
ECE 4070/MSE 5470
Physics of Semiconductors and Nanostructures

Exam 2, April 14, 2015
Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University

Instructions:

• There are THREE problems in this exam

• Every problem must be done in the blue booklet

• Only work done on the blue exam booklets will be graded. Do not attach your own
sheets to the exam booklets under any circumstances

• To get partial credit you must show all the relevant work

• Correct answers with wrong reasoning will not get points

• All questions do not carry equal points

• All questions do not have the same level of difficulty, use your time judiciously

DO NOT WRITE IN THIS SPACE
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1 Bandstructure of a 2D Semiconductor [40 points]

As shown in Figure 1, in the k-space of a 2D square lattice (lattice constant: a), denote
the points Γ : (kx, ky)=(0,0), X : (π/a, 0), and W : (π/a, π/a). The nearly free electron
bandstructure assumes no crystal potential, but a lattice.

(a) Draw the nearly free-electron bandstructure from the BZ center in the Γ −W direc-
tion slightly beyond the BZ edge. Identify the magnitude of k at the BZ edge, and express
the energy in terms of F = h̄2π2/ma2. Include reciprocal lattice vectors smaller than 2×2π/a.

(b) Label each band with the reciprocal lattice vector it is associated with. Clearly point
out the degeneracies of each band.

Consider now that the basis atoms produce a 2-D potential

V (x, y) = −4V0 cos(
2πx

a
) cos(

2πy

a
). (1)

(c) Find the bandgap at the W point due to this potential. Be judicious in choosing the
basis set.
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Figure 1: 2D reciprocal lattice.

(d) The lowest energy at the Γ : (kx, ky) = (0, 0) point before the potential was turned
on was EΓ(0, 0) = 0 eV. Give an estimate of the change in this energy eigenvalue due to the
periodic potential.
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2 2-Dimensional Boron Nitride [40 points]
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Figure 2: The Boron Nitride 2D crystal.

You have extensively solved the bandstructure details of graphene in class. In this prob-
lem, we look at a closely related material, where we replace the two carbon-atom basis of
graphene with Boron and Nitrogen - to form a monolayer 2D crystal hexagonal Boron Ni-
tride. Figure 2 shows the crystal, the primitive lattice vectors a1, a2, the distance between
the B and N atoms is a0, and three related vectors n1,n2,n3 are shown to assist you in this
problem.

(a) Write a1, a2 in terms of a0, and n1,n2,n3 also in terms of a0. Find the reciprocal
lattice vectors, and sketch the 1st Brillouin Zone.

(b) Qualitatively outline a process to find the tight-binding bandstructure of BN.

(c) Of most interest for electronic and photonic properties are the bands formed by the
out-of-plane pz orbitals attached to each atom in the crystal. Sketch the orbitals and put
signs on the lobes.

(d) In graphene, these orbitals had same energies because all atoms were carbon. Let EB
be the energy of the pz orbitals on the B sites, and EN the energy of the pz orbitals on the N
sites. Let Vppπ be the relevant overlap integral. Write down the tight-binding Hamiltonian
for the bands formed by these pz orbitals.

(e) Find the energy bandgaps at the Γ− point (kx = 0, ky = 0), and at the vertices of
the 1st BZ edge you sketched in part (a) of this problem.
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3 Defect States in the Kronig-Penney Model [20 points]

We have discussed about the Kronig-Penney crystal model, and how defect states cause
energy eigenvalues to split off from band-edges. For simplicity, we are going to solve this
problem for k = 0 (the Γ point), and neglect all other k−points. Let us say that a perfect
Kronig-Penney crystal of lattice constant a has N eigenvalues Ei with i = 1...N in a band
at Γ. All other energy bands are very far in energy, and may be neglected. We have shown
in class that if at one of the lattice sites, a defect changes the delta function strength by U0,
then the new exact eigenvalues are given by solving

a

U0

= Trace[G(E)] =
N∑
i=1

1

E − Ei
, (2)

for allowed energies E, where U0 is in eV-nm units, G(E) is the Green’s function, the
Trace of which is just the inverse sum on the right.

(a) Argue why the equation above is correct if no defect is present.

(b) Show graphically that if the eigenvalues themselves are widely separated, and U0 >> 0,
the eigenvalue that splits off the band due to the defect has energy E+

s ≈ EN + U0

a
.

(c) Using your graph of part (b), show that if U0 << 0, the eigenvalue that splits off the
band due to the defect has energy E−

s ≈ E1 + U0

a
.
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