
Chapter 2

Quantum Mechanics in a Nutshell

2.1 Introduction

2.2 Photons

Time: end of the 19th century. Maxwell’s equations have established Faraday’s hunch

that light is an electromagnetic wave. However, by early 20th century, experimental

evidence mounted pointing towards the fact that light is carried by ‘particles’ that

pack a definite momentum and energy. Here is the crux of the problem: consider the

double-slit experiment. Monochromatic light of wavelength � passing through two slits

separated by a distance d ⇠ � forms a di↵raction pattern on a photographic plate. If one

tunes down the intensity of light in a double-slit experiment, one does not get a ‘dimmer’

interference pattern, but discrete strikes on the photographic plate and illumination at

specific points. That means light is composed of ‘particles’ whose energy and momentum

are concentrated in one point which leads to discrete hits. But their wavelength extends

over space, which leads to di↵raction patterns.

Planck postulated that light is composed of discrete lumps of momemtum p = ~k and

energy E = ~!. Here k = (2⇡/�)n̂, n̂ the direction of propagation, ~ is Planck’s

constant, and ! = c|k| with c the speed of light. Planck’s hypothesis explained spectral

features of the blackbody radiation. It was used by Einstein to explain the photoelectric

e↵ect. Einstein was developing the theory of relativity around the same time. In this

theory, the momentum of a particle of mass m and velocity v is p = mv/
p
1� (v/c)2,

where c is the speed of light. Thus if a particle has m = 0, the only way it can pack a

momentum is if its velocity is v = c. Nature takes advantage of this possibility and gives

us such particles. They are now called photons. Thus photons have no mass, but have
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Figure 2.1: Photons behaving as particles.

momentum. Thus light, which was thought a wave acquired a certain degree of particle

attributes. So what about particles with mass - do they have wave nature too? Nature

is too beautiful to ignore this symmetry!

2.3 Wave-Particle Duality

de Broglie hypothesized in his PhD dissertation that classical ‘particles’ with mass also

have wavelengths associated with their motion. The wavelength is � = 2⇡~/|p|, which
is identical to p = ~k. How could it be proven? The wavelength of light was such

that di↵raction gratings (or slits) were available at that time. But electron wavelengths

were much shorter, since they had substantial momentum due to their mass. Elsassaer

proposed using a crystal where the periodic arrangement of atoms will o↵er a di↵raction

grating for electrons. Davisson and Germer at Bell labs shot electrons in a vacuum

chamber on the surface of crystalline Nickel. They observed di↵raction patterns of

electrons. The experiment proved de Broglie’s hypothesis was true. All particles had

now acquired a wavelength.

The experiment challenged the understanding of the motion or ‘mechanics’ of particles,

which was based on Newton’s classical mechanics. In classical mechanics, the question

is the following: a particle of mass m has location x and momentum p now. If a force

F acts on it, what are (x0, p0) later? Newton’s law F = md2x/dt2 gives the answer.



Chapter 2. Quantum Mechanics in a Nutshell 7

Figure 2.2: Electrons behaving as waves.

The answer is deterministic, the particle’s future fate is completely determined from its

present. This is no longer correct if the particle has wave-like nature. The wave-particle

duality is the central fabric of quantum mechanics. It leads to the idea of a wavefunction.

2.4 The wavefunction

If a particle has a wavelength, what is its location x? A wave is an extended quantity.

If a measurement of the particle’s location is performed, it may materialize at location

x0. But repeated measurements of the same state will yield hxi = x0 + �x. Separate

measurements of the momentum of the particle prepared in the same state will yield

hpi = p0 + �p. The ‘uncertainty’ relation �x�p � ~/2 is a strictly mathematical

consequence (*more description needed*) of representing a particle by a wave.

Because the ‘numbers’ (x, p) of a particle cannot be determined with infinite accuracy

simultaneously, one has to let go of this picture. How must one then capture the me-

chanics of a particle? Any mathematical structure used to represent the particle’s state

must contain information about its location x and its momentum p, since they are for-

ever intertwined by the wave-particle duality. One is then forced to use a function, not

a number. The function is denoted by  , and is called the wavefunction.
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Figure 2.3: Birth of the wavefunction to account for the wave-particle duality.

A first attempt at constructing such a function is  (x) = A cos(px/~). This guess is

borrowed from the classical representation of waves in electromagnetism, and in fluid

dynamics. The wavefunction can represent a particle of a definite momentum p. Max

Born provided the statistical interpretation of the wavefunction by demanding that

| |2 be the probability density, and
R
| |2dx = 1. In this interpretation, | (x)|2dx

is the probability that a measurement of the particle’s location will find the particle

in the location (x, x + dx). It is clear that | (x)|2 = |A|2 cos2(px/~) assigns specific

probabilities of the location of the particle, going to zero at certain points. Since the

momentum p is definite, the location of the particle must be equally probable at all

points in space. Thus we reject the attempted wavefunction as inconsistent with the

uncertainty principle.

The simplest wavefunction that is consistent with the wave-particle duality picture is

 p(x) = Aeipx/~. The complex exponential respects the wave-nature of the particle by

providing a periodic variation in x, yet it never goes to zero. The probability (density) is

| p(x)|2 = |A|2, equal at all x. Thus, complex numbers are inevitable in the construction

of the wavefunction representing a particle.
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Figure 2.4: The superposition principle allows us to create wavefunctions that can
represent as ’wave-like’ or as ’particle-like’ states we want. Wave-like states have large
�x and small �p, and particle-like states have small �x and large �p. All the while,

they satisfy the uncertainty principle �x�p � ~/2.

2.5 Operators

Every physical observable in quantum mechanics is represented by an operator. When

the operator ‘acts’ on the wavefunction of the particle, it extracts the value of the

observable. For example, the momentum operator is p̂ = �i~@/@x, and for states of

definite momentum p̂ p(x) = (~k) p(x). We note that (xp̂� p̂x)f(x) = i~f(x) for any
function f(x). The presence of the function in this equation is superfluous, and thus

one gets the identity

xp̂� p̂x = [x, p̂] = i~. (2.1)

The square brackets define a commutation relation. The space and momentum operators

do not commute. In classical mechanics, [x, p] = 0. Quantum mechanics elevates the

‘status’ of x and p to those of mathematical operators, preventing them from commuting.

This is referred to as the ‘first quantization’ from classical to quantum mechanics. In

this scheme, the dynamical variables (x, p) that were scalars in classical mechanics are

promoted to operators, and the wavefunction  is a scalar. If the number of particles
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is not conserved, then one needs to go one step further, and elevate the status of the

wavefunction  !  ̂ too, which is called second quantization.

2.6 States of definite momentum and location

Figure 2.5: Quantum mechanics of the particle on a ring.

The wavefunction  p(x) = Aeipx/~ is a state of definite momentum since it is an eigen-

state of the momentum operator p̂ p(x) = p p(x). One may demand the location of the

particle to be limited to a finite length L. This may be achieved by putting an electron

on a ring of circumference L, which yields upon normalization A = 1/
p
L. In that case,

the wavefunction must satisfy the relation  p(x+ L) =  p(x) to be single-valued. This

leads to eikL = 1 = ei2⇡⇥n, and kn = n⇥ (2⇡/L). Here n = 0,±1,±2, ... The linear mo-

mentum of the electron is then quantized, allowing only discrete values. Since L = 2⇡R

where R is the radius of the ring, knL = 2⇡n ! pR = n~, showing angular momen-

tum is quantized to 0,±~,±2~, .... This indeed is the quantum of quantum mechanics!

One may then index the wavefunctions of definite linear momentum by writing  n(x).

Expressing states of definite momentum in terms of states of definite location similarly

yields

 n(x) =
1p
L
eiknx (2.2)

The set of wave functions [... �2(x), �1(x), 0(x), 1(x), 2(x), ...] = [ n(x)] are spe-

cial. We note that
R L
0 dx ?

m(x) n(x) = �nm, i.e., the functions are orthogonal. Any
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general wavefunction representing the particle  (x) can be expressed as a linear com-

bination of this set. This is the principle of superposition, and a basic mathematical

result from Fourier theory. Thus the quantum mechanical state of a particle may be

represented as  (x) =
P

nAn n(x). Clearly, An =
R
dx ?

n(x) (x). Every wavefunc-

tion constructed in this fashion represents a permitted state of the particle, as long asP
n |An|2 = 1.

Figure 2.6: States of definite location and states of definite momentum.

It is useful here to draw an analogy to the decomposition of a vector into specific coordi-

nates. The ‘hybrid’ state function  (x) is pictured as a vector | i in an abstract space.

The definite momentum wavefunctions  n(x) are pictured as the ‘coordinate’ vectors |ni
in that space of vectors. This set of vectors is called the basis. Since there are an infinite

set of integers n = 0,±1,±2, ..., the vector space is infinite dimensional. It is called the

Hilbert space. One may then consider the coe�cients An as the length of the projections

of the state on the basis states. The abstract picture allows great economy of expres-

sion by writing | i =
P

nAn|ni. The orthogonality of the basis states is hm|ni = �mn,

and thus An = hn| i. Then it is evident that | i =
P

nhn| i|ni =
P

n |nihn| i, andP
n |nihn| = 1.

A vector may be decomposed in various basis coordinates. For example, a vector in

3-d real space may be decomposed into cartesian, spherical, or cylindrical coordinate

systems. Similarly, the choice of basis states of definite momentum is not unique. The

wavefunctions for states of definite location are those functions that satisfy x x0(x) =

x0 x0(x), which lets us identify  x0(x) = �(x � x0). Here �(...) is the Dirac-delta

function, sharply peaked at x = x0. It is instructive to expand the states of definite

location in the basis of the states of definite momentum. From the uncertainty relation,

we expect a state of definite location to contain many momenta. The expansion yields

An =
R +1
�1 dk/(2⇡/L) ⇥ (eiknx/

p
L)�(x � x0) = eiknx0/

p
L (**check this!!**), whereby

|An|2 = 1/L. Thus, the state of definite location x0 is constructed of an infinite number

of states of definite momentum n = 0,±1,±2, ..., each with equal probability 1/L.
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Figure 2.7: Vector spaces for quantum states: we can use results of linear algebra for
quantum mechanics problems.

2.7 States of definite energy: Schrodinger equation

States of definite energy  E(x) are special. Unlike the states of definite momentum

or definite location, we cannot write down their general wavefunction without more

information. That is because the energy of a particle depends on its potential and

kinetic components. In classical mechanics, the total energy is p2/2m + V (x), i.e.,

split between kinetic and potential energy components. Once x & p are known for

a classical particle, the energy is completely defined, meaning one does not need to

ask another question. However, since x and p cannot be simultaneously defined for

a quantum-mechanical particle with arbitrary accuracy, the energy must be obtained

through operations performed on the wavefunction.

Schrodinger provided the recipe, and the equation is thus identified with his name. The

Schrodinger equation is

[� ~2
2m

@2

@x2
+ V (x)] E(x) = E E(x). (2.3)

The solution of this eigenvalue equation for a V (x) identifies the special wavefunctions

 E(x). These wavefunctions represent states of definite energy. How did we ascertain

the accuracy of the Schrodinger equation? The answer is through experiments. A
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major unresolved problem at the time was explaining the discrete spectral lines emitted

from excited hydrogen atoms. Neils Bohr had a heuristic model to explain the spectral

lines that lacked mathematical rigor. The triumph of Schrodinger equation was in

explaining the precise spectral lines. An electron orbiting a proton in a hydrogen atom

sees a potential V (r) = �q2/4⇡✏0r. Schrodinger solved this equation (with help from a

mathematician), and obtained energy eigenvalues En = �13.6/n2 eV. Thus Bohr’s semi-

qualitative model was given a rigid mathematical basis by Schrodinger’s equation. The

equation also laid down the recipe for solving similar problems in most other situations

we encounter. Just as the case for states of definite energy or definite location, one

may expand any state of a quantum particle in terms of the states of definite energy

 (x) =
P

E AE E(x), or equivalently | i =
P

E AE |Ei

So why do states of definite energy occupy a special position in applied quantum me-

chanics? That becomes clear if we consider the time-dependent Schrodinger equation.

2.8 Time-dependent Schrodinger equation

Figure 2.8: The dynamics of quantum states is governed by the time-dependent
Schrodinger equation. Note that it looks like a hybrid of the classical energy and a

wave equation, which is how it must be to account for the wave-particle duality.

Newton’s law F = dp/dt provides the prescription for determining the future (x0, p0)

of a particle given its present (x, p). Schrodinger provided the quantum-mechanical

equivalent, through the time-dependent equation
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i~@ (x, t)
@t

= [� ~2
2m

@2

@x2
+ V (x)| {z }

Ĥ

] (x, t). (2.4)

To track the time-evolution of quantum states, one must solve this equation and ob-

tain the composite space-time wavefunction  (x, t). Then physical observables can be

obtained by operating upon the wavefunction by the suitable operators. Let’s look at

a particular set of solution wavefunctions which allow the separation of the time and

space variables, of the form (x, t) = �(t) (x). Inserting it back into the time-dependent

Schrodinger equation and rearranging, we obtain

i~
˙�(t)

�(t)
=

Ĥ (x)

 (x)
= E. (2.5)

Note that since the left side does not depend on space, and the right side does not

depend on time, both the fractions must be a constant. The constant is called E, and

clearly has dimensions of energy in Joules. The right half of the equation lets us identify

that Ĥ E(x) = E E(x) are states of definite energy. Then the left side dictates that the

time dependence of these states is described by �(t) = �(0)e�iEt/~. Thus the particular

set of solutions

 E(x, t) =  E(x)e
�iE~ t (2.6)

now define the time evolution of the states. Here  E(x) are states of definite energy, as

obtained by solving the time-independent Schrodinger equation.

2.9 Stationary states and time evolution

We note that | E(x, t)|2 = | E(x)|2, that is, the state  E(x, t) does not change with

time. That means that a particle prepared in a state of definite energy will stay in

that energy if there are no perturbations. Its wavefunction does evolve as exp (�iEt/~),
but this evolution is ‘unitary’ since its absolute value is unity. Notice the analogy with

Newton’s first law, which states that a particle at rest or moving with constant velocity

will continue to do so unless acted upon by a force. The states of definite energy are

therefore special since they do not evolve with time unless perturbed, and are called

‘stationary states’. Thus the expansion may be written as
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 (x, t) =
X
E

AE E(x, t) =
X
E

AE E(x)e
�iE~ t. (2.7)

The states of definite energy form a convenient and often-used basis for expansion of

general states of a particle. That is because they are stationary states - it is simpler if

the basis states are fixed.

Consider a simple case where a hybrid state  (x, t) is prepared with components in

two states |E1i and |E2i. Then, the expansion is  (x, t) = AE1 E1(x)e
�iE1t/~ +

AE2 E2(x)e
�iE2t/~. The probability density of this state then is, for real A’s

| (x, t)|2 = |AE1 |2| E1(x)|2 + |AE2 |2| E2(x)|2 +AE1AE2 E1(x) E2(x) cos (
E1 � E2

~ )t,

(2.8)

which does oscillate with time with frequency !12 = (E1�E2)/~. Such two-level systems

are being currently explored for making quantum-bits or qubits for a form of analog

computation called quantum-computation.

All transport and optical phenomena involve time evolution. So most of the time in

semiconductor physics we we are working with the solutions of the time-dependent

Schrodinger equation. The states of definite energy as a function of momentum E(k)

that form the energy bandstructure of the solid thus provide a most convenient basis for

the analysis of electronic and optical phenomena of semiconductors.

The time evolution of the expectation value of an operator is given by Ehrenfrest’s

theorem

dhÂi
dt

= � i

~h[Â, Ĥ]i, (2.9)

where the operator itself is time-independent. By using Â = p̂ and Ĥ = p̂2/2m+ V (x),

Ehrenfrest’s theorem directly leads to Newton’s 2nd law. It forms the starting point for

the density-matrix formulation of the time-evolution of quantum states.

2.10 Fermions and Bosons

Consider two quantum states |ai and |bi with real-space wavefunctions  a(x) and  b(x).

What is the many-particle wavefunction when two particles are put in the two states?
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Figure 2.9: Indistinguishable particles su↵er an identity crisis when we try construct-
ing a wavefunction for more than one particle!

Lets label the locations of the two particles as x1 and x2. If the two particles are

distinguishable, such as an electron and a proton, then the composite wavefunction may

be written as the product of the single-particle wavefunctions

 (x1, x2) =  a(x1) b(x2). (2.10)

But if the two particles are indistinguishable, such as two electrons, the wavefunction

must satisfy further requirements. Specifically, if we swap the locations of the two

electrons x1 $ x2, the physical observables of the composite state must remain the

same. This requirement dictates that the probability density must satisfy

P (x2, x1) = P (x1, x2) ! | (x2, x1)|2 = | (x1, x2)|2. (2.11)

The original product wavefunction does not satisfy this requirement. It cannot represent

indistinguishable particles. A symmetrized form, however does the job:

 (x1, x2) =  a(x1) b(x2) +  a(x2) b(x1) (2.12)

because

 (x2, x1) = + (x1, x2) (2.13)

and the probability density does not change upon swapping. We also note that both

particles may be in the same x since
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 (x1, x1) = + (x1, x1) (2.14)

is OK. Particles in nature that choose the ‘+’ sign are bosons. Multiple bosons can

occupy the sate quantum state.

The anti-symmetrized form

 (x1, x2) =  a(x1) b(x2)�  a(x2) b(x1) (2.15)

leads to

 (x2, x1) = � (x1, x2), (2.16)

which is also permitted, since the probability density remains unaltered by the nega-

tive sign upon swapping the particles. Particles that choose the ‘-’ sign are fermions.

However, an attempt to put both fermions in the same location leads to

 (x1, x1) = � (x1, x1) !  (x1, x1) = 0. (2.17)

This is the Pauli exclusion principle. It states the simple result that two identical

fermions (e.g. electrons) cannot be in the same quantum state. It is responsible for all

chemical behavior of matter and the existence of the periodic table of elements.

In the presence of large number of electrons, the Pauli-exclusion principle leads to an

occupation probability of quantum states. The result was first derived by Dirac, and is

called the Fermi-Dirac relation

fFD(E) =
1

1 + e
E�EF

kT

, (2.18)

where EF is the Fermi-energy, k the Boltzmann constant, and T the absolute tempera-

ture. Note that the value cannot exceed 1.

The equivalent statistical result for bosons is

fBE(E) =
1

e
E�µ
kT � 1

, (2.19)
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where µ is the chemical potential. The Bose-Einstein distribution allows values larger

than 1. Dramatic e↵ects such as the Bose-Einstein condensation (BEC), lasers, and the

existence of superconductivity occurs when many bosons can co-exist in the same state.

The bosons can be composite particles, for example Cooper-pairs in superconductors

that are electron-phonon-electron quasiparticles where electrons are ‘glued’ together by

phonons.

Figure 2.10: Indistinguishable particles can be of two types: Bosons, or Fermions.
They have very di↵erent properties!

2.11 Spin, and the Spin-Statistics Theorem

In addition to linear momentum p = ~k and angular momentum L = r⇥ p, electrons

also possess an extra bit of spin angular momentum. In semiconductors, electron spin

plays an important role in the electronic band structure. The net angular momentum of

electron states is obtained by adding the various components of the angular momenta.

The exclusion principle is central to the spin-statistics theorem from relativistic quantum

field-theory. It states that bosonic particles have integer spins, and fermonic particles

have half-integer spins. That means bosons have spins S = 0,±~,±2~, ..., and fermions

have spins S = ±~/2,±3~/2, .... Electrons have spin ±~/2.
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The fundamental dichotomy of particles in nature has received increasing attention the

last three decades. Quasi-particle states have been observed (for example in the frac-

tional quantum Hall e↵ect) that behave neither like fermions nor bosons. Swapping the

single-particle states for such quasi-particles leads to the accumulation of a phase factor:

 (x2, x1) = ei� (x1, x2). (2.20)

These particles evidently satisfy the indistinguishability criteria, but accumulate a(ny)

phase, leading to their name anyons. Anyon states can exhibit a richer range of statistics

than fermions and bosons. For anyons, commuting (or Abelian) statistics has similarity

to fermions and bosons, but non-commuting (or non-Abelian) statistics does not have

such an analog. Non-Abelian anyons are of current interest due to their proposed usage

in topological quantum computation.

2.12 The Dirac equation and the birth of particles

Dirac was not comfortable with Schrodinger’s equation since it was not consistent with

relativity, and did not predict spin of electrons. He was able to reformulate the quantum-

mechanics of electrons from Schrodinger’s equation

i~@| i
@t

= [
p̂2

2m
+ V (r, t)]| i (2.21)

to the Dirac equation

i~@| i
@t

= [c↵ · p̂+ �mc2 + V (r, t)]| i (2.22)

where c is the speed of light, and ↵̂,� are matrices. Before Dirac, the concept of a

‘particle’ was not very clear. Dirac’s assertion was to the e↵ect: ‘a particle is the

solution of my equation’. Dirac’s equation described the electron energy spectrum with

more accuracy than Schrodinger’s equation, and accounted for spin naturally. It also

predicted the existence of negative energy states, or anti-electrons. This was the first

prediction of antimatter. A few years after the prediction, such particles were discovered

in cloud chambers by Carl Anderson; these particles are called positrons. Electrons and

positrons annihilate each other, emitting light of energy ~! = 2m0c2.

The philosophy of Dirac that ‘particles are solutions to equations’ gave rise to the predic-

tion of a number of new particles that have since been observed such as quarks, gluons,
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Higgs boson, etc... Majorana fermions fall under the category of predicted exotic parti-

cles, and there is intense interest in realizing such exotic states in matter for topological

quantum computation. What was exotic yesterday will become commonplace tomorrow,

so keep track of those ‘particles’ !

2.13 The Postulates of Quantum Mechanics

The five basic postulates of quantum mechanics are:

(1) The state of any physical system at a given time t is completely represented by a

state vector | i = | (r, t)i.

(2) For an observervable quantity A there is an operator Â. The eigenvalues of Â are

the possible results of the measurements of A, that is, denoting the eigenvalues of

Â by a,

Â|ai = a|ai, (2.23)

and the probability of a measurement of A yielding the value a at time t is

|ha| (t)i|2. The a’s, which are the results of possible measurements, must be

real. This implies that Â must be a linear hermitian operator.

(3) A measurement of | i that leads to an eigenvalue ai leads the quantum mechanical

system to collapse into the eigenstate | ii, which is the eigenstate corresponding

to the eigenvalue ai. So a measurement a↵ects the state of the quantum system.

(4) There exists a hermitian operator Ĥ such that

i~@| (r, t)i
@t

= Ĥ| (r, t)i. (2.24)

(5) Two classical dynamical variables a, b, which are conjugate in the Hamiltonian

sense, are represented by Schrodinger operators Â,B̂, which obey

ÂiB̂j � B̂jÂi = i~�ij . (2.25)

Debdeep Jena: www.nd.edu/⇠djena
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