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About the class

ECE 4070/MSE 5470: Physics of Semiconductors and Nanostructures
Instructor: Prof. Debdeep Jena (ECE & MSE)
Instructor’s research area: Semiconductor Nano Electronic and Photonic Devices

Why is this course important?

- What lies ‘under the hood’ of cell phones, laptops, robotic controls, space exploration,
modern cryptography, and the energy economy?

- What latest discoveries in these areas will transform the way things will be when you are
in your mid-life?

- Google (2000), Facebook (2004), iPhone (2007) ... all made possible by semiconductor
nanostructures — by understanding and controlling the behavior of electrons, photons,
phonons, and fundamental physical phenomena in them.

- This is a rare area where you can earn Mega Ss domg fundamental science — e.g. the 2014
physics Nobel laureate Prof. Nakamura is a multir #£_3 ire and has a startup company on
quantum-well LEDs. "7, st

- In this class | will teach you how this is done —and enable you to lead your generation!
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About the class

ECE 4070/MSE 5470: Physics of Semiconductors and Nanostructures
Instructor: Prof. Debdeep Jena (ECE & MSE)

Instructor’s research area: Semiconductor Nano Electronic and Photonic Devices
We will use Prof. Farhan Rana’s notes
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About the class

Electronic switches today

Earlier this week (August 11t") Intel announced...

22 nm Process 14 nm Process

Metal Gate Metal Gate

22 nm 15t Generation 14 nm 2" Generation
Tri-gate Transistor Tri-gate Transistor

22 nm Process 14 nm Process
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22 nm 15t Generation 14 nm 2"d Generation
Tri-gate Transistor Tri-gate Transistor

80 nm minimum pitch
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Maxwell’s equations: Classical EMag

V-D = p, Gauss’s law
V-B = 0, Gauss’s law
VXE = —%—?, Faraday’s law
VxH = J+ %—?, Ampere’s law.

V-E>0 V-E<O0 VxH=1J
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Maxwell’s equations: Classical EMag

(Vz—c%g—;)E = 0, Wave Equations
(V2-L2)B = 0.

|+ + +++

> H NS

)\ = @ = C
Wo
— ~ Far Field

FIGURE 20.2: Antenna producing an electromagnetic wave.
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Maxwell’s equations: Birth of Light

AL (VQ—C%(%)E = 0, Wave Equations
A (V2-LI29)B = o

E = Eoei(kzz_wt)j}

S — E_§€2i(kzz—wt)2
Y m >

B = E i(k:zz—wt)g

B — plane

FIGURE 20.3: Electromagnetic wave.
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Maxwell’s equations: Response of solids

M = Xm,H
B = po(H+ x:nH) = po(1 + xp)H = pH
W_/

M
FIGURE 20.4: Dielectric and Magnetic materials. Orientation of electric and magnetic
dipoles by external fields, leading to electric and magnetic susceptibilities.
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Time-evolution of a classical ‘charged’ object

Lorentz

F =¢(E+ v x B)

Path is deterministic Path is deterministic
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Experiment: Light is a wave... or a particle?
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Experiment: Light is a wave... or a particle?

\ 1 Scy-een with aw Planck’s hypothesis for photons to explain expts:
WAVE El avrey /1( dehe dovs e
o P =
hofor : U .
T ~—> N a k = (2r/A)n, i the direction of propagation
one -
leaer H (\ w = clk| with ¢ the speed of light
Hhig!
dcﬁf ﬂ"]"’ et TS E = hw
<
Tune dsowHe k,u)a vioivy, s 6.74.'\.,
ik"‘W"b ! 'l' b
_/ Qa
=~ !
o ho oA
~/J/-‘ @ M b Okl e dodechov
(220 v J:{C ‘7//“ cl I/U\ (,(A'Ckf !
Y PRRTICLE
Einstein. look downstairs! « The only way an object of mass m=0 can have momentum
_ — 2 is if its speed v=c, or the speed of light.
p ’m’U/ \/1 (U/ C) { A photon is exactly such an object. No mass, all energy,

and a finite momentum!
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An electron is a particle... or a wave?

“PARTICLE
3~ E <«:'
€ lehve w Y/)
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An electron is a particle... or a wave?

“PARTICLE '

- eohonn dodedor

T

Guowang U (Results from our lab!)

ALDALO,

Electron beam

....... [ I I

Fluorescent
screen

Substrate holder

Electron beam incident

Atomic structure of
on a crystal (RHEED)

a crystal (grating!)

i
=~ B —
Clechvow Y/)

1\

—~ (s

de Broglie: | A = 27h/|p|

For both waves,
and particles!

-
(@) (b)

Figure 2.7: RHEED patterns of (a) smooth surface and (b) crystalline but
rough of GaN surface.

Electron diffraction
pattern on a screen
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Wave and particle - need for a wavefunction

Quantum states (electrons, photons) behave as waves AND particles. How do we describe them quantitatively?

'ﬁ)(ed,A =t
F\.X(J/A‘P:D :L_E‘/‘)—(_ ’J
7 : 7
% ‘“",/Aw(é-x)”"”“’*““ tely) $>Ae *

AT T e

e - ) K\A\’szfm .'

RATAVIVAVAYA Ve D ——l

— X = —

Cd

SPX
hene =>AX'¢”"/<APAX#-§, jkn,m‘*b,(ex&mJ elmk =(7L
h.dl,‘u! " {oscill e itk x, et [¢)'= Longtand

» The state of the free quantum particle cannot be %\j 006' Camdidale ﬁ‘/ “ w‘“"{m
represented by independent ‘numbers’ (x, p,). de reo l,e d- ¢ DX APZ.‘E .

» We need a function whose amplitude oscillates in z
space, yet its magnitude never goes to zero.

« The complex exponential e** satisfies these

requirements, and respects the uncertainty relation.
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Constructing wavefunctions: superposition

By linear superposition of complex exponentials, we can create ‘particle’ like or ‘wave’ like states as desired for the problem.

%o

- " X |
Yw = ZAPJ%Z} -

ox lﬂp,\sl ll ‘ | o

Z- > l’, &' ” p“" P

Ax |
R A" -
g |
A e%nuj\uﬂvj\uhvnuﬂl) >
WX - The best e o do o loccde a
n;:(e/\vr‘\?‘;/h \_//'7\7~ X “}oub’zl»"g & 'gmbckd
by +
A}o(e % X > r\_l, (x) = 2 A C"’L 1S aw\d/owca(
Y »2 “U@efmd‘m\p .

» Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the
correct physics of the problem. Note the corresponding reciprocal space weight distribution.
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Identity crisis: Indistinguishable particles

s “lm’vf\d% 4otal mensy E, 4+ B, time eVOleoy\,,veL (9%5947
S:hbb ‘uk? u/-'E\.y 5 LPN;P,"‘PL
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= % B Msmdwwu»
"o [idistinguishable|S | <o, shoudd NoT

Y(z1,T2) = Ya(T1)¥p(22)

L }

This is OK for distinguishable particles such as a proton and an electron.
But NOT OK for indistinguishable particles such as two electrons!
For example, |psi|? should not change on swapping X, €= X,.

How must we then write the wavefunction for two identical particles?

amj;, +Lw£mvdotao]
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Resolution of identity crisis: Bosons & Fermions

This is necessary for indistinguishable particles.

P(z3,21) = P(z1,22) — [¢(z2,21)|* = [¢(21, 22) [

l Y(z1, 22)

= Ya(z1)p(72) l

Y(x1,22) = VYa(21)Vp(T2) [Hba(22) Y (21)

Y(w1,72) = Ya(T1)Vp(T2)|—=[Ya(T2) Vs (1)

Y(xo, 1) =+ (21, 22)

Y(z2,21) =|—p (21, 22),

w(xlawl) — —|—’lp(.’,131,1131)

fBE(E) = 50—

The Bose-Einstein distribution!
Particles are called Bosons.
Examples: Photons, Phonons

Y(z1,21) = —Y(x1,21) = Y(z1,21) = 0.

The Pauli exclusion principle!

frp(E) =

"M E-Ep
1E|e T

The Fermi-Dirac distribution!
Particles are called Fermions.
Examples: Electrons, Protons

« Note: Why not  (za,21) = €®(z1,22) ? Majorana particles = later...
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Math preliminaries before the physics...

Wavefunction ties x and p together.

¢p (CE ) = Ae'P z/h > Must respect the uncertainty principle.

A . Obervables are mathematical operators.

P = _Zha/ Ox ’ They act on the wavefunction to extract info.
n The states of definite value of an operator are
p¢p($ ) — (hk )wp (:L' ) ’ called the eigenstates of that operator.

~ ) Unlike classical mechanics, some operators
IPp — PT = [*’E ap] = 1h. > fail to commute!

3

Non-commuting actions...
Ref: Gamow, Thirty years that shook physics.

g-@ g(})nz g);CHJ:/I;GE RELATION®
- — i
l
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Definite momentum, and definite location states

A state of definite location x,,:

Must be an eigenstate of operator x, with eigenvalue x,: g[ X=X, )
1V 6
ey (2) = T0Vao (L) == |V, (@) = 0(2 — 20) 0 -
A - X
Definite in real space 2 spread out in momentum Xo 2.
IREA A
~<& 3 >t
i
A state of definite momentum p: b qRe(hp) Ao
Must be an eigenstate of operator —ih(d/dx), with eigenvalue p: 7\ VAN /\ =

AR AR

:Aé{% :be,{—v’n}fe
. L d "J"(x) ( mwwl’um)
paﬂbp(x) — pw@bp(x) — —Zhﬂ%(ﬂ?) — pwwp(x) W () :k‘g[,,/,/,) ™
y Px X ; =P
Yp(z) = Ae' 7 = Aeh=® P -

Definite in momentum > spread out in real space

States of definite location and definite momentum are unique in quantum mechanics.
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States of definite energy: Schrodinger equation

States of definite energy are not unique, because they depend on the ‘potential’ V(x)

p2

In classical mechanics, the energy of a particle is:  |E . = 2— + V(’r)
m

In quantum mechanics, r & p cannot be simultaneously determined because [x,p]=ih.
Thus, we must solve an equation to obtain the energy.

h2 82
 2m Oz2

| +V(2)[Ye(r) = EYp(z).

The Schrodinger equation gives us the prescription
to find the states of definite energy.

~0
b p
Schrodinger [% _|_ V(T)] ’¢> — E‘¢>
A
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Time-evolution of states: Time-dep. Schr. Eqn.

AxzAp > h/2

Schrodinger

L Oly) P
> |th = Vir,t
ih= > = [+ V(r,t)]lY)
Path is deterministic Path respects uncertainty relation
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States of definite energy are stationary states

L 0¥(z,t) h? 52 ,
A — -~ 4 V(2)|¥(z,t). d(A LB
th—or— = g ag + V@U@ HA) _ L4 i)
~~ dt h
v H Ehrenfrest’s theorem for the

U ( x, t) =X (t) Qp ( g;) Try set of solutions that allow fime evolution of G

the separation of x and t.

e
X)) _ Hy(@) _ o

x(t) (=)

h 4
Up(w,t) = Yp(@)e " vt Y| [Wp(a, )2 = [¥u()?

B(z,t) = ¢Yu(z)e Ve, b)) = [Ye(z)]
This means that the amplitude of states of But observables relate to the probability,
definite energy oscillate with time with which is time independent 2 this is why
frequency E/h they care called stationary states.

« States of definite energy (energy eigenvalues of the time-independent Schrodinger equation) are
states of definite energy.

» Their probability density does not change with time 2 they are called stationary states.

» This is analogous to the 15t law of classical mechanics: quantum states of definite energy will
continue to remain in those states unless perturbed by a potential.
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The Postulates of Quantum Mechanics

The five basic postulates of quantum mechanics are:

(1) The state of any physical system at a given time ¢ is completely represented by a
state vector |U) = |¥(r,t)).

(2) For an observervable quantity A there is an operator A. The eigenvalues of A are

the possible results of the measurements of A, that is, denoting the eigenvalues of
A by a,

Ala) = ala), (2.23)

and the probability of a measurement of A yielding the value a at time ¢ is
|{(a|¥(t))|2. The a’s, which are the results of possible measurements, must be

real. This implies that A must be a linear hermitian operator.

(3) A measurement of |¥) that leads to an eigenvalue a; leads the quantum mechanical
system to collapse into the eigenstate |¥;), which is the eigenstate corresponding

to the eigenvalue a;. So a measurement affects the state of the quantum system.

(4) There exists a hermitian operator H such that

@)

o = H|U(r,t)). (2.24)

(5) Two classical dynamical variables a,b, which are conjugate in the Hamiltonian

sense, are represented by Schrodinger operators A,]:’:, which obey

A;B; — BjA; = ihd;;. (2.25)
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The free electron

Free Electron

h?  d?

2Me

—5b(@) = Bp(a)

¢(x) — A67;Ic:c+Be—z'km

[2meF

E

27T

R2k2
- 2Mme

A

P (z) = i ()

V(x) = 0

Allowed momenta are continuous

Energy spectrum is continuous

= —ih(ikAe*® — ikBe~*%) = hk(Ae™*® — Be™%*®) £ pij(x)

but... for ¥_ (z) = Aetk=,

Not a momentum eigenstate

DV (x) = —ih%zﬁ_,(m) = —ih(ikAe™®) = hky_, (z) = py_, (z) momentum eigenstate

Debdeep Jena (djena@cornell.edu), Cornell University




Restrict particle in space = Quantization

If we restrict the ‘particle’ in one space, it quantizes the allowed ‘vectors’ in the reciprocal space.

Yp(x + L) = p(z)| D [e*L =1 =€, and k, = n x (2r/L). Here n = 0,£1,+£2, ...

: ’ ﬂkn(x): J e'bkhx )()‘SZl_r.n n= a/i))j;'z_ - ——
Parficle n  RINK N \[B | L
Call +his St vk’ [N .
The stafe fumdbons form a'sed’
L { ¢ o0 /\-k_a(X), -'-"IL(X),'%(X}), ‘LPD(X)J 1:' I(X), _LI;L(x)j-"
Note:  §u¥eow udy = S, ! = Sumckions Gne DETHD 6DNAL)
\\ l

L\ wy = Sy & Vedwit ane forpndic e

The set of wave functions [...10_s(x), ¥_1(x),Yo(x), Y1 (x),¥2(x),...] = [¢n(z)] are spe-
cial. We note that fOL dzp, (2)n(x) = Opm, i.e., the functions are orthogonal. Any

general wavefunction representing the particle ¢)(x) can be expressed as a linear com-
bination of this set. This is the principle of superposition, and a basic mathematical
result from Fourier theory. Thus the quantum mechanical state of a particle may be
represented as ¥(z) = >, Apn(z). Clearly, A, = [ dzy}(z)y(z). Every wavefunc-

tion constructed in this fashion represents a permitted state of the particle, as long as
don |Ap|? = 1.

» The set of states {...|-1>,|0>,|+1>,...} is an orthogonal basis for constructing the wavefunction.
* One can draw an analogy to vector spaces, and use the tools of linear algebra on states.
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The particle on a ring

3.4 Not so free: particle in a ring

U(z + L) = ¢(z) - FETL) = gkz _y kL — 1 kI = onr

Momentum is quantized kn==—nlln=0,+1,+£2,...

Y(n,z) = Ae*ne,
Particle on a ring

|| Y(n,z) = %e

iknx

L
/ dalp(n,z)2=1— AP xL=1— A =
0

sl

Note that n = 0 is allowed as a result of the periodic boundary condition.

Energy spectrum is discrete,
Zero energy is allowed

L
2m. L2 2m. L2

E —
" 2me

: : L 2rh L
Angular momentum is quantized |L =p xr = fikn X o— = —/—n X -— =nh
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The particle in a box

V(z)=0, 0<z<L

V(z) =00, 2<0,z>L

The major change is that ¢ (z) = 0 in regions where V(z) = oo.
N\
V(z) =00 V(z) =00
N p(z) = A + Be™ ™ — 4(0) = 0 = A+ B,y(L) = Ae™ + Be™*L = 0
0 g
V(z)=0 )
== —e 2 — 1 5 9kL = 2nm | ko = n% n—=41,42 +3, ...
Particle in a box

Note that n = 0 is not allowed, because then ¥ (z) = 0 and there is no particle

wavefunction after normalization over the length L is

b(n,z) = \/% sin(n%x) = \/% sin(knz)

Energy spectrum is discrete,
zero energy NOT allowed!

2 (7Th)2 .2 h?
En=n 2 =" 8m.I?
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The harmonic oscillator

Harmonic Oscillator

The functions H, are the Hermite polynomials,

Hy(x) = (1) ().

'The corresponding energy levels are

1
E, = hw (n. - E)

Energy levels equally spaced
Zero energy NOT allowed!

1 T 1’34 mc...lr2 e
v(x) = - € IR -Hl( —I), n==0,1,2,....
¥n(@) V2" n! ( ?Th) ’ h

Can solve the
problem using raising
and lowering
operators
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The harmonic oscillator

The creation/annihilation operator
formalism will be key in the ‘second
quantization’ methods to be
developed later in the course!

_ mw(A N i A) Annihilation operator
a = 2h x mwp a,|n> — \/ﬁ|n — 1>

. Creation operator
F= 2% — L p)
a 2% ol aT|n> =+vn+1n+1)

A

h=a'a

H = hw(a'

+1)
a —_
2
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The hydrogen atom

Energy levels [ edit source | edit beta ]

The energy levels of hydrogen, including fine structure, are given by the Sommerfeld expression:
2, —1/2

E;n, = —mec? 1+ . -1

MeClar o? n 3
T T 9,2 1+ O S T N
2n n“\j+5 4

where a is the fine-structure constant and j is the "total angular momentum" quantum number, which is equal to | Z + 1/2| depending on the
direction of the electron spin. The factor in square brackets in the last expression is nearly one; the extra term arises from relativistic effects
(for details, see #Features going beyond the Schrédinger solution).

Wavefunction [ edit source | edit beta ]

The value The normalized position wavefunctions, given in spherical coordinates are:
2.2 %7
Mec oy 0.51 MeV
o = o q3 —136eV Dnem(r, 0, 0) = ( : )B(H _—— 1)!e—Pf"2p"‘L2"‘+1 (P)Y;™(0, )
- ” [ ] L] ']V - g 'n—F— 4 ) lf'
e nag/ 2n(n+¢)! n—t-1 .
where:
A V(r) o
ndg
y is the Bohr radius,
L?zé——*_ll—l (P) is a generalized Laguerre polynomial of degree n— Z - 1, and

}f;m(ﬂq 9;\) is a spherical harmonic function of degree #Z and order m. Note that the

generalized Laguerre polynomials are defined differently by different authors. The usage here
is consistent with the definitions used by Messiah,®! and Mathematica.l®! In other places, the
Laguerre polynomial includes a factor of (n, + ¢ ) !,[101 or the generalized Laguerre

polynomial appearing in the hydrogen wave function is Li‘_{'_"{l (p) instead. (11

The quantum numbers can take the following values:

n=123,...
Hydrogen Atom fnz_o, lp. 2,.. = 1
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Quantum states are vectors in the Hilbert space

A“B’ wmfumdw'm WPxo = g A B l (s om elhpwed ete.

—= X AP
w10 = Za W)

= g A N2

{ S22 10,080, 139 1D
Lrwoow “beais *)
m“’l*o(jukJ X \3 ‘X0 - ; MLOJM“ (:\‘Z;'i- {I[2)=--=D

3/41"\.%(0'7\4}’ WJ‘Q— > v e. /lh'l> Iy\)jl;\.u) .,--3

I"}> 1§ Gm £J>S+fad‘ \!S"'Q‘k VU"UY" | 1S onn N«JAMM(W\N—GQ?-( qp4 @
o1t lwes in fle Hilledt S;JaC( Cov o rH | bert SE"C&_\

Y' ax“'ag"}“' }
?‘i")g/§?}
(.,w.a»la\'e, ‘besis”

/‘/\

It is useful here to draw an analogy to the decomposition of a vector into specific co-

ordinates. The ‘hybrid’ state function 1(x) is pictured as a vector |1) in an abstract | > Z A |n> < | > 5
== mmn) =
space. The definite momentum wavefunctions v, (z) are pictured as the ‘coordinate’ mn

vectors |n) in that space of vectors. This set of vectors is called the basis. Since there _ < n| ¢>
n —

are an infinite set of integers n = 0,£1,42, ..., the vector space is infinite dimensional.

It is called the Hilbert space. One may then consider the coefficients A, as the length

of the projections of the state on the basis states. The abstract picture allows great ‘IP) — En (Tbl’lb) |'I'L> - En |n> <TL‘¢)
economy of expression by writing |¢) = ", An|n). The orthogonality of the basis states ) Z |TL> (’I’L‘ —
n
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By projecting states, get various representations

' \ N —

(P=%k)
Real §
Vedwl:‘ M:L'Z“f‘\f?&'m.
F=ved — |Gy
— Pes) < QMMWLM'\A;}AQ_
W= Za W o A= dn|yd
" 7
> ) - zm/ iy («]d) = ¥(a)
— - 1)
R R (kl) = (k)
[Zai=1] Somiler, [0 oex =4 ol — £
“DuAey })Wdl«.d‘ OO\ L v \/%

(althr) = / s / dais (2 (x)

— OO0 — 00

* We can think of the states as vectors.
» The ‘inner product’is a complex number generated by projection to the appropriate space.
» This number is the wavefunction — it can be found in real space, momentum space, efc...
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Electron in a periodic potential (no analytic soln!)

L ATA |
VBVRY

FIGURE 13.1: A periodic potential W (z) = —2Ug cos(Gz) acts as a perturbation to
the free electron.

We will first attack this problem
using perturbation theory!

energy band
bandgap

band <——z— band

A

FIGURE 13.2: Bandgap opening in the energy spectrum of a free electron upon per-
turbation by a periodic potential.
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