ECE 4070/MSE 5470 Physics of Semiconductors and Nanostructures Exam 2, April 14, 2015

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University

Instructions:

- There are **THREE** problems in this exam
- Every problem must be done in the blue booklet
- Only work done on the blue exam booklets will be graded. Do not attach your own sheets to the exam booklets under any circumstances
- To get partial credit you must show all the relevant work
- Correct answers with wrong reasoning will not get points
- All questions do not carry equal points
- All questions do not have the same level of difficulty, use your time judiciously

DO NOT WRITE IN THIS SPACE

1 Bandstructure of a 2D Semiconductor [40 points]

As shown in Figure 1, in the **k**-space of a 2D square lattice (lattice constant: a), denote the points $\Gamma: (k_x, k_y) = (0,0)$, $X: (\pi/a, 0)$, and $W: (\pi/a, \pi/a)$. The nearly free electron bandstructure assumes no crystal potential, but a lattice.

- (a) Draw the nearly free-electron bandstructure from the BZ center in the ΓW direction slightly beyond the BZ edge. Identify the magnitude of k at the BZ edge, and express the energy in terms of $F = \hbar^2 \pi^2 / ma^2$. Include reciprocal lattice vectors smaller than $2 \times 2\pi / a$.
- (b) Label each band with the reciprocal lattice vector it is associated with. Clearly point out the *degeneracies* of each band.

Consider now that the basis atoms produce a 2-D potential

$$V(x,y) = -4V_0 \cos(\frac{2\pi x}{a})\cos(\frac{2\pi y}{a}). \tag{1}$$

(c) Find the bandgap at the W point due to this potential. Be judicious in choosing the basis set.

Figure 1: 2D reciprocal lattice.

(d) The lowest energy at the Γ : $(k_x, k_y) = (0, 0)$ point before the potential was turned on was $E_{\Gamma}(0, 0) = 0$ eV. Give an estimate of the change in this energy eigenvalue due to the periodic potential.

2 2-Dimensional Boron Nitride [40 points]

Figure 2: The Boron Nitride 2D crystal.

You have extensively solved the bandstructure details of graphene in class. In this problem, we look at a closely related material, where we replace the two carbon-atom basis of graphene with Boron and Nitrogen - to form a monolayer 2D crystal hexagonal Boron Nitride. Figure 2 shows the crystal, the primitive lattice vectors $\mathbf{a_1}$, $\mathbf{a_2}$, the distance between the B and N atoms is a_0 , and three related vectors $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$ are shown to assist you in this problem.

- (a) Write $\mathbf{a_1}$, $\mathbf{a_2}$ in terms of a_0 , and $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$ also in terms of a_0 . Find the reciprocal lattice vectors, and sketch the 1st Brillouin Zone.
 - (b) Qualitatively outline a process to find the tight-binding bandstructure of BN.
- (c) Of most interest for electronic and photonic properties are the bands formed by the out-of-plane p_z orbitals attached to each atom in the crystal. Sketch the orbitals and put signs on the lobes.
- (d) In graphene, these orbitals had same energies because all atoms were carbon. Let E_B be the energy of the p_z orbitals on the B sites, and E_N the energy of the p_z orbitals on the N sites. Let $V_{pp\pi}$ be the relevant overlap integral. Write down the tight-binding Hamiltonian for the bands formed by these p_z orbitals.
- (e) Find the energy bandgaps at the Γ point $(k_x = 0, k_y = 0)$, and at the vertices of the 1st BZ edge you sketched in part (a) of this problem.

3 Defect States in the Kronig-Penney Model [20 points]

We have discussed about the Kronig-Penney crystal model, and how defect states cause energy eigenvalues to split off from band-edges. For simplicity, we are going to solve this problem for k = 0 (the Γ point), and neglect all other k-points. Let us say that a perfect Kronig-Penney crystal of lattice constant a has N eigenvalues E_i with i = 1...N in a band at Γ . All other energy bands are very far in energy, and may be neglected. We have shown in class that if at one of the lattice sites, a defect changes the delta function strength by U_0 , then the new exact eigenvalues are given by solving

$$\frac{a}{U_0} = \text{Trace}[G(E)] = \sum_{i=1}^{N} \frac{1}{E - E_i},$$
 (2)

for allowed energies E, where U_0 is in eV-nm units, G(E) is the Green's function, the Trace of which is just the inverse sum on the right.

- (a) Argue why the equation above is correct if no defect is present.
- (b) Show graphically that if the eigenvalues themselves are widely separated, and $U_0 >> 0$, the eigenvalue that splits off the band due to the defect has energy $E_s^+ \approx E_N + \frac{U_0}{a}$.
- (c) Using your graph of part (b), show that if $U_0 \ll 0$, the eigenvalue that splits off the band due to the defect has energy $E_s^- \approx E_1 + \frac{U_0}{a}$.