, C, GaAs, InP, GaN SiO,, Si;N, Au, Ag, Al,
PbSe, CdTe, ZnO Ga, In

Metals
1- Metals are usually very conductive

2- Metals have a large number of “free electrons” that can move in response to an
applied electric field and contribute to electrical current

3- Metals have a shiny reflective surface
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Properties of Metals: Drude Model

Before ~1900 it was known that most conductive materials obeyed Ohm’s law
(i.e. I=V/R).

In 1897 J. J. Thompson discovers the electron as the smallest charge carrying
constituent of matter with a charge equal to “-e”

_1.6x10-1° . sea of
e=1.6x10""C ions_ | electrons

J

In 1900 P. Drude formulated a theory for
conduction in metals using the electron
concept. The theory assumed:

®
ONONO)

1) Metals have a large density of “free
electrons” that can move about freely
from atom to atom (“sea of electrons”)

2) The electrons move according to
Newton’s laws until they scatter from

ions, defects, etc. @
3) After a scattering event the momentum of

the electron is completely random (i.e.

has no relation to its momentum before

scattering) @

—
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Drude Model - |

Applied Electric Field: @ @

electron
In the presence of an applied external electric path
field E the electron motion, on average, can @ @

be described as follows:

/

Let 7 be the scattering time and 1/7 be the scattering rate

This means that the probability of scattering in small time interval time dt is: ﬂ
T
The probability of not scattering in time dt is then: (1_ﬂj
T
Let ﬁ(t) be the average electron momentum at time t, then we have:
. dt /.. = dt
Bt + dt) = [1 - —](p(t)— o E(t) dit)+ [7) ©)
T T
N —~ - _—_ H_{
If no scattering If scattering happens then average
happens then momentum after scattering is zero

Newton’s law

> PO g~
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Drude Model - i

Case I: No Electric Field

dp(t) - _@ Steady state solution: p(t)=0
dt T
Case lI: Constant Uniform Electric Field Electron path

Steady state solution is:
y Electron path

p(t)=-erE

Electron “drift” velocity is defined as:

<i

PO __etp__,E
=7=—7E=— E
m H

{ 4 = er/m = electron mobility
m

(units: cm?/V-sec)
Electron current density J (units: Amps/cm?) is:
J=n(-e)v=neuE=cE

Where: n = electron density (units :#lcm3)

nezr

o = electron conductivity (units : Siemens/cm) = neyu =

—
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Drude Model - 11l

Case lll: Time Dependent Sinusoidal Electric Field
dp(t) =—e E(t)— p(t)
dt T

There is no steady state solution in this case. Assume the E-field, average
momentum, and currents are all sinusoidal with phasors given as follows:

E(t)= Re[ E(o) oot ] p(t)= Re[ ) e-iot ] J(t) = Re[ J(o) et ]

%&t) =—e E(t)- @ = —iop(w)= —eE‘(w)_@

= i)(w)=—1_eiﬁé(w) = Ww:%:_%ﬂw)

Electron current density:

J(»)= n (-e) V(o) = o(w) E(w)

ne’s
m _a(a)=0)
1-iot 1-iwt

Drude’s famous result !!

o(o)=
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Linear Response Functions - |
The relationship:
J(@) = o(0) E(o)
is an example of a relationship between an applied stimulus (the electric field in

this case) and the resulting system/material response (the current density in this
case). Other examples include:

P(@)= ¢ xeT(w) E(o)

electric polarization  electric electric field
density susceptibility

M(w) = Zm(?’) H(o)

magnetic polarization magnetic magnetic field
density susceptibility

The response function (conductivity or susceptibility) must satisfy some
fundamental conditions .... (see next few pages)
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Linear Response Functions - Il

Case lll: Time Dependent Non-Sinusoidal Electric Field

For general time-dependent (not necessarily sinusoidal) e-field one can
always use Fourier transforms:

= Cdo 2 —-iot £ e = iot
E(t)= | 2 E(w)e o  E(w)= [dt E(t)e )
—00 —00
Then employ the already obtained result in frequency domain:

J() = o(0) E(@)

And convert back to time domain:

)= T 92 Jw)e = | 92 o(w) E(0) e @
w27 w21
Now substitute from (1) into the above equation to get:
i) =1 92 o(0) E(@) et = Tdt [}" 9 (0)e w(t-ﬂ E(t)
—0 2z —o0 —o0 2z
= J(t)= [dt'o(t-t)E(t)

—0
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Linear Response Functions - lll

= J(t)= [dt' o(t—t') E(t)

—00

Where: o-(t - t') = OJ? ‘2177”; O'(a)) e—i o(t-t")

The current at time t is a convolution of the conductivity response function and the
applied time-dependent E-field

Drude Model: O'(a)) = :-(—wii;(:-)
_ey T do —iat-t) _ T do o(@=0) _ia(t-r)
olt t)—_j;ozﬂa(a))e __J;,Zir 1—ia)re
_(t-t)
=>o(t-t)= ol0=0) o(t-t)
T

step function
o(t-t)

(¢-t)

—
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Linear Response Functions - IV

The linear response functions in time and frequency domain must satisfy the
following two conditions:

1) Real inputs must yield real outputs:
_ ) 00 . v —
Since we had: J(t)= [dt' |: | do o(w)e™ oft-t )i| E(t)
Co | w27
This condition can only hold if:
o(-w)= o' (0)
2) Output must be causal (i.e. output at any time cannot depend on future input):
— © —
Since we had: J(t)= [dt' o(t-t') E(t)

—a0

This condition can only hold if:

o(t-t)=0 for t<t'

Both these conditions are satisfied by the Drude model
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ECE 4070 - Spring 2010 - Farhan Rana - Cornell University




Drude Model and Metal Reflectivity - |

When E&M waves are incident on a air-metal interface there is a reflected wave:

€ Ho Fi %
H,-é -
S Y /A

The reflection coefficient is:

-

Question: what is 8(01) for metals?
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Drude Model and Metal Reflectivity - I

From Maxwell’s equation:

, L L 6E(f t) Effective dielectric
Ampere’s law: v x H(F,t) = J(F,t)+ ¢, 76; constant of metals
Phasor form:  VxH(F)= J(F)—ﬁia) £ E(F) i cor(©) = &6 [1+ i 0'(“’)}

= o(w)E(F)-iw &, E(F) @éo
=—i 0 gerr (@) E(F)
Metal reflection coefficient becomes:
o Er _ % —2enr(@)
\/g + \Eeff (a’)
. . o(w=0)
Using the Drude expression: 0'(01) 1-ior

the frequency dependence of the reflection coefficient of metals can be
explained adequately all the way from RF frequencies to optical frequencies

— s
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Drude Model and Plasma Frequency of Metals

ne’z/m _o(@=0)
1-iwr 1-ier

For metals:  gq4 ()= &, [1 +i 0'(0))] and o(w)=
For small frequencies (w7 << 1) :

o)~ o(w=0) = "::T = to(0)=¢ (1“0(2300)]

For large frequencies (@z >> 1) (collision-less plasma regime):

2 2
o(w=0) .ne wp
olw)r———=i—— = gofl@w)= e, | 1-—5
( ) —ioT mae eff ( ) o [ 2
ne? For most good metals
where the plasma frequency is: @p =, —— this frequency is in the
&oMm UV to visible range

Electrons behave like a collision-less plasma

1
Note that for @wp > @ >>—  the dielectric constant is real and negative
T

—
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Plasma Oscillations in Metals
Consider a metal with electron density n

Now assume that all the electrons in a certain region got displaced by distance u

+ve charge left -ve charge
behind ~_ accumulated

OB ©
®

®
f—

u

\

O

OOOOLO O

®®®®®®:$
ofo¥ocYolo

The electric field generated = E =

|

®
®

\

®
®

J

neu _’I

&,

[
nezu

Force on the electrons = F = —eE = —

€o
As a results of this force electron displacement u will obey Newton’s second law:

2
dut) p_ _eg__

ne? u(t) N dzu(t) . u(t) second order
dt? €o dt?

system

Lo . Plasma oscillations are charge
Solution is: u(t)= Acos(apt)+ Bsin(a,t) density oscillations 9

S—
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Plasma Oscillations in Metals — with Scattering
From Drude model, we know that in the presence of scattering we have:

— M

As before, the electric field generated = E(t) = Lu(t) S )]
€o
Combining (2) with (1) we get the differential equation:

9O _ o2 u(e)-1 90 —{ op= "

dt? dt £om
Or: —_—
ONOJONO} ONO)
ﬂz(t)Jrld"i(t)er’Z’u(t):o @ @ @ @
dt T dt @ @ @ @
BVAVA J
second ordt} system with damping — ul'_ —l ul‘_/
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Plasma Oscillations in Metals — with Scattering
1
Case | (underdamped case): @p > 2
Solution is:

u(t)=e"’ '[A cos(Q pt)+ B sin(Q pt)] — Esa::?lf:t?of‘lssma
Where:

Case Il (overdamped case): @p < E

Solution is:

u(t) —Ae Mt Be "2t «+«—— No oscillations

_A 2 I I
" 2r 41,2 (4 " 2r 41,2 P

ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

10



Appendix: Fourier Transforms in Time OR Space

Fourier transform in time:

f(w)= Jdt f(t)e

Inverse Fourier transform:

£(t) = _T ‘;Lfr’ flw)e @t

Fourier transform in space:

g(k)= Jox g(x)e '~

Inverse Fourier transform:

9(0)= T 5 alk)e’**

—
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Appendix: Fourier Transforms in Time AND Space

Fourier transform in time and space:

h(k,w)= [ dx [dt h(x,t) e kX gl @t

—00 —0o0

Inverse Fourier transform:

h(x.t)= | 3 7 de

habed hk, ikx —iot
_L27Z'_°°2ﬂ' (k) e €

S— s
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Appendix: Fourier Transforms in Multiple Space Dimensions

Fourier transform in space:

[c2) 0 0 . —i .
h(kx,ky,kz)= [ dx [dy [dz h(x,y,z) e kxX g 'Ky ¥ giksz
- - -

Need a better notation!
a0 ¢} a0
[d3% = [dx [dy [dz

—00 —a0 —a0

o R kgkr kg kg 2
F=xX+yy+z2

= h(k)=]d% h(7) ek-¥

Inverse Fourier transform:

3 ~ L
h(F)=]’% h(k) -7
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