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Instructor’s*research*area:*Semiconductor*Nano*Electronic*and*Photonic*Devices*

*

Why*is*this*course*important?*

*

F*What*lies*‘under*the*hood’*of*cell*phones,*laptops,*roboIc*controls,*space*exploraIon,*

modern*cryptography,*and*the*energy*economy?*

*

F*What*latest*discoveries*in*these*areas*will*transform*the*way*things*will*be*when*you*are*

in*your*midFlife?*

*

F*Google*(2000),*Facebook (2004), iPhone*(2007)*…*all*made*possible*by*semiconductor*

nanostructures*–*by*understanding*and*controlling*the*behavior*of*electrons,*photons,*

phonons,*and*fundamental*physical*phenomena*in*them.**

*

F*This*is*a*rare*area*where*you*can*earn*Mega*$s*doing*fundamental*science*–*e.g.*the*2014*

physics*Nobel*laureate*Prof.*Nakamura*is*a*mulImillionaire*and*has*a*startup*company*on*

quantumFwell*LEDs.**

F*In*this*class*I*will*teach*you*how*this*is*done*–*and*enable*you*to*lead*your*generaIon!*

+*$$!*

About the class 
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ECE#4070/MSE#5470:#Physics#of#Semiconductors#and#Nanostructures#
Instructor:*Prof.*Debdeep*Jena*(ECE*&*MSE)*

Instructor’s*research*area:*Semiconductor*Nano*Electronic*and*Photonic*Devices*

We*will*use*Prof.*Farhan*Rana’s*notes*

*

About the class 
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About the class 
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Maxwell’s equations: Classical EMag 
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Maxwell’s equations: Classical EMag 
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Maxwell’s equations: Birth of Light 
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Maxwell’s equations: Response of solids 
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Time-evolution of a classical ‘charged’ object 

Newton 

F = �rV (r) =
dp

dt

Path is deterministic 

Lorentz 

Path is deterministic 
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Experiment: Light is a wave… or a particle? 
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Experiment: Light is a wave… or a particle? 

Planck’s hypothesis for photons to explain expts: 

Einstein: look downstairs! •  The only way an object of mass m=0 can have momentum 
is if its speed v=c, or the speed of light. 

•  A photon is exactly such an object.  No mass, all energy, 
and a finite momentum! 
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An electron is a particle… or a wave? 
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An electron is a particle… or a wave? 

Electron beam incident 
on a crystal (RHEED) 

Atomic structure of 
a crystal (grating!) 

Electron diffraction 
pattern on a screen 

Guowang Li (Results from our lab!) 

de Broglie: 

For both waves, 
and particles! 
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Wave and particle ! need for a wavefunction 

•  The state of the free quantum particle cannot be 
represented by independent ‘numbers’ (x, px). 

•  We need a function whose amplitude oscillates in 
space, yet its magnitude never goes to zero. 

•  The complex exponential eikx satisfies these 
requirements, and respects the uncertainty relation. 

Quantum states (electrons, photons) behave as waves AND particles.  How do we describe them quantitatively? 
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Constructing wavefunctions: superposition 

•  Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the 
correct physics of the problem.  Note the corresponding reciprocal space weight distribution. 

By linear superposition of complex exponentials, we can create ‘particle’ like or ‘wave’ like states as desired for the problem. 
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Identity crisis: Indistinguishable particles 

This is OK for distinguishable particles such as a proton and an electron. 
But NOT OK for indistinguishable particles such as two electrons! 
For example, |psi|2 should not change on swapping x1"! x2. 
How must we then write the wavefunction for two identical particles? 
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•  Note: Why not                                           ? Majorana particles ! later… 

Resolution of identity crisis: Bosons & Fermions 

This is necessary for indistinguishable particles. 

The Pauli exclusion principle! 

The Fermi-Dirac distribution! 
Particles are called Fermions. 
Examples: Electrons, Protons 

The Bose-Einstein distribution! 
Particles are called Bosons. 
Examples: Photons, Phonons Fermi Bose 
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Math preliminaries before the physics… 
Wavefunction ties x and p together. 
Must respect the uncertainty principle. 

Obervables are mathematical operators. 
They act on the wavefunction to extract info. 

The states of definite value of an operator are 
called the eigenstates of that operator. 

Unlike classical mechanics, some operators 
fail to commute! 

Non-commuting actions… 
Ref: Gamow, Thirty years that shook physics. 
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Definite momentum, and definite location states 

x 

x0(x) = x0 x0(x) =)  

x0(x) = �(x� x0)

A state of definite location x0: 
Must be an eigenstate of operator x, with eigenvalue x0: 

A state of definite momentum p: 
Must be an eigenstate of operator –ih(d/dx), with eigenvalue p: 

Definite in momentum ! spread out in real space 

Definite in real space ! spread out in momentum 
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States of definite location and definite momentum are unique in quantum mechanics. 
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States of definite energy: Schrodinger equation 
States of definite energy are not unique, because they depend on the ‘potential’ V(x) 

The Schrodinger equation gives us the prescription 
to find the states of definite energy. 

[
p̂2

2m
+ V (r)

| {z }
Ĥ

]| i = E| iSchrodinger 

In classical mechanics, the energy of a particle is:  Ecl =
p2

2m
+ V (r)

In quantum mechanics, r & p cannot be simultaneously determined because [x,p]=ih.   
Thus, we must solve an equation to obtain the energy. 
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Time-evolution of states: Time-dep. Schr. Eqn. 

Newton Schrodinger 

F = �rV (r) =
dp

dt

Path is deterministic Path respects uncertainty relation 
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States of definite energy are stationary states 

•  States of definite energy (energy eigenvalues of the time-independent Schrodinger equation) are 
states of definite energy. 

•  Their probability density does not change with time ! they are called stationary states. 
•  This is analogous to the 1st law of classical mechanics: quantum states of definite energy will 

continue to remain in those states unless perturbed by a potential. 

Try set of solutions that allow 
the separation of x and t. 

This means that the amplitude of states of 
definite energy oscillate with time with 
frequency E/h 

But observables relate to the probability, 
which is time independent ! this is why 
they care called stationary states. 

Ehrenfrest’s theorem for the 
time evolution of an operator. 
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The Postulates of Quantum Mechanics 
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The free electron 

Not a momentum eigenstate 

momentum eigenstate 

Energy spectrum is continuous 

Allowed momenta are continuous 

V(x) = 0 
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Restrict particle in space ! Quantization 

•  The set of states {...|-1>,|0>,|+1>,…} is an orthogonal basis for constructing the wavefunction. 
•  One can draw an analogy to vector spaces, and use the tools of linear algebra on states. 

If we restrict the ‘particle’ in one space, it quantizes the allowed ‘vectors’ in the reciprocal space.  
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The particle on a ring 

Energy spectrum is discrete, 
Zero energy is allowed 

Momentum is quantized 

Angular momentum is quantized 
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The particle in a box 

Energy spectrum is discrete, 
zero energy NOT allowed! 
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The harmonic oscillator 

Energy levels equally spaced 
Zero energy NOT allowed! 

Can solve the 
problem using raising 
and lowering 
operators 
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The harmonic oscillator 

The creation/annihilation operator 
formalism will be key in the ‘second 
quantization’ methods to be 
developed later in the course! 

n̂ = a†a Ĥ = ~!(a†a+
1

2
)

Annihilation operator 

Creation operator 
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The hydrogen atom 
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Quantum states are vectors in the Hilbert space 
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By projecting states, get various representations 

•  We can think of the states as vectors.   
•  The ‘inner product’ is a complex number generated by projection to the appropriate space. 
•  This number is the wavefunction – it can be found in real space, momentum space, etc… 
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Electron in a periodic potential (no analytic soln!) 

We will first attack this problem 
using perturbation theory! 


