
Chapter 24

Fermi’s Golden Rule

24.1 Introduction

In this chapter, we derive a very useful result for estimating transition rates between

quantum states due to time-dependent perturbation. The results will be used heavily

in subsequent chapters to understand the optical and electronic transport properties of

semiconductors.

24.2 Fermi’s Golden Rule

Consider an unperturbed quantum system in state | t0i at time t = t0. It evolves to the

state | ti at a future instant t. The time evolution of the state vector is governed by the

unperturbed Hamiltonian H0 according to the time-dependent Schrodinger equation

i~ @

@t
| ti = H0| ti. (24.1)

If the system was in an eigenstate | t0i = |0i of energy E0 at time t0, then the state at

a future time di↵ers from the initial state by a phase factor

H0| t0i = E0| t0i =) | ti = e�i
E0
~ (t�t0)| t0i. (24.2)

This is a stationary state; if the quantum state started in an eigentstate, it remains in

that eigenstate as long as there is no perturbation. But the eigen-state vector still ‘ro-

tates’ in time with frequency !0 = E0/~ in the Hilbert space as indicated schematically
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in Figure 24.1. It is called stationary because physical observables of the eigenstate will

require not the amplitude, but the inner product, which is h t| ti = h t0 | t0i. This is
manifestly stationary in time.

State vectors rotate in time State vectors do not rotate in time

Schrodinger picture Interaction picture

Transformation

Figure 24.1: Schrodinger vs. Interaction pictures of time-evolution of quantum state.

Now let us perturb the system with a time-dependent term Wt. This perturbation can be

due to a voltage applied on a semiconductor device, or electromagnetic waves (photons)

incident on a semiconductor. The new Schrodinger equation for the time evolution of

the state is

i~ @

@t
| ti = [H0 +Wt]| ti. (24.3)

In principle, solving this equation will yield the complete future quantum states. In

practice, this equation is unsolvable, even for the simplest of perturbations. Physically,

the perturbation will ‘scatter’ a particle that was, say in state |0i to state |ni. However,
we had noted that even in the absence of perturbations, the eigen-state vectors were

already evolving with time in the Hilbert space. For example, state vector |0i was rotat-
ing at an angular frequency !0, and state vector |ni at !n. This is shown schematically

in the left of Figure 24.1. It would be nice to work with unperturbed state vectors that

do not change in time, as in the right of Figure 24.1. This calls for a transformation to

a vector space that ‘freezes’ the time evolution of the unperturbed eigen state-vectors.

Such a transformation is achieved by the relation



Chapter 24. Fermi’s Golden Rule 148

| t ! = e! i H 0
! t | (t)! , (24.4)

where H0 is the Hamiltonian operator. Note that the operator now sits in the exponen-

tial, but it should not worry us much. We will see that it is rather useful to have it up

there. The reason for this non-obvious transformation is because when we put this into

the Schrodinger equation in Equation 24.3, we get

i !
!

"
i
!

H0e! i H 0
! t | (t)! + e! i H 0

! t !
! t

| (t)!
"

= [H0 + Wt ]e! i H 0
! t | (t)! , (24.5)

and there is a crucial cancellation, leaving us with

i !
!
! t

| (t)! = [e+ i H 0
! t Wt e! i H 0

! t ]| (t)! = W (t)| (t)! (24.6)

where W (t) = e+ i H 0
! t Wt e! i H 0

! t . Can we take the operator e! i H 0
! t from the left to the

right side as e+ i H 0
! t? Yes we can, because e+ i H 0

! t · e! i H 0
! t = I , the identity operator.

The boxed form of the time-evolution is called the interaction picture, as opposed to

the conventional form of Equation 24.3, which is called the ‘Schrodinger’ picture. Note

that if there is no perturbation, Wt = 0 =# W (t) = 0 =# i ! ! |! (t )"
! t = 0. Then,

| (t)! = | (t0)! , and we have managed to find the state vector representation in which

the unperturbed eigenvectors are indeed frozen in time.

Now lets turn the perturbation Wt on. Formally, the state vector at time t in the

interaction representation is obtained by integrating both sides:

| (t)! = | (t0)! +
1

i !

# t

t0

dt#W (t#)| (t#)! , (24.7)

and it looks as if we have solved the problem. However, there is a catch - the unknown

state vector | (t)! appears also on the right side - inside the integral. This is also a re-

cursive relation! It reminds of the Brilloiun-Wigner form of non-degenerate perturbation

theory. Let’s try to iterate the formal solution once:

| (t)! = | (t0)! +
1

i !

# t

t0

dt#W (t#)

$

| (t0)! +
1

i !

# t !

t0

dt##W (t##)| (t##)!

%

, (24.8)

and then keep going:
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|! (t)! = |! (t0)!
! "# $

! W 0

+
1
i !

%t

t0

dt"W (t")|! (t0)!
! "# $

! W 1

+
1

(i ! )2

%t

t0

dt"W (t")
%t!

t0

dt""W (t"")|! (t0)!
! "# $

! W 2

+ ...

(24.9)

We thus obtain a formal perturbation series to many orders. The hope is that the series

converges rapidly if the perturbation is ÔsmallÕ, because successive terms increase as a

power law, which for a small number gets even smaller. LetÕs accept that weak argument

now at face value, and we return later to address, justify, and where possible, Þx this

cavalier approximation.

Let |! (t0)! = |0! be the initial state of the quantum system. The perturbation is turned

on at time t0. The probability amplitude for the system to be found in state|n! at time

t(> t 0) is "n|! t ! . Note the Schrodinger representation! But the transformation from

Schrodinger to interaction picture helps: "n|! t ! = "n|e# i H 0
! t ! (t)! = e# i E n

! t "n|! (t)! .

This implies |"n|! t ! |2 = |"n|! (t)! |2 - for all eigenstates|n! . Let us make an approxi-

mation in this section and retain only the Þrst order term in the perturbation series.

We will return later and discuss the higher order terms that capture multiple-scattering

events. Retaining only the terms of Eq. 24.9 to Þrst order in the perturbation W gives

"n|! (t)! # " n|0!
! "# $

=0

+
1
i !

%t

t0

dt""n|W (t")|0! =
1
i !

%t

t0

dt""n|e+ i H 0
! t !

Wt! e# i H 0
! t !

|0! . (24.10)

Let us assume the perturbation to be of the formWt = e! t W representing a Ôslow turn

onÕ, with! = 0 + , and W = W (r ) a function that depends only on space. If! = 0, then

the perturbation is time-independent. But if ! = 0 + , then e! t0 $ 0 as t0 $ %& . This

construction thus e" ectively kills the perturbation far in the distant past, but slowly

turns it on to full strength at t = 0. We will discuss more of the physics buried inside!

later. For now, we accept it as a mathematical construction, with the understanding to

take the limit ! $ 0 at the end. Then, the amplitude in state |n! simpliÞes:

"n|! (t)! #
1
i !

%t

t0

dt" "n|e+ i H 0
! t !

! "# $
e+ i E n

! t !
$n|

e! t !
W e# i H 0

! t !
|0!

! "# $

e" i
E 0
! t !

|0%

=
"n|W |0!

i !

%t

t0

dt"e
i
!

E n " E 0
!

"
t !

e! t !
,

(24.11)

and the integral over time may be evaluated exactly to yield
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! t

t0

dt!e
i
!

E n ! E 0
!

"
t "

e! t "
=

e
i
!

E n ! E 0
!

"
t
e! t ! e

i
!

E n ! E 0
!

"
t0 e! t0

i
" En " E0

!

#
+ !

=$%&'
t0#"$

e
i
!

E n ! E 0
!

"
t
e! t

i
" En " E0

!

#
+ !

. (24.12)

The amplitude then is

"n|! (t)# $
"n|W |0#

i !
á

e
i
!

E n ! E 0
!

"
t
e! t

i
" En " E0

!

#
+ !

= "n|W |0#á
e

i
!

E n ! E 0
!

"
t
e! t

(E0 ! En) + i ! !
. (24.13)

The probability of the state making a transition from |0# to |n# at time t is

|"n|! t #|2 = |"n|! (t)#|2 $ |"n|W |0#|2
e2! t

(E0 ! En)2 + ( ! ! )2 . (24.14)

The rate of transitions from state |0# % |n# is

1
"|0%#|n%

=
d
dt

|"n|! (t)#|2 $ |"n|W |0#|2
(

2!
(E0 ! En)2 + ( ! ! )2

)
e2! t . (24.15)

Now we take! % 0+ . The third term e2! t % 1, but we must be careful with the quantity

in the bracket. When ! % 0, this quantity is 0, except when the term E0 ! En =

0; then the term seems indeterminate. By making a plot of this function, we can

convince ourselves that it approaches a Dirac delta function in the variableE0 ! En.

The mathematical identity lim ! # 0+
2!

x2+ ! 2 = lim ! # 0+
1
i [ 1

x" i ! ! 1
x+ i ! ] = 2#$(x), where

$(...) conÞrms this: in the limit, the term indeed becomes the Dirac-delta function.

Then, using $(ax) = $(x)/ |a|, the rate of transitions is given by

1
"|0%#|n%

$
2#
!

|"n|W |0#|2$(E0 ! En), (24.16)

which is the FermiÕs golden rule. The general form is 2#/ ! times the transition matrix

element squared, times a Dirac-delta function as a statement of energy conservation.

24.3 Perturbations oscillating in time

Now suppose the perturbation potential was oscillating in time. We will encounter such

perturbations frequently, in the form of electron-photon, or electron-phonon interactions.

The mathematical nature of such perturbations with a slow turn-on is
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Wt = 2W e! t cos(! t) = e! t W (ei " t + e! i " t ) (24.17)

which leads to a|0! " |n! transition amplitude

#n|! (t)! $
#n|W |0!

i !

! " t

t0

dt"e
i
!

E n ! E 0+ ! !
!

"
t "

e! t "
+

" t

t0

dt"e
i
!

E n ! E 0 ! ! !
!

"
t "

e! t "
#

, (24.18)

Similar to Equations 24.12and 24.13, evaluating the integral with t0 " %& , we get the

amplitude for transitions

#n|! (t)! $ # n|W |0! á

$

% e
i
!

E n ! E 0+ ! !
!

"
t
e! t

(E0 %En + ! ! ) + i ! "
+

e
i
!

E n ! E 0 ! ! !
!

"
t
e! t

(E0 %En %! ! ) + i ! "

&

' . (24.19)

The probability is then

|#n|! (t)! |2 $ |#n|W |0! |2 á[
e2! t

(E0 %En + ! ! )2 + ( ! " )2 +
e2! t

(E0 %En %! ! )2 + ( ! " )2 +

e2i " t e2! t

(E0 %En + ! ! + i ! " )(E0 %En %! ! %i ! " )
+

e! 2i " t e2! t

(E0 %En + ! ! %i ! " )(E0 %En %! ! + i ! " )
]

(24.20)

The rate of transition is then

d
dt

|#n|! (t)! |2 $ |#n|W |0! |2 á[
2" e2! t

(E0 %En + ! ! )2 + ( ! " )2 +
2" e2! t

(E0 %En %! ! )2 + ( ! " )2 +

2(" + i ! )e2i " t e2! t

(E0 %En + ! ! + i ! " )(E0 %En %! ! %i ! " )
+

2(" %i ! )e! 2i " t e2! t

(E0 %En + ! ! %i ! " )(E0 %En %! ! + i ! " )
].

(24.21)
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Notice that the last two (interference) terms are a complex conjugate pair, which they

must be, because the rate of transition is real. The sum is then 2⇥ the real part of either

term. After some manipulations, one obtains

d

dt
|hn| (t)i|2 ⇡

hn|W |0i|2e2⌘t ·
✓

2⌘
(E0 � En + ~!)2 + ( ~⌘)2

+
2⌘

(E0 � En � ~!)2 + ( ~⌘)2

◆
[1� cos(2!t)]+

2 sin(2!t)
✓

E0 � En + ~!
(E0 � En + ~!)2 + ( ~⌘)2

� E0 � En � ~!
(E0 � En � ~!)2 + ( ~⌘)2

◆
.

(24.22)

Note that the rate has a part that does not oscillate, and another which does, with

twice the frequency of the perturbing potential. If we average over a few periods of

the oscillation, hcos(2!t)it = hsin(2!t)it = 0. Then, by taking the limit ⌘ ! 0+ in

the same fashion as in Equation24.16, we obtain the FermiÕs golden rule for oscillating

perturbations:

1
⌧|0i!|ni

⇡ 2⇡
~ ⇥ |hn|W |0i|2 ⇥ [�(E0 � En + ~!)| {z }

absorption

+ �(E0 � En � ~!)| {z }
emission

]. (24.23)

The Dirac-delta functions now indicate that the exchange of energy between the quantum

system and the perturbing Þeld is throughquantaof energy: either by absorption, leading

to En = E0 + ~!, or emission, leading toEn = E0 � ~!. The rates of each individual

processes are the same. Which process (emission or absorption) dominates depends on

the occupation functions of the quantum states.

24.4 Transitions to a continuum of states

The Fermi golden rule results in Equation 24.16 and 24.23 are in a form suitable for

tracking transitions between discrete, or individual states |0i and |ni. For many situ-

ations encountered in semiconductors, these transitions will be between states within,

or between energy bands, where acontinuum of states exist. In those cases, thenet

transition rate will be obtained by summing over all relevant states. Even the transition

between manifestly discrete states - for example the electron ground state of hydrogen

atom to the Þrst excited state - by the absorption of a photon - occurs by the interac-

tion between the discrete electron states and the states of the electromagnetic spectrum,

which forms a continuum.
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As an example, consider the transitions between electron states in the conduction band

due to a point scatterer in a 3D semiconductor. Let us say the point scatterer potential

is W (r) = V0! (r ), with V0 in units of eVám3. This is not an oscillating potential, so we

use the golden rule result of Equation 24.16. We first find the matrix element between

electron states |ki and |k !i:

hk !|V0! (r )|ki =
!

d3r

"
e" i k ! ár
p

V

#

V0! (r )
$

e+ i k ár
p

V

%
=

V0

V
, (24.24)

where we have used the property that the Fourier transform of a Dirac-delta function is

equal to 1. Then, the transition (or scattering) rate to any state |k !i is

1

" (|ki ! |k !i) =
2#
~

$
V0

V

%2

! (Ek � Ek ! ). (24.25)

The net scattering ‘out’ of state |ki into the continuum of states |k !i is then given by

1

" (|ki) =
&

k !

1

" (|ki ! |k !i) =
2#
~

$
V0

V

%2 &

k !

! (Ek � Ek ! )

' () *
D (E

k

)

, (24.26)

where we note that the sum over final states of the Dirac-delta function is the density of

states D(Ek ) in units eV" 1 of the electron at energy Ek . This procedure illustrates an

important result - the scattering rate for continuum of states is in general proportional

to a density of states relevant to the problem. The strength of scattering increases as

the square of the scattering potential. The occurrence of the (volume)2 term in the

denominator may be disconcerting at first. However, the macroscopic volume (or area,

or length) terms will for most cases cancel out because of purely physical reasons. For

example, for the problem illustrated here, if instead of just one point scatterer, we

had N , the density of scatterers is nsc = N/V . Together with the conversion process
+

k ! ! V
,

d3k !/(2#)3, we obtain

1

" (Ek )
=

2#
~

$
V0

V

%2

nscV

!
d3k !

(2! )3

V

! (Ek � Ek ! ) =
2#
~ V 2

0 nscg(Ek ). (24.27)

Here the density of states g(Ek ) is per unit volume, in units 1/(eV.m3), as is standard

in semiconductor physics. The scattering rate is linearly proportional to the density

of scatterers. What is not immediately clear is how can we capture the e! ect of N

scatterers by just multiplying the individual scatterer rate by N . This can be done if
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the scatterers are uncorrelated, as will be discussed in the transport chapters. For now,

note that the macroscopic volume has canceled out, as promised.

Debdeep Jena:www.nd.edu/ ! djena
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