
Chapter 5

The Transport Problem: Currents

from Quantum Mechanics

5.1 Classical Drude model

m
dv

dt
= qE � mv

⌧
, (5.1)

steady state: d
dt(...) ! 0, yields

v =
q⌧

m
E = µE. (5.2)

and current is

J = qnv =
nq2⌧

m
E = �E =) �0 =

nq2⌧

m
. (5.3)

If the electric field was oscillating in time E(t) = Eei!t,

m
dv

dt
= qEei!t � mv

⌧
, (5.4)

assuming linear response v(t) = v(0)ei!t, we get

�(!) =
�0

1 + i!⌧
=

�0
1 + (!⌧)2| {z }
Re(�(!))

�i
!⌧�0

1 + (!⌧)2| {z }
Im(�(!))

. (5.5)

5.2 Quantum version

In semiconductor devices, we are often concerned with currents. A current is a measure

of the flow of objects from one point in space to another. The flow of electric charges
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constitutes an electric current, leading to the notion of electrical conductivity. In this

chapter we develop the recipe to understand current flow from a quantum-mechanical

viewpoint. Since the physical state of particles in quantum mechanics is represented by

its wavefunction  (x, t), the current must be obtained from the wavefunction.

5.3 Probability current

Since | (x, t)|2 =  ? is the probability density, let’s examine how it changes with time.

We obtain

@| (x, t)|2

@t
=  ?@ 

@t
+
@ ?

@t
 , (5.6)

where we use the time-dependent Schrodinger equation i~@ /@t = (p̂2/2m + V ) and

its complex conjugate �i~@ ?/@t = (p̂2/2m+ V ) ? to obtain

@| (x, t)|2

@t
=  ? (p̂

2/2m+ V ) 

i~ + 
(p̂2/2m+ V ) ?

�i~ , (5.7)

which simplifies to

@| (x, t)|2

@t
=

1

2mi~( 
?p̂2 � p̂2 ?). (5.8)

Since p̂ = �i~rr, we recognize the resulting equation

@| (x, t)|2

@t
= �rr ·

⇥ 1

2m
( ?p̂ � p̂ ?)

⇤
(5.9)

as the familiar ‘continuity’ equation in disguise. A continuity equation is of the form

@⇢/@t = �rr · j, where ⇢ is the particle ‘density’ and j is the current density. We read

o↵ the quantum mechanical current density as

j =
1

2m
( ?p̂ � p̂ ?). (5.10)

This equation provides us the required recipe for calculating the probability density flow,

or current flow directly from the quantum mechanical wavefunctions of states. We make

a few observations. If  is real, j = 0. Since  has dimension of 1/
p
V ol, the dimension
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of j is per unit area per second. For 3D, volume is in m3 and j is then in 1/(m2· s). For
2D j is in 1/(m · s), and it is simply 1/s for 1D.

We also note that

d

dt
(

Z
space

d3r| |2) = �
Z
space

d3rr · j = �
I

j · dS = 0. (5.11)

The conversion of the integral from volume to a closed surface uses Gauss’ theorem. The

value of the integral is zero because  and consequently j goes to zero at infinity, and the

equality must hold for all space. This equation is a statement of the indestructibility

of the particle, which follows from
R
space d

3r| |2 = 1. If the number of particles is

not conserved, then one needs to add recombination (‘annihilation’) and generation

(‘creation’) terms to the continuity equation. It then looks as @⇢/@t = �r · j+ (G�R)

where R and G are recombination and generation rates.

We also note that in the presence of a magnetic fieldB = r⇥A, the quantum-mechanical

momentum operator p̂ ! p̂+ qA where q is the magnitude of the electron charge. This

leads to an additional term in the expression of the current density

j =
1

2m
( ?p̂ � p̂ ?) +

qA

m
 ? . (5.12)

The additional term depending on the magnetic vector potential A is useful to explain

current flow in magnetic materials, magnetotransport properties, and superconductivity.

5.4 Charge current

Lets focus on determining the electric current. To account for the flow of charge, the

probability density current j is modified simply to J = qj, where q is the charge (in

Coulombs) of the charge particle. We assume these charge particles are electrons and

q = 1.6 ⇥ 10�19 C and free mass me = 9.1 ⇥ 10�31 kg. In the absence of a magnetic

field, the electric current density is then given by

J =
q

2me
( ?p̂ � p̂ ?), (5.13)

which is now in A/m2 for 3D, A/m for 2D, and A for 1D current flow, where A=C/s is

the unit of current in Amperes. The current density is expressed in terms of the electron

wavefunctions. We wish to make the expression more ‘usable’.
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Consider free electrons in 1D with periodic boundary conditions between x = (0, L). The

wavefunction for a state |ki of definite energy E(k) is  E(x, t) = (1/
p
L)eikxe�iE(k)t/~.

In the QM expression for current, the time evolution portion is not a↵ected by the

momentum operator, and therefore factors to 1. It is another illustration of the virtues

of working with states of definite energy. The current carried by state |ki is then obtained

as J(k) = I(k) = q~k/meL. The current density and current are the same in 1D. The

current I(k) = q~k/meL = qv(k)/L connects to the classical notion of current carried by

a particle with velocity v(k) = ~k/me traversing a distance L. Another way to picture

the same current is to split it as I = q⇥ v(k)⇥n, where n = 1/L is the ‘volume density’

of particles.

To find the total current carried by multiple k-states, we must sum the contribution from

each state. We use the velocity picture since it carries over to wave packets and electrons

in crystals. In the next section, we are going to prove the following very important result:

that the velocity term that appears in the quantum mechanical expression for current

for free electrons of wavefunction  (x) = 1p
L
eikx as v(k) = ~k

m simply changes to the

‘group velocity’ when the electron is put in a periodic crystal with Block eigenfunction

 (x) = 1p
L
eikxu(x). The group velocity is simply vg(k) = rkE(k)/~, which is known

when the electron bandstructure is known - without recourse to the wavefunction. So we

trade the knowledge of wavefunction for the knowledge of the bandstructure E(k), which

is attractive because the bandstructure of semiconductors are experimentally measured

and tabulated. We also generalize to any dimension d. The expression for the current

then becomes

Jd =
q

Ld

X
k

vg(k)f(k), (5.14)

where we have now included the Fermi-Dirac occupation probability of state |ki. We

next split o↵ the spin degeneracy gs = 2, and allow a valley degeneracy gv for each

k-state. Picture the current flow from a ‘left’ contact to a ‘right’ contact. Let us also

allow for scattering, which are quantum-mechanical reflections in going from the left to

the right contact. Let the quantum-mechanical transmission coe�cient from the left to

the right contact be T (k). Then, the expression for the net current density flowing from

the left to the right becomes

Jd =
qgsgv
Ld

X
k

vg(k)T (k)[fL(k)� fR(k)]. (5.15)
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The Fermi-Dirac function di↵erence results because fL(k)[1�fR(k)]�fR(k)[1�fL(k)] =

fL(k) � fR(k). The transmission coe�cient T (k) does not depend on the direction of

current flow.

The sum over k states is typically always converted into an integral. The recipe for this

step uses the fact that the allowed states in the k-space are discrete ‘boxes’ of each side

2⇡/L and volume (2⇡/L)d in d dimensions. Then, the sum converts to an integral via

X
k

(...) =

Z
ddk

(2⇡L )d
(...). (5.16)

Note the cancellation of the dependence on the macroscopic dimension L. The k-

coordinate system is chosen to be either cartesian, cylindrical, or spherical based on

the specific problem. The expression for the current density is then

Jd =
qgsgv
(2⇡)d

Z
ddk⇥ vg(k)T (k)[fL(k)� fR(k)]. (5.17)

The unit of current density is in A/md�1 for current flow in d-dimensions. This ex-

pression for the current density is applicable in a wide range of situations ranging from

ballistic transport, to scattering limited drift or di↵usion, and to tunneling transport,

and in multiple (1, 2, or 3) dimensions. The group velocity term vg(k) is locked down

by the electron band structure E(k), and external forces modify the Fermi-Dirac func-

tions. For example, the response of f(k) to electric fields, or concentration gradients are

tracked by a Boltzmann transport equation.

5.5 Charge current in semiconductor crystals

In this section, we prove our assertion that the velocity term that appears for Bloch

states in the expression for the current in quantum mechanics is the group velocity

vg(k) =
1
~rkE(k). The definite energy wavefunctions of electrons in crystals are Bloch

functions  (k, r, t) =  E(k, r)e�iE(k)t/~, where  E(k, r) = eik·ru(k, r) with k the Bloch

wavevector in the reduced zone and u(k, r+ a) = u(k, r). E(k) are the eigenvalues

of the Bloch states, and constitute the electron bandstructure. To obtain the group

velocity, we first derive the following useful identity for Bloch states:

me

~ rkE(k) =

Z
d3r ?p̂ = �

Z
d3r p̂ ? (5.18)
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The identity is evidently dimensionally correct since both sides have units of momentum.

The middle and far right are complex conjugate relations of each other, whereas the left

side is real. Note that the left side involves a gradient of E(k) in k�space, whereas the

middle and right sides involve gradients of  , ? in the r�space.

To arrive at this identity, write the Schrodinger equation for the Bloch states as

� ~2
2me

r2
r E(k, r)e

�iE(k)t/~ = [E(k)� V ] E(k, r)e
�iE(k)t/~. (5.19)

The time evolution cancels since Bloch states are stationary states. We now take a

gradient in the k�space. Since [rr,rk] = 0, and rk E = ir E + eik·rrku = ir E +X

we have

� ~2
2me

r2
r(ir E +X) = [E(k)� V ](ir E +X) + [rkE(k)] E . (5.20)

We now use the identity for Bloch eigenstates:

r2
r(r E) = rr2

r E + 2rr E . (5.21)

in Equation 5.20 and rearrange to obtain

� ~2
2me

(irr2
r E)| {z }

1

� i~2
me

rr E = [E(k)� V ](ir E)| {z }
1

+[E(k)�(� ~2
2me

r2
r + V| {z }

Ĥ

)]X+[rkE(k)] E .

(5.22)

The terms indicated as ‘1’ constitute the Schrodinger equation for Bloch eigenstates

multiplied by ir, and hence cancel. Multiplying by  ?
E on the left and integrating over

all space, the second term on the right vanishes since  ?
E is an eigenstate. Then, we are

left with

rkE(k)

Z
d3r ?

E E = rkE(k) = � i~2
me

Z
d3r( ?

Err E), (5.23)

which proves the identity in Equation 5.18 since p̂ = �i~rr. The probability current

density carried by a Bloch state is given by

j =
1

2me
( ?p̂ � p̂ ?), (5.24)
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from which we obtain the group velocity of the Bloch state with help of the identity in

Equation 5.18 as

vg(k) =
1

2me

Z
d3r( ?p̂ � p̂ ?) =

rrE(k)

~ . (5.25)

The simplicity of the result vg(k) = rrE(k)/~ is one of the central reasons why the

k�space is where one should investigate transport properties. This velocity is used in

Equation 5.17 for evaluating the charge current carried by Bloch states in d-dimensions:

Jd =
qgsgv
~(2⇡)d

Z
ddk[rkE(k)]T (k)[fL(k)� fR(k)]. (5.26)

Note that the group velocity term is a first-order derivative in k. Therefore, for the

particular case of d =1 dimension, the current simplifies to

I =
qgsgv
~(2⇡)

Z
dE · T (E)[fL(E)� fR(E)] ⇡ (gsgv

q2

h
)V (5.27)

if we assume T (E) = 1 for perfect (ballistic) transmission and since
R
dE[fL(E) �

fR(E)] = qV at T ! 0K. The ballistic conductance of a 1D mode is therefore given by

G0 = gsgv ⇥ q2/h and does not depend on the exact bandstructure E(k).

5.6 Energy (heat) current

The flow of an electron of energy E(k) transports not just charge, but the associated

energy as well. The energy current density is given by JE(k) =
P

kE(k) · vg(k)/Ld,

and thus we obtain

JE =
gsgv
(2⇡)d

Z
ddkE(k)vg(k)T (k)[fL(k)� fR(k)]. (5.28)

The units are in Watts/md�1 for transport in d-dimensions. Using the same approxima-

tions as earlier for a 1D conductor, we obtain the energy current carried by electrons to

be IE ⇡ (gsgvq2/h) · V 2 in Watts if the transport is ballistic (T (k) = 1) at T ! 0K.
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5.7 Any current

Based on the above recipes, spin currents, polarization currents, and other related quan-

tities may be evaluated. We realize from the results derived in this chapter that the key

to finding the current are the occupation functions f(k) and their dependence on ex-

ternal voltages. This indeed is the driver of current for all cases. Determination of the

occupation functions, and their dependence on external voltages is the topic of the next

chapter (Chapter 6).

Debdeep Jena: www.nd.edu/⇠djena



Chapter 6

The Concept of Equilibrium:

Fermi-Dirac and Bose-Einstein

6.1 Introduction

In this chapter, we derive and discuss the Fermi-Dirac distribution function for fermions,

and the Bose-Einstein distribution function for bosons. These functions provide us

the statistical occupation number of quantum states for a system in thermodynamic

equilibrium with a reservoir. The Fermi-Dirac distribution is central to finding the

electron distribution over allowed energy or momentum values in various semiconductor

devices. The Bose-Einstein distribution is central to finding the distribution of photons

in the electromagnetic field, or phonons in semiconductor crystals. The two distributions

together determine electron-phonon and electron-photon interactions. The importance

of this chapter simply cannot be overemphasized! We discuss various properties of the

distributions and limiting cases to gain familiarity. Then, we specifically map the concept

of thermodynamic equilibrium to the fundamental semiconductor building blocks, such

as the ohmic contact, Schottky contacts, the p-n junction, and a field-e↵ect transistor

(FET).

6.2 The physics of equilibrium

We begin by drawing upon a fundamental result from quantum statistical mechanics1.

The most well-known result of statistical thermodynamics is the Boltzmann distribution.

The result states the following: consider a system that in thermal equilibrium with a

1For a detailed derivation, see Thermal Physics by Kittel and Kroemer.
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Boltzmann Maxwell Fermi Dirac

Gibbs
Bose

Einstein

Boltzmann

Gibbs Fundamental law of quantum statistical mechanics

Figure 6.1: Illustration of the processes of thermodynamic equilibrium for the Boltz-
mann distribution, and the Gibbs partition function.

reservoir at temperature T . Each of the terms in italics have very specific meanings,

which will be described shortly. Let E1 and E2 denote two energy states of the system.

The Boltzmann result asserts that the probabilities of finding the system in these energies

is related by

P (E1)

P (E2)
=

e��E1

e��E2
, (6.1)

where � = 1
kT , and k is the Boltzmann constant. Figure 6.1 illustrates the meanings of

the terms in italics. The reservoir is a large source of particles and energy, characterized

by a temperature T . It goes by the name reservoir because it can either take in, or give

out any energy without changing its temperature T . As opposed to the reservoir, the

system is much smaller, and can be found in energy states E1, E2, E3, .... The statement

that the system is in thermal equilibrium with the reservoir means that it can exchange

energy with the reservoir, but not particles. Each energy state Ei is considered to be

individually in thermal equilibrium with the reservoir. Only under this condition is the

Boltzmann result in Equation 6.1 applicable. Since the temperature T is the measure

of the energy which is being exchanged, the reservoir and the system share the same

temperature upon reaching thermal equilibrium.

Now if we let the system exchange energy and particles with the reservoir, as indicated

in Figure 6.1, the Boltzmann relation needs to be generalized. A measure of the particle

number is the chemical potential µ, which must also appear in addition to the temper-

ature T in relations characterizing thermodynamic equilibrium between the system and

the reservoir. This famous generalization was done by Gibbs, who gave the modified

relation
P (E1)

P (E2)
=

e��(E1�n1µ)

e��(E2�n2µ)
=|{z}

non-interacting

en1�(µ�E1)

en2�(µ�E2)
, (6.2)
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where µ is a common chemical potential of the reservoir+system, and ni is the number of

particles in the single-particle energy state Ei. We are going to call a single particle energy

eigenstate an orbital, drawing from the language of chemistry. Only if the particles

considered are non-interacting, then the energy of the state is Ei = niEi if there are ni

particles in orbital |ii of eigenvalue Ei. If these conditions are met, then one defines a

Gibbs-sum, or more popularly known as the grand partition function

Z =
X
states

X
n

e�(nµ�En). (6.3)

The sum runs over all states of the system, and all number of particles allowed in

each single-particle state. Note carefully what this means. For example, consider the

situation when orbital |3i is in equilibrium with the reservoir. Since it is not interacting

with the other orbitals (which are also separately in equilibrium with the reservoir), the

partition function for the ‘system’ consisting of a variable number of particles in |3i is

then Z =
Pn3=nmax

n3=0 e�n3(µ�E3). The ‘system’ here is the various occupation states of

orbital |3i.

When energy and particle exchange is allowed between the system and the reservoir,

the fundamental law of equilibrium statistical mechanics may be stated as the follow-

ing. Under thermodynamic equilibrium with a reservoir at temperature T , the absolute

probability that the system will be found in the state Ei = niEi with ni particles in

orbital |ii is

P (Ei) =
e�(niµ�Ei)

Z
=

e�ni(µ�Ei)

Z
=

e�ni(µ�Ei)Pni=nmax
ni=0 e�ni(µ�Ei)

. (6.4)

For sake of completeness and for future use, we generalize this result. We recognize

that the allowed orbital energies Ei are the eigenvalues of the single-particle Hamilto-

nian Ĥ0 via Ĥ0|ii = Ei|ii, the non-interacting many-particle Hamiltonian Ĥ =
P

Ĥ0

gives Ĥ|n1, n2, ...ni, ...i = (
P

i niEi)|n1, n2, ...ni, ...i, and the number ni of particles in

the eigenstate (or orbital) |ii is N̂i|n1, n2, ...ni, ...i = ni|n1, n2, ...ni, ...i, where N̂i is oc-

cupation number operator for eigenstate |ii, and N̂ =
P

i N̂i. Then, the expectation

value of any operator hÔi at thermodynamic equilibrium is

hÔi = Tr[Ôe�(µN̂�Ĥ)]

Tr[e�(µN̂�Ĥ)]
, (6.5)

where Tr[...] stands for the Trace of the matrix or the operator. Note that the Hamilto-

nian matrix and the number operator are exponentiated. The Trace gives the sum of the

diagonal elements, making Equation 6.5 equivalent to 6.4 in the diagonal representation.
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But since the Trace is invariant between representations, Equation 6.5 also holds for non-

diagonal conditions. Feynman2 calls the fundamental results in Equation 6.4 (and 6.5)

the “summit of statistical mechanics, and the entire subject either a slide-down from the

summit, or a climb up to this result”. We have not covered the climb-up, but since we

will apply the result, let us slide down by applying it to derive the Fermi-Dirac and the

Bose-Einstein distribution functions. We will use the version of Equation 6.5 in later

chapters, and focus on Equation 6.4 for this chapter.

6.2.1 Fermi-Dirac Distribution

As we have discussed in Chapter 2, the number of Fermionic particles that can occupy

an energy eigenstate Ei are ni = 0 or 1 and nothing else because of the Pauli exclusion

principle. Therefore, the partition function for the state of the system corresponding

to energy Ei in thermodynamic equilibrium (in the Gibbs sense) with a reservoir of

temperature T and chemical potential µ is simply

Z =
ni=1X
ni=0

e�ni(µ�Ei) = e0 + e�(µ�Ei) = 1 + e�(µ�Ei), (6.6)

and the probability that the system is in a state that has ni particles in orbital |ii is

simply P (Ei) = e�(niµ�Ei)/Z, where Ei = niEi is the total energy of the orbital. Note

that we are assuming that the particles that fill the orbital do not interact with each

other. Then, the thermal average number of particles hnii in orbital |ii is given by

f(Ei) = hnii =
P

i niP (Ei), which is

hnii = f(Ei) =
0 · e0 + 1 · e�(1·µ�1·Ei)

1 + e�(µ�Ei)
=) fFD(Ei) =

1

1 + e�(Ei�µ)
, (6.7)

where the boxed equation is the Fermi-Dirac distribution. Note that it varies between

0 and 1, and is equal to 1
2 when Ei = µ. We will discuss this further shortly.

6.2.2 Bose-Einstein Distribution

Unlike Fermions, there is no restriction on the number of Bosonic particles that can

occupy an orbital |ii. This means ni = 0, 1, ...,1. Then, the partition function is

Z =
1X

ni=0

e�ni(µ�Ei) =
1X

ni=0

[e�(µ�Ei)]ni =
1

1� e�(µ�Ei)
, (6.8)

2
Statistical Mechanics, by R. P. Feynman.
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where the infinite sum is a geometric series 1+u+u2+ ... = 1
1�u , valid for u = e�(µ�Ei) <

1, or equivalently µ  Ei. The thermal average number of bosonic particles in orbital |ii
is then

hnii = f(Ei) =
0 · u0 + 1 · u1 + 2 · u2 + 3 · u3 + ...

(1� u)�1
=) fBE(Ei) =

1

e�(Ei�µ) � 1
, (6.9)

where the boxed equation is the Bose-Einstein distribution. In arriving at the result, we

used the relation u d
du(

1
1�u) =

u
(1�u)2 = u+2u2+3u3+ ..., which is the sum that appears

in the numerator, whereupon hnii = 1
u�1�1 . Note that for �(Ei � µ) >> 1, the Bose-

Einstein distribution fBE(Ei) ! 0. However, for �(Ei�µ) << 1, fBE(Ei) ⇡ 1
�(Ei�µ) can

increase without bound, which is surprisingly physical and indicates a condensation of

all particles to the lowest energy orbitals. This phenomenon is related to Bose-Einstein

condensation, a topic to be discussed further later in the book.

6.2.3 Discussion of the nature of the distribution functions

The key ideas and results in arriving at the distribution functions are summarized in

Figure 6.1. In Figure 6.2, we plot the various distribution functions.
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Figure 6.2: Illustration of the distribution functions and the e↵ect of temperature.

We define the Fermi-Dirac function as

f0(x) =
1

1 + e�x
(6.10)

which takes the argument x = E � µ to give us the Fermi-Dirac distribution

fFD(E) = f0(E � µ) =
1

1 + e�(E�µ)
. (6.11)
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The distribution may be thought of a function of the energy E, or of the chemical

potential µ. We use the compact notation f0 = f0(E � µ) = fFD(E). The partial

derivative with respect to energy is

@f0
@E

= �@f0
@µ

= �� · e�(E�µ)

(1 + e�(E�µ))2
= �� · f0[1� f0], (6.12)

which can be rearranged to the form

�@f0
@E

= +
@f0
@µ

=
�

4 cosh2(�(E�µ)
2 )

. (6.13)

The derivative of the Fermi-Dirac distribution evidently reaches its maximum value of
�
4 = 1

4kT at E = µ. We have the identity
R +1
�1 du �

4 cosh2[ 12�u]
= 1, which indicates that

in the limit of very low temperatures 1
kT = � ! 1, the derivative function should

approach a Dirac-delta function in the energy argument, i.e.,

lim
T!0

[�@f0
@E

] = lim
T!0

[+
@f0
@µ

] = �(E � µ). (6.14)

This feature is illustrated in Figure 6.3.
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Figure 6.3: Illustration of the temperature dependence of the Fermi-Dirac distribu-
tion, and its derivative.

Now considering f(u) = 1/(1 + eu) and f(v) = 1/(1 + ev), we get the identity

f(u)� f(v) = [f(u) + f(v)� 2f(u)f(v)| {z }
�0

]⇥ tanh(
v � u

2
) (6.15)
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Since f(u), f(v)  1, the term in the square brackets is always positive. So the sign of

the Fermi di↵erence function is determined by the tanh(...) term. The Fermi di↵erence

function will make its appearance repeatedly when we study the optical and electronic

transport properties of semiconductors and electronic and photonic devices.

The integral of the Fermi-Dirac function is

Z 1

0
dEf0(E � µ) =

Z 1

0

dE

1 + e�(E�µ)
=

1

�
ln(1 + e�µ), (6.16)

which leads to the very useful Fermi di↵erence integral

Z 1

0
dE[f0(E � µ1)� f0(E � µ2)] =

1

�
ln[

1 + e�µ1

1 + e�µ2
] = (µ1 � µ2) +

1

�
ln[

1 + e��µ1

1 + e��µ2
].

(6.17)

If µ1, µ2 >> kT , the second term on the rightmost side is zero, and we obtain

Z 1

0
dE[f0(µ1)� f0(µ2)] ⇡ (µ1 � µ2). (6.18)

That this relation is an identity is evident at T ! 0, or � ! 1. The features of the

Fermi di↵erence function are illustrated in Figure 6.4. The integral at low temperatures

is just the area under the dashed di↵erence curve, which is rectangular and has a energy

width of µ2 � µ1.
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Figure 6.4: Illustration of the temperature dependence of the Fermi-di↵erence distri-
bution. The di↵erence is a window between µ2 � µ1 that becomes increasingly rectan-

gular as the temperature drops.
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It is useful to define higher moment integrals of the Fermi-Dirac functions of the form

Fj(⌘) =
1

�(j + 1)

Z 1

0
du

uj

1 + eu�⌘
. (6.19)

The Fermi-Dirac integral is rendered dimensionless by scaling the chemical potential
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Figure 6.5: Fermi-Dirac integrals and their non-degenerate (⌘ << �1) and degenerate
(⌘ >> 1) approximations, illustrating Equation 6.20.

⌘ = �µ, and the energy u = �E by the thermal energy kT = 1
� . Since we are integrating

over u, the Fermi-Dirac integral Fj(⌘) is a function of the chemical potential µ. The

denominator is a normalizing Gamma function �(n) =
R1
0 xn�1e�xdx with the property

�(n + 1) = n�(n), which means if n is an integer, �(n) = (n � 1)!. A useful value of

the Gamma function for a non-integer argument is �(12) =
p
⇡. For ⌘ << �1, the

exponential in the denominator is much larger than unity. An excellent approximation

of the Fermi-Dirac integral then is Fj(⌘) ⇡ e⌘, irrespective of the value of j. In the other

extreme, when ⌘ >> 1, an excellent approximation is Fj(⌘) ⇡ ⌘j+1

�(j+2) . Due to the high

importance of Fermi-Dirac integrals in semiconductor devices, we collect the results:

Fj(⌘) =
1

�(j + 1)

Z 1

0
du

uj

1 + eu�⌘
, Fj(⌘) ⇡|{z}

⌘<<�1

e⌘ , Fj(⌘) ⇡|{z}
⌘>>1

⌘j+1

�(j + 2)
. (6.20)

From Equation 6.16, we have an exact analytical result for the Fermi-Dirac integral

for j = 0: it is F0(⌘) = ln(1 + e⌘). The validity of the approximations in Equation
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6.20 are easily verified for this special case. No exact analytical expressions for other

orders (j 6= 0) exist. The approximations in Equation 6.20 then assume increased

importance for analytical evaluation of various physical quantities such as the mobile

carrier densities in semiconductor bands, transport phenomena, and optical properties.

The order j depends on the dimensionality of the problem. Figure 6.5 illustrates the

cases of the Fermi-Dirac integrals and their approximations for the cases of j = 0 and

j = 1
2 .

6.3 Meaning of equilibrium in semiconductor devices

Let us now consider a few semiconductor devices to develop a deeper understanding of

the meaning of equilibrium in semiconductor devices. The first and simplest example is a

1D semiconductor (for example a carbon nanotube or a thin nanowire), which has ohmic

contacts to two metal electrodes. The allowed energy eigenvalues in the semiconductor

channel are those in the valence and conduction bands with band edge energies Ev, Ec,

separated by a bandgap Eg, as indicated in Figure 6.6. Consider the 1D semiconductor

to be doped n-type, with mobile electrons in the conduction band, and no mobile carriers

in the valence band. Then the true meaning of an ohmic contact is the following: the

electrons in the conduction band of the semiconductor are in thermodynamic equilibrium

with the electrons in the metal contacts, in the Gibbs-sense. The conduction band

states (or orbitals) in the semiconductor can freely exchange particles (electrons) and

energy with the states or orbitals in the contacts, which is the reservoir. Connect this

concept of Gibbs equilibrium in Figure 6.6 with the picture we used earlier in Figure

6.1. Note here we have two reservoirs. The particles in the left contact (reservoir) are

in equilibrium with each other, and those in the right contact are in equilibrium with

each other. When no external voltage is applied across them, the contacts are also in

thermodynamic equilibrium with each other.

Inside the semiconductor connecting the contacts, there are particles that are moving to

the right, and those moving to the left. Let us consider the situation where the left- and

right-going carriers do not mix, i.e., there is no scattering of carriers. This is referred to

as the ballistic case, and is approximately realized for very short semiconductor lengths.

Consider the electrons moving to the right in the semiconductor. These electrons can

only enter the semiconductor from the left contact. Then the electrons moving to the

right are in thermodynamic equilibrium with the left contact. Similarly, carriers moving

to the left in the semiconductor are in equilibrium with the right contact. Being in

thermodynamic equilibrium in the Gibbs sense means the right-moving electron states

share the same chemical potential µ and temperature T as the electrons in the left contact
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Ohmic Schottky

Figure 6.6: Illustration of the concept of equilibrium for Ohmic and Schottky contacts
between metals and semiconductors.

metal. This is an extremely important consequence of thermodynamic equilibrium.

Similarly the carriers in the semiconductor moving to the left could only have entered

from the right contact, which keeps them in equilibrium with that contact and share µ

and T . As long as the chemical potentials of the contacts are the same, the net current

flow due the left and right moving carriers in the semiconductor exactly cancel, because

they share the same µ.

When a voltage is applied between the contacts, the chemical potential of one contact

is µL � µR = qV larger than the other. This in turn breaks the delicate balance of

left-and right-moving carriers inside the semiconductor. The imbalance of the left and

right moving carriers as indicated in Figure 6.6 thus is the driver of an electric current

through the semiconductor, completing the circuit. We will use this picture to calculate

the current through a ballistic semiconductor channel in Chapter 7, and show that the

conductance is quantized.

If the chemical potential potential of the metal lines up with energies in the bandgap

of the semiconductor, a Schottky contact results, as indicated in Figure 6.6. The figure

shows again a semiconductor in contact with two metals: the left contact is now Schottky,

and the right contact is ohmic to the conduction band electrons in the semiconductor.

Going back to our discussion of equilibrium in Section 6.1, we realize that the left-

moving electrons in the semiconductor are in thermodynamic equilibrium with the right

contact. But the right moving electrons in the semiconductor are not in thermodynamic
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equilibrium with the left contact in the Gibbs sense, because there is a barrier between

them that prevents free particle exchange. When a voltage is applied across the two

metal contacts, the stronger imbalance of equilibrium between the left-and right-going

carriers in the semiconductor cause a high asymmetry in the current flow as a function

of the voltage. For the ‘forward’ bias condition shown, the left-moving carriers in the

semiconductor that make it over the barrier to the metal are in equilibrium with the right

contact. Since their chemical potential changes linearly with voltage, their concentration

increases exponentially with voltage, causing a characteristic exponential turn-on of the

diode. We will discuss this quantitatively in later chapters.

Figure 6.7: Illustration of the concept of equilibrium for p-n junctions.

Figure 6.7 shows a semiconductor p-n junction. Note the reservoirs are metals, but

clearly we have chosen two di↵erent metals to form ohmic contacts individually to the

p-side and the n-side of the semiconductor. An ohmic contact between a semiconductor

and one metal electrode is possible for carriers in only one of the semiconductor bands,

not both. This means with the proper choice of metals, we can form an ohmic contact

to the conduction band of a n-type semiconductor for a n-type ohmic contact, and to

the valence band of a p-type semiconductor for a p-type ohmic contact separately. So

the holes in the valence band of the p-type semiconductor layer are in thermodynamic

equilibrium with the p-ohmic metal (left), and the electrons in the n-type semiconductor

layer are in thermodynamic equilibrium with the n-contact metal. Note now we also have

two types of carriers - electrons in the conduction band, and holes in the valence band.

When no voltage is applied, the holes in the p-side are in thermodynamic equilibrium

with the electrons in the n-side - because they are in turn in equilibrium with their

respective ohmic contact metal reservoirs. So they share a common chemical potential.

However, when a voltage is applied, as indicated in Figure 6.7, the equilibrium is broken;

the chemical potentials of the conduction band electrons in the n-side and valence band

holes in the p-type now di↵er by µn � µp = qV . This again is responsible for current

flow, as will be discussed in later chapters.
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As a final example, consider a 3-terminal device, the field-e↵ect transistor (FET) shown

in Figure 6.8. The carriers in the inversion channel have ohmic contacts to the source

and drain contacts, but a Schottky-type contact through an additional insulating barrier

layer to the gate metal reservoir. So the carriers in the semiconductor channgel can be

in thermal equilibrium with the carriers in the gate metal, but not in thermodynamic

equilibrium in the Gibbs sense because the exchange of particles between the gate metal

and the semiconductor channel is explicitly prohibited. The right-going carriers are

again injected from the left contact, and the left-going carriers are injected from the

right contact. But the carrier density in the semiconductor is controlled by the gate

voltage capacitively. We will use this picture in Chapter 10 to discuss the FET in detail.

The FET is the most commonly used semiconductor device today.

Figure 6.8: Illustration of the concept of equilibrium for a 3-terminal MOSFET
device.

Debdeep Jena: www.nd.edu/⇠djena
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