Physics of
 Semiconductors and Nanostructures

ECE 4070/MSE 5470
Spring, 2015

Debdeep Jena (djena@nd.edu)
ECE \& MSE, Cornell University

About the class

ECE 4070/MSE 5470: Physics of Semiconductors and Nanostructures

Instructor: Prof. Debdeep Jena (ECE \& MSE)
Instructor's research area: Semiconductor Nano Electronic and Photonic Devices

Why is this course important?

- What lies 'under the hood' of cell phones, laptops, robotic controls, space exploration, modern cryptography, and the energy economy?
- What latest discoveries in these areas will transform the way things will be when you are in your mid-life?
- Google (2000), Facebook (2004), iPhone (2007) ... all made possible by semiconductor nanostructures - by understanding and controlling the behavior of electrons, photons, phonons, and fundamental physical phenomena in them.
- This is a rare area where you can earn Mega \$s doing fundamental science - e.g. the 2014 physics Nobel laureate Prof. Nakamura is a multir quantum-well LEDs.
ire and has a startup company on + \$\$!
- In this class I will teach you how this is done - and enable you to lead your generation!

About the class

ECE 4070/MSE 5470: Physics of Semiconductors and Nanostructures

Instructor: Prof. Debdeep Jena (ECE \& MSE)
Instructor's research area: Semiconductor Nano Electronic and Photonic Devices We will use Prof. Farhan Rana's notes

About the class

Electronic switches today

Maxwell's equations: Classical EMag

$$
\begin{aligned}
\nabla \cdot \mathbf{D} & =\rho, & & \text { Gauss's law } \\
\nabla \cdot \mathbf{B} & =0, & & \text { Gauss's law } \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t}, & & \text { Faraday's law } \\
\nabla \times \mathbf{H} & =\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}, & & \text { Ampere's law. }
\end{aligned}
$$

$\nabla \cdot \mathbf{E}>0$

$\nabla \cdot \mathbf{E}<0$

$\nabla \times \mathbf{H}=\mathbf{J}$

Maxwell's equations: Classical EMag

Far Field

Figure 20.2: Antenna producing an electromagnetic wave.

Maxwell's equations: Birth of Light

Figure 20.3: Electromagnetic wave.

Maxwell's equations: Response of solids

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) .
$$

$$
\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E}
$$

$$
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}
$$

$$
\mathbf{B}=\mu_{0}\left(\mathbf{H}+\chi_{m} \mathbf{H}\right)=\mu_{0}(\underbrace{1+\chi_{m}}_{\mu_{r}}) \mathbf{H}=\mu \mathbf{H}
$$

Figure 20.4: Dielectric and Magnetic materials. Orientation of electric and magnetic dipoles by external fields, leading to electric and magnetic susceptibilities.

Time-evolution of a classical 'charged' object

Path is deterministic

Lorentz

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Path is deterministic

Experiment: Light is a wave... or a particle?

Experiment: Light is a wave... or a particle?

Einstein: look downstairs!

$$
p=m v / \sqrt{1-(v / c)^{2}}
$$

- The only way an object of mass $m=0$ can have momentum is if its speed $v=c$, or the speed of light.
- A photon is exactly such an object. No mass, all energy, and a finite momentum!

An electron is a particle... or a wave?

An electron is a particle... or a wave?

Wave and particle \rightarrow need for a wavefunction
Quantum states (electrons, photons) behave as waves AND particles. How do we describe them quantitatively?

Constructing wavefunctions: superposition
By linear superposition of complex exponentials, we can create 'particle 'like or 'wave'like states as desired for the problem.

The best we can do to locate a "particle" \Rightarrow a 'wave packet'.

$$
A_{3} \cdot\left(\frac{e^{i \beta_{3} x} / \hbar}{!} \lambda_{\lambda_{3}}+x\right.
$$

$$
\Rightarrow \psi(x)=\sum_{p} A_{p} e^{i \frac{p x}{\hbar}} \text { is an allowed }
$$

- Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the correct physics of the problem. Note the corresponding reciprocal space weight distribution.

Identity crisis: Indistinguishable particles
2 partides: total energy: $E_{1}+E_{2} \Rightarrow$ time evolution ~ $e^{i\left(E_{1}+E_{y}\right.} y_{y} t$
Since $i \hbar \frac{\partial}{\partial t} \psi=E \psi, \psi \sim \psi_{1} \cdot \psi_{2}$

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

This is OK for distinguishable particles such as a proton and an electron.
But NOT OK for indistinguishable particles such as two electrons! For example, $|p s i|^{2}$ should not change on swapping $x_{1} \leftrightarrow \rightarrow x_{2}$. How must we then write the wavefunction for two identical particles?

Resolution of identity crisis: Bosons \& Fermions

This is necessary for indistinguishable particles.

$$
P\left(x_{2}, x_{1}\right)=P\left(x_{1}, x_{2}\right) \rightarrow\left|\psi\left(x_{2}, x_{1}\right)\right|^{2}=\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}
$$

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

$\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right) \square \psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)$

$$
\psi\left(x_{2}, x_{1}\right)=+\psi\left(x_{1}, x_{2}\right)
$$

$$
\psi\left(x_{1}, x_{1}\right)=+\psi\left(x_{1}, x_{1}\right)
$$

$$
f_{B E}(E)=\frac{1}{e^{\frac{E-\mu}{k T}}-1}
$$

The Bose-Einstein distribution! Particles are called Bosons. Examples: Photons, Phonons

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right) \square \psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)
$$

$$
\psi\left(x_{2}, x_{1}\right)=-\psi\left(x_{1}, x_{2}\right)
$$

$$
\psi\left(x_{1}, x_{1}\right)=-\psi\left(x_{1}, x_{1}\right) \rightarrow \psi\left(x_{1}, x_{1}\right)=0
$$

The Pauli exclusion principle!

$$
f_{F D}(E)=\frac{1}{1 \rrbracket e^{\frac{E-E_{F}}{k T}}}
$$

The Fermi-Dirac distribution! Particles are called Fermions. Examples: Electrons, Protons

- Note: Why not $\psi\left(x_{2}, x_{1}\right)=e^{i \phi} \psi\left(x_{1}, x_{2}\right)$? Majorana particles \rightarrow later...

Debdeep Jena (djena@cornell.edu), Cornell University

Math preliminaries before the physics...

$$
\begin{aligned}
& \psi_{p}(x)=A e^{i p x / \hbar} \\
& \hat{p}=-i \hbar \partial / \partial x
\end{aligned}
$$

$$
\hat{p} \psi_{p}(x)=(\hbar k) \psi_{p}(x)
$$

$$
x \hat{p}-\hat{p} x=[x, \hat{p}]=i \hbar .
$$

Wavefunction ties x and p together.
Must respect the uncertainty principle.

Obervables are mathematical operators. They act on the wavefunction to extract info.

The states of definite value of an operator are called the eigenstates of that operator.

Unlike classical mechanics, some operators fail to commute!

Definite momentum, and definite location states

A state of definite location x_{0} :
Must be an eigenstate of operator x, with eigenvalue x_{0} :
$x \psi_{x_{0}}(x)=x_{0} \psi_{x_{0}}(x) \Longrightarrow \psi_{x_{0}}(x)=\delta\left(x-x_{0}\right)$
Definite in real space \rightarrow spread out in momentum

A state of definite momentum p:
Must be an eigenstate of operator -ih(d/dx), with eigenvalue p :

$\hat{p}_{x} \psi_{p}(x)=p_{x} \psi_{p}(x) \Longrightarrow-i \hbar \frac{d}{d x} \psi_{p}(x)=p_{x} \psi_{p}(x)$
$\psi_{p}(x)=A e^{i \frac{p_{x} x}{\hbar}}=A e^{i k_{x} x}$

$$
\psi_{p}(x)=A e^{i} \frac{p x}{K}\binom{\text { Definite }}{\text { momentum }}
$$

Definite in momentum \rightarrow spread out in real space

States of definite location and definite momentum are unique in quantum mechanics.
Debdeep Jena (djena@cornell.edu), Cornell University

States of definite energy: Schrodinger equation

States of definite energy are not unique, because they depend on the 'potential' $V(x)$
In classical mechanics, the energy of a particle is:

$$
E_{c l}=\frac{p^{2}}{2 m}+V(r)
$$

In quantum mechanics, r \& p cannot be simultaneously determined because $[x, p]=i h$. Thus, we must solve an equation to obtain the energy.

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi_{E}(x)=E \psi_{E}(x)
$$

The Schrodinger equation gives us the prescription to find the states of definite energy.

$$
[\underbrace{\frac{\hat{p}^{2}}{2 m}+V(r)}_{\hat{H}}]|\psi\rangle=E|\psi\rangle
$$

Time-evolution of states: Time-dep. Schr. Eqn.

Path is deterministic

$$
\mathbf{F}=-\nabla V(r)=\frac{d \mathbf{p}}{d t}
$$

Schrodinger

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=\left[\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(\mathbf{r}, t)\right]|\psi\rangle
$$

Path respects uncertainty relation

States of definite energy are stationary states

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi(x, t)}{\partial t}=[\underbrace{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)}_{\hat{H}}] \Psi(x, t) \\
& \Psi(x, t)=\chi(t) \psi(x)
\end{aligned}
$$

Ehrenfrest's theorem for the time evolution of an operator.

$$
i \hbar \frac{\overline{\chi(t)}}{\chi(t)}=\frac{\hat{H} \psi(x)}{\psi(x)}=E
$$

$$
\Psi_{E}(x, t)=\psi_{E}(x) e^{-i \frac{E}{\hbar} t}
$$

This means that the amplitude of states of definite energy oscillate with time with frequency E / h

$$
\left|\Psi_{E}(x, t)\right|^{2}=\left|\psi_{E}(x)\right|^{2}
$$

But observables relate to the probability, which is time independent \rightarrow this is why they care called stationary states.

- States of definite energy (energy eigenvalues of the time-independent Schrodinger equation) are states of definite energy.
- Their probability density does not change with time \rightarrow they are called stationary states.
- This is analogous to the $1^{\text {st }}$ law of classical mechanics: quantum states of definite energy will continue to remain in those states unless perturbed by a potential.
Debdeep Jena (djena@cornell.edu), Cornell University

The Postulates of Quantum Mechanics

The five basic postulates of quantum mechanics are:
(1) The state of any physical system at a given time t is completely represented by a state vector $|\Psi\rangle=|\Psi(\mathbf{r}, t)\rangle$.
(2) For an observervable quantity A there is an operator $\hat{\mathbf{A}}$. The eigenvalues of $\hat{\mathbf{A}}$ are the possible results of the measurements of A, that is, denoting the eigenvalues of $\hat{\mathbf{A}}$ by a,

$$
\begin{equation*}
\hat{\mathbf{A}}|a\rangle=a|a\rangle, \tag{2.23}
\end{equation*}
$$

and the probability of a measurement of A yielding the value a at time t is $|\langle a \mid \Psi(t)\rangle|^{2}$. The a 's, which are the results of possible measurements, must be real. This implies that $\hat{\mathbf{A}}$ must be a linear hermitian operator.
(3) A measurement of $|\Psi\rangle$ that leads to an eigenvalue a_{i} leads the quantum mechanical system to collapse into the eigenstate $\left|\Psi_{i}\right\rangle$, which is the eigenstate corresponding to the eigenvalue a_{i}. So a measurement affects the state of the quantum system.
(4) There exists a hermitian operator $\hat{\mathbf{H}}$ such that

$$
\begin{equation*}
i \hbar \frac{\partial|\Psi(\mathbf{r}, t)\rangle}{\partial t}=\hat{\mathbf{H}}|\Psi(\mathbf{r}, t)\rangle . \tag{2.24}
\end{equation*}
$$

(5) Two classical dynamical variables a, b, which are conjugate in the Hamiltonian sense, are represented by Schrodinger operators $\hat{\mathbf{A}}, \hat{\mathbf{B}}$, which obey

$$
\begin{equation*}
\hat{\mathbf{A}}_{i} \hat{\mathbf{B}}_{j}-\hat{\mathbf{B}}_{j} \hat{\mathbf{A}}_{i}=i \hbar \delta_{i j} \tag{2.25}
\end{equation*}
$$

The free electron

Restrict particle in space \rightarrow Quantization
If we restrict the 'particle' in one space, it quantizes the allowed 'vectors' in the reciprocal space.

$$
\psi_{p}(x+L)=\psi_{p}(x) \Rightarrow e^{i k L}=1=e^{i 2 \pi \times n}, \text { and } k_{n}=n \times(2 \pi / L) . \text { Here } n=0, \pm 1, \pm 2, \ldots
$$

$$
\psi_{n}(x)=\frac{1}{\sqrt{L}} e^{i k_{n} x} \quad k_{n}=\frac{2 \pi}{L} \cdot n \quad n=0, \pm 1, \pm 2, \ldots
$$

Particle on a 'RING'

The state functions form a ' set'

$$
\mathbb{U}\left\{\cdots \psi_{-3}(x), \psi_{-2}(x), \psi_{-1}(x), \psi_{0}(x), \psi_{-1}(x), \psi_{+2}(x), \ldots\right\}
$$

Note: $\int_{0}^{L} \psi_{n}^{k}(x) \psi_{m}(x) d x=\delta_{n m}$! \Rightarrow functions are ORTHDGDNAL! $\langle h \mid m\rangle=\delta_{n m} \Leftarrow$ Vectors are "perpendicular"!
The set of wave functions $\left[\ldots \psi_{-2}(x), \psi_{-1}(x), \psi_{0}(x), \psi_{1}(x), \psi_{2}(x), \ldots\right]=\left[\psi_{n}(x)\right]$ are spacal. We note that $\int_{0}^{L} d x \psi_{m}^{\star}(x) \psi_{n}(x)=\delta_{n m}$, i.e., the functions are orthogonal. Any general wavefunction representing the particle $\psi(x)$ can be expressed as a linear combination of this set. This is the principle of superposition, and a basic mathematical result from Fourier theory. Thus the quantum mechanical state of a particle may be represented as $\psi(x)=\sum_{n} A_{n} \psi_{n}(x)$. Clearly, $A_{n}=\int d x \psi_{n}^{\star}(x) \psi(x)$. Every wavefunction constructed in this fashion represents a permitted state of the particle, as long as $\sum_{n}\left|A_{n}\right|^{2}=1$.

- The set of states $\{\ldots|-1>,|0>|+1>,, \ldots\}$ is an orthogonal basis for constructing the wavefunction.
- One can draw an analogy to vector spaces, and use the tools of linear algebra on states.

Debdeep Jena (djena@cornell.edu), Cornell University

The particle on a ring

3.4 Not so free: particle in a ring

$$
\psi(x+L)=\psi(x) \rightarrow e^{i k(x+L)}=e^{i k x} \rightarrow e^{i k L}=1 \rightarrow k L=2 n \pi
$$

Momentum is quantized

$$
k_{n}=\frac{2 \pi}{L} n, n=0, \pm 1, \pm 2, \ldots
$$

$$
\psi(n, x)=A e^{i k_{n} x}
$$

$$
\int_{0}^{L} d x|\psi(n, x)|^{2}=1 \rightarrow|A|^{2} \times L=1 \rightarrow A=\frac{1}{\sqrt{L}} \rightarrow \psi(n, x)=\frac{1}{\sqrt{L}} e^{i k_{n} x}
$$

Note that $n=0$ is allowed as a result of the periodic boundary condition.
Energy spectrum is discrete, Zero energy is allowed

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m_{e}}=n^{2} \frac{(2 \pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{2 m_{e} L^{2}}
$$

$$
\text { Angular momentum is quantized } L=p \times r=\hbar k_{n} \times \frac{L}{2 \pi}=\frac{2 \pi \hbar}{L} n \times \frac{L}{2 \pi}=n \hbar
$$

The particle in a box

$$
\begin{gathered}
V(x)=0, \quad 0 \leq x \leq L \\
V(x)=\infty, \quad x<0, x>L
\end{gathered}
$$

Particle in a box

The major change is that $\psi(x)=0$ in regions where $V(x)=\infty$.

$$
\psi(x)=A e^{i k x}+B e^{-i k x} \rightarrow \psi(0)=0=A+B, \psi(L)=A e^{i k L}+B e^{-i k L}=0
$$

$$
\frac{A}{B}=-e^{-i 2 k L}=-1 \rightarrow 2 k L=2 n \pi \rightarrow k_{n}=n \frac{\pi}{L}, n= \pm 1, \pm 2, \pm 3, \ldots
$$

Note that $n=0$ is not allowed, because then $\psi(x)=0$ and there is no particle wavefunction after normalization over the length L is

$$
\psi(n, x)=\sqrt{\frac{2}{L}} \sin \left(n \frac{\pi}{L} x\right)=\sqrt{\frac{2}{L}} \sin \left(k_{n} x\right)
$$

Energy spectrum is discrete, zero energy NOT allowed!

$$
E_{n}=n^{2} \frac{(\pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{8 m_{e} L^{2}}
$$

The harmonic oscillator

$$
V(x)=\frac{1}{2} m_{e} \omega^{2} x^{2}
$$

Harmonic Oscillator

$$
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}} \cdot\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \cdot e^{-\frac{m \omega x^{2}}{2 \hbar}} \cdot H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right), \quad n=0,1,2, \ldots
$$

The functions H_{n} are the Hermite polynomials,

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

$$
\begin{aligned}
& a=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right) \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \\
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right) \\
& \hat{p}=i \sqrt{\frac{m \omega \hbar}{2}}\left(a^{\dagger}-a\right) \\
& \begin{array}{l}
\text { Can solve the } \\
\text { problem using raising } \\
\text { and lowering } \\
\text { operators }
\end{array}
\end{aligned}
$$

The corresponding energy levels are

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

Energy levels equally spaced Zero energy NOT allowed!

The harmonic oscillator

The creation/annihilation operator formalism will be key in the 'second quantization' methods to be developed later in the course!

$$
\begin{gathered}
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right) \\
V(x)=\frac{1}{2} m_{e} \omega^{2} x^{2} \quad \hat{p}=i \sqrt{\frac{m \omega \hbar}{2}}\left(a^{\dagger}-a\right) \\
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \\
a=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right) \quad\left[a, a^{\dagger}\right]=1 \\
a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \quad a|n\rangle=\sqrt{n}|n-1\rangle \\
\hat{n}=a^{\dagger} a
\end{gathered}
$$

The hydrogen atom

Energy levels [edit source I edit beta]

The energy levels of hydrogen, including fine structure, are given by the Sommerfeld expression:

$$
\begin{aligned}
E_{j n} & =-m_{\mathrm{e}} c^{2}\left[\left(1+\left[\frac{\alpha}{n-j-\frac{1}{2}+\sqrt{\left(j+\frac{1}{2}\right)^{2}-\alpha^{2}}}\right]^{2}\right)^{-1 / 2}-1\right] \\
& \approx-\frac{m_{\mathrm{e}} c^{2} \alpha^{2}}{2 n^{2}}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{j+\frac{1}{2}}-\frac{3}{4}\right)\right]
\end{aligned}
$$

where a is the fine-structure constant and j is the "total angular momentum" quantum number, which is equal to $|\ell \pm 1 / 2|$ depending on the direction of the electron spin. The factor in square brackets in the last expression is nearly one; the extra term arises from relativistic effects (for details, see \#Features going beyond the Schrödinger solution).

The value

$$
\frac{m_{\mathrm{e}} c^{2} \alpha^{2}}{2}=\frac{0.51 \mathrm{MeV}}{2 \cdot 137^{2}}=13.6 \mathrm{eV}
$$

Wavefunction [edit source I edit beta]
The normalized position wavefunctions, given in spherical coordinates are:

$$
\psi_{n \ell m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n(n+\ell)!}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) Y_{\ell}^{m}(\vartheta, \varphi)
$$

where:

$$
\rho=\frac{2 r}{n a_{0}}
$$

a_{0} is the Bohr radius,
$L_{n-\ell-1}^{2 \ell+1}(\rho)$ is a generalized Laguerre polynomial of degree $n-\ell-1$, and
$Y_{\ell}^{m}(\vartheta, \varphi)$ is a spherical harmonic function of degree ℓ and order m. Note that the generalized Laguerre polynomials are defined differently by different authors. The usage here is consistent with the definitions used by Messiah, ${ }^{[8]}$ and Mathematica. ${ }^{[9]}$ In other places, the Laguerre polynomial includes a factor of $(n+\ell)!{ }^{[10]}$ or the generalized Laguerre
polynomial appearing in the hydrogen wave function is $L_{n+\ell}^{2 \ell+1}(\rho)$ instead. [11]
The quantum numbers can take the following values:

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& \ell=0,1,2, \ldots, n-1 \\
& m=-\ell, \ldots, \ell .
\end{aligned}
$$

Quantum states are vectors in the Hilbert space
Any wanfunction $\psi(x)=\sum_{n} A_{n} \psi_{n}(x)$ is an allowed state.

$\begin{aligned} \text { orthogonal: } & \hat{x} \cdot \hat{y}=\hat{y} \cdot \hat{z}=\hat{3} \cdot \hat{x}=0 . \\ & \tau_{3} \text {-dimensional vector ste. }\end{aligned}$
τ_{3}-dimensional vector space $1 \quad\langle 0 \mid 0\rangle=1$.
$|\psi\rangle$ - is an abstract "State vector". it an ∞-dimensional vector ϕ_{p} ace,

- it lives in the Hilbert Space. For a Hilbert space!

It is useful here to draw an analogy to the decomposition of a vector into specific coordinates. The 'hybrid' state function $\psi(x)$ is pictured as a vector $|\psi\rangle$ in an abstract space. The definite momentum wavefunctions $\psi_{n}(x)$ are pictured as the 'coordinate' vectors $|n\rangle$ in that space of vectors. This set of vectors is called the basis. Since there are an infinite set of integers $n=0, \pm 1, \pm 2, \ldots$, the vector space is infinite dimensional.

$$
\begin{aligned}
& |\psi\rangle=\sum_{n} A_{n}|n\rangle \quad\langle m \mid n\rangle=\delta_{m n} \\
& A_{n}=\langle n \mid \psi\rangle
\end{aligned}
$$

It is called the Hilbert space. One may then consider the coefficients A_{n} as the length of the projections of the state on the basis states. The abstract picture allows great

$$
|\psi\rangle=\sum_{n}\langle n \mid \psi\rangle|n\rangle=\sum_{n}|n\rangle\langle n \mid \psi\rangle
$$ economy of expression by writing $|\psi\rangle=\sum_{n} A_{n}|n\rangle$. The orthogonality of the basis states

By projecting states, get various representations

- We can think of the states as vectors.
- The 'inner product' is a complex number generated by projection to the appropriate space.
- This number is the wavefunction - it can be found in real space, momentum space, etc...

Electron in a periodic potential (no analytic soln!)

Figure 13.1: A periodic potential $W(x)=-2 U_{G} \cos (G x)$ acts as a perturbation to the free electron.

We will first attack this problem using perturbation theory!

Figure 13.2: Bandgap opening in the energy spectrum of a free electron upon perturbation by a periodic potential.

