
ECE 4070/MSE 5470
Physics of Semiconductors and Nanostructures

Exam 1, February 24, 2015
Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University

Instructions:

• There are THREE problems in this exam

• Every problem must be done in the blue booklet

• Only work done on the blue exam booklets will be graded. Do not attach your own
sheets to the exam booklets under any circumstances

• To get partial credit you must show all the relevant work

• Correct answers with wrong reasoning will not get points

• All questions do not carry equal points

• All questions do not have the same level of difficulty, use your time judiciously

DO NOT WRITE IN THIS SPACE
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1 Quantum-Mechanics Recap [40 points]

We derived in class that the allowed wavefunctions representing an electron on a circu-
lar ring of circumference L is ψn(x) = 1√

L
eiknx, where kn = 2π

L
n are quantized because

n = 0,±1,±2, .... The angular momentum of a particle is defined as L = r × p, where r is
the ‘radius’ of the circle, and p is the linear momentum.

(a) Show that the angular momentum of an electron in state ψn(x) is Ln = nh̄, where
h̄ = h

2π
is the ‘reduced’ Planck’s constant. This implies that the angular momentum is quan-

tized to values 0,±h̄,±2h̄, .... Compare the quantized angular momentum L1 for n = +1
with the classical angular momentum Lcl of a mass m = 1 kg being spun by a string of
length R = 1 m with tangential velocity v = 1 m/s to appreciate how ‘nano’ is the quantum
of angular momentum.

(b) By balancing the classical centrifugal force and the electromagnetic Lorentz force,
show that for an electron to be in the quantum state ψn(x) on the ring, we need a magnetic
field Bn such that the magnetic flux is Φn = Bn ·A = n× h

2e
. Here A is the area of the ring,

e is the electron charge and h = 2πh̄. Φ0 = h
2e

is known as the quantum of magnetic flux,
and has been measured experimentally in nanostructured rings.

(c) Consider the quantum state obtained by the superposition ψ(x) = a[ψn=1(x) +
ψn=−1(x)] from the eigenstates of the electron on the ring. Normalize the state to find

the constant a. You may need the result
∫ L

0
cos2 (2π

L
x)dx = L

2
. Does this superposition state

have a definite momentum?

(d) We derived that the quantum expression for current flux is j = 1
2m

(ψ?p̂ψ − ψp̂ψ?),
where p̂ = −ih̄∇ is the momentum operator, which takes the form p̂x = −ih̄ ∂

∂x
for the parti-

cle on the ring. Show that even though the states ψn=1(x) and ψn=−1(x) carry net currents,
their superposition state of part (c) does not. Explain.
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2 Density of States, Fermi-Dirac distribution [30 points]

The electrons in the conduction band of graphene are free to move in 2-dimensions, forming
a 2-dimensional electron gas (2DEG). The energy-momentum dispersion relationship for the
2DEG electrons in graphene is E(kx, ky) = h̄vF

√
k2
x + k2

y, where vF is a parameter with
dimensions of velocity.

(a) Make a sketch of the energy as a function of the (kx, ky) points in the 2D k-space
plane, and show that the dispersion results in a conical shape.

(b) Show that the density of states for these electrons is g(E) = gsgv
2π(h̄vF )2

|E|, where gs = 2

is the spin degeneracy of each (kx, ky) state, and gv is the number of cones in the energy
dispersion. For graphene, gv = 2.

(c) Show that at thermal equilibrium, when the Fermi level is at Ef = 0, the number of
conduction electrons per unit area in 2D graphene is ni = π

6
( kT
h̄vF

)2. You may need the result∫∞
0
dE E

1+exp (E
β

)
= π2β2

12
.
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3 Wigner-Seitz Cells and Reciprocal Lattice [30 points]

Figure 1: Atomic arrangement of a fictitious 2-dimensional crystal

Figure 1 shows the arrangement of atoms of a fictitious 2-dimensional crystal. All circles
(filled and empty) represent the same atom.

(a) Using the filled ‘atom’ shown in black as the origin of the lattice, indicate the primi-
tive translation vectors of this lattice. (There are several possible choices; use the simplest
one, and explain.) How many atoms are there per lattice point?

(b) Determine the reciprocal lattice vectors corresponding to this lattice, and sketch the
reciprocal lattice as accurately as you can. Use the grid lines shown as an unit of measure.

(c) Construct and show the ’Wigner-Seitz cell’, or equivalently, the Brillouin zone clearly
in the reciprocal lattice plot.
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