
Chapter 10

Application II: The Ballistic

Field-E↵ect Transistor

10.1 Introduction

In this chapter, we apply the formalism we have developed for charge currents to un-

derstand the output characteristics of a field-e↵ect transistor. Specifically, we consider

the situation when transport of electrons in the transistor occurs without scattering due

to defects, i.e., ballistically from the source contact to the drain. The ballistic charac-

teristics highlight various quantum limits of performance of a transistor. They guide

material and geometry choices to extract the most of such devices. In this process we

develop powerful insights into the inner workings of the remarkable device that powers

the digital world.

10.2 The field-e↵ect transistor

Figure 10.1 illustrates a typical field-e↵ect transistor. A 2-dimensional electron gas

(2DEG) at the surface of a semiconductor (or in a quantum well) is the conducting

channel. It is separated from a gate metal by a barrier of thickness tb and dielectric

constant ✏b. The gate metal electrostatically controls the 2DEG density via the capaci-

tance Cb = ✏b/tb. The source and the drain metals form low-resistance ohmic contacts

to heavily doped regions indicated in gray. The FET width in the y-direction is W ,

which is much larger than the source-drain separation L and the barrier thickness tb.

The 2DEG density at di↵erent points x of the channel from the source to the drain

depends on the relative strength of the electrostatic control of the three contacts. We
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assume that the source contact is grounded. Vds is the drain potential and Vgs is the gate

potential with respect to the source. When Vds = 0 V, the 2DEG forms the lower plate of

a parallel-plate capacitor with the gate metal. A threshold voltage VT is necessary on the

gate to create the 2DEG. Once created, the 2D charge density ns in the 2DEG changes

as qns ⇡ Cg(Vgs � VT ), where Cg = CbCq/(Cb + Cq), where Cq is a density-of-states or

‘quantum’ capacitance. Note that qns ⇡ Cg(Vgs � VT ) is true only in the ‘on-state’ of

the transistor, and will not give us the sub-threshold or o↵-state characteristics. The

quantum capacitance arises because the density of states of the semiconductor band is

lower than the metal: this forces a finite voltage drop in the semiconductor to hold

charge. It may also be pictured as a finite spread of the 2DEG electrons, whose centroid

is located away from the surface, adding an extra capacitance in series to the barrier

capacitance. We will use the zero-temperature limit of Cq ⇡ q2 ⇥ ⇢2d for our purposes

here, where ⇢2d = gsgvm?/2⇡~2 is the DOS for each subband of the 2DEG. Since Vds = 0

V, no net current flows from the source to the drain. However, when the 2DEG is present,

the electrons are carrying current. The microscopic picture is best understood in the

k�space.

Source Drain
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2DEG channel

barrier

Right-going
carriers

Left-going
carriers

Figure 10.1: Field e↵ect transistor, energy band diagram, and k�space occupation
of states.

The states of the first subband of the 2DEG are illustrated in the real-space energy

band diagram and the occupation picture in k�space in Figure 10.1. When Vgs > VT ,

a quantum-well is created with the z�quantization resulting in a ground state energy

Enz . The total energy of electrons in this 2DEG subband is given by
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E(kx, ky) = Ec + Enz +
~2(k2x + k2y)

2m?
, (10.1)

where Ec is the conduction band edge energy at the interface, and m? is the e↵ective

mass of the sub-bandstructure. We choose Ec = 0, and m? to be isotropic. When

Vds = 0 V, the 2DEG electrons are in equilibrium with the source and drain. So the

Fermi-level of the 2DEG electrons EF is the same as the source and the drain. The band

edge Ec and quantization energy Enz have to adjust to populate the channel with the

charge dictated by the gate capacitor qns = Cg(Vgs�VT ). The Fermi-Dirac distribution

dictates the carrier distribution of the 2DEG in the k�space. It is given by

f(kx, ky) =
1

1 + exp [( ~2
2m? (k2x + k2y)� (EF � Enz))/kT ]

=
1

1 + exp [
~2(k2x+k2y)
2m?kT � ⌘]

,

(10.2)

where we define ⌘ = (EF � Enz)/kT . Since the Fermi-level is controlled by the gate

alone when Vds = 0, we should be able to write ⌘ as a function of the gate voltage Vgs.

The relation comes about by summing all occupied states in the k�space:

Cg(Vgs�VT ) = q
gsgv
LW

Z
dkx
2⇡
L

dky
2⇡
W

1

1 + exp [
~2(k2x+k2y)
2m?kT � ⌘]| {z }

ns

= q
gsgv
(2⇡)2

Z 1
0

Z 2⇡

0

kdkd✓

1 + exp [ ~2k2
2m?kT � ⌘]

.

(10.3)

We made the substitution kx = k cos ✓ and ky = k sin ✓. Pictorially, we are summing the

states, or finding the ‘area’ of occupied states in the k�space in Figure 10.1. At zero

temperature, the shape is a circle with a sharp edge indicated by the dashed circle. At

higher temperatures, the edge is di↵use, and the occupation probability drops exponen-

tially as it is crossed. The spin-degeneracy of each state is gs, and the semiconductor

has gv equivalent valleys, each with the same bandstructure.

The integral in Equation 10.3 is evaluated by first integrating out over ✓ which gives a

factor 2⇡, and then making the substitution u = ~2k2/2m?kT . Doing so with Vth = kT/q

yields

Cg(Vgs � VT ) = q
gsgvm?kT

2⇡~2

Z 1
0

du

1 + exp [u� ⌘]| {z }
F0(⌘)

= CqVthF0(⌘), (10.4)
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where we identify Cq ⇡ q2⇢2d = q2gsgvm?/2⇡~2 as the quantum capacitance, and the

integral F0(⌘) as a special case of generalized Fermi-Dirac integrals of the form

Fj(⌘) =

Z 1
0

du
uj

1 + exp [u� ⌘]
, (10.5)

with j = 0. The zeroth order Fermi-Dirac integral evaluates exactly to F0(⌘) = ln[1 +

exp(⌘)]. At this stage, it is useful to define ⌘g = Cb
Cb+Cq

(Vgs�VT

Vth
). Thus the gate voltage

Vgs tunes the Fermi level EF of the 2DEG according to the relation

⌘ =
EF � Enz

kT
= ln (e⌘g � 1). (10.6)

For Vgs � VT >> Vth, ⌘g >> 1, and we obtain ⌘ ⇡ ⌘g, implying EF � Enz ⇡ q(Vgs �
VT ) ⇥ Cb/(Cb + Cq). In other words, at a high gate overdrive voltage, the Fermi level

changes approximately linearly with the gate voltage, as one would expect in a parallel

plate capacitor. The capacitance factor is less than one, indicating a voltage division

between the barrier and the channel. A part of the voltage must be spent to create the

2DEG since the density of states of the semiconductor conduction band is much smaller

than a metal, as is apparent from the energy band diagram along the z�direction in

Figure 10.1.

If we are interested in evaluating the sub-threshold characteristics of the ballistic FET,

Equation 10.4 must be modified. It is evident that the RHS of this equation is always

+ve, but when Vgs < VT in the sub-threshold, the LHS is -ve. To fix this problem, by

looking at the energy band diagram in Figure 10.1 we rewrite the division of voltage

drops as qVb + (EF � Enz) = q(Vgs � VT ), where VT now absorbs the surface barrier

height, the conduction band o↵set between the barrier and the semiconductor, and the

ground state quantization energy (Enz � Ec). The term Vb is the voltage drop in the

barrier given by Vb = Fbtb = (qns/✏b)tb = qns/Cb. The resulting relation between ns

and Vgs is then

q2ns

Cb
+ kT ln (e

qns
CqVth � 1) = q(Vgs � VT ) =) e

qns
CbVth (e

qns
CqVth � 1) = e

Vgs�VT
Vth (10.7)

This is a transcendental equation, which must be numerically solved to obtain ns as

a function of Vgs to get the functional dependence ns(Vgs). Note that since ns > 0,

both sides of the equation always remain +ve. As Vgs �VT becomes large and negative,

ns ! 0 exponentially but never reaches 0. This is the sub threshold characteristics of
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the ballistic transistor. In Equation 10.7, two characteristic carrier densities appear:

nb = CbVth/q and nq = CqVth/q; the equation then reads e
ns
nb (e

ns
nq � 1) = e

Vgs�VT
Vth . For

Vgs � VT >> Vth, the 1 in the bracket may be neglected, and qns ⇡ CbCq

Cb+Cq
(Vgs � VT ).

On the other hand, when Vgs � VT << 0, the RHS is small. Since ns > 0, it must

become very small. Expanding the exponentials and retaining the leading order, we

obtain ns ⇡ nqe
Vgs�VT

Vth . In the sub threshold regime, the carrier density at the source-

injection point decreases exponentially with the gate voltage, and is responsible for the

sharp switching of the device. Figure 10.2 illustrates this behavior. For the rest of the

chapter, we focus on the on-state of the ballistic FET.
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Figure 10.2: Illustrating the dependence of the 2DEG sheet density at the injection
point on the gate voltage.

At this stage, it is instructive to find the right-going and left-going components of the

net current at Vds = 0 V, even though the net current is zero. We derived the general

quantum-mechanical expression for current flowing in d�dimensions earlier as

Jd =
qgsgv
(2⇡)d

Z
ddk⇥ vg(k)f(k), (10.8)

where we assumed the transmission probability T (k) = 1. For the 2DEG here, d = 2

and the group velocity of state |ki is vg(k) = ~k/m?. From Figure 10.1, this velocity

component points radially outwards from the origin in k�space. Clearly evaluating
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this integral will yield zero since there is a | � ki state corresponding to each | + ki
state. So instead, we evaluate the current carried by electrons moving only in the

+kx = |k| cos ✓ = k cos ✓ direction. This is obtained from Eq. 10.8 by restricting the

k�space integral to the right half plane covered by �⇡/2  ✓  +⇡/2 and using the

velocity projected along the kx axis vg = ~k cos ✓/m? to obtain

J!2d =
qgsgv~
(2⇡)2m?

Z 1
k=0

Z +⇡
2

✓=�⇡
2

(k cos ✓)kdkd✓

1 + exp [ ~2k2
2m?kT � ⌘]

=
qgsgv

p
2m?(kT )

3
2

2⇡2~2| {z }
J2d
0

F 1
2
(⌘), (10.9)

where F1/2(⌘) is the dimensionless Fermi-Dirac integral of order j = 1/2, and the pref-

actor J2d
0 has units of A/m or current per unit width. Since J!2d = J 2d = J2d

0 F1/2(⌘),

the net current is zero. Another way to visualize this is to think of the right-going

carriers as being created by injection into the 2DEG channel from the source, and thus

the right-half carriers in k�space are in equilibrium with the source. This statement is

quantified by requiring E!F = EFs. Similarly, the left-going carriers are injected from

the drain contact, and are consequently in equilibrium with the drain E F = EFd. Since

the source and the drain are at the same potential EFs � EFd = qVds = 0 V, the right

going and left going carriers share a common Fermi level. Notice that we have defined

two quasi-Fermi levels E!F and E F and have thus split the carrier distribution into two

types that can be in equilibrium amongst themselves, but out of equilibrium with each

other. The current is zero at Vds = 0 V due to the delicate balance between the left-

and right-going current that exactly cancel each other.

This delicate balance is broken when a drain voltage is applied to the transistor.

10.3 Ballistic current-voltage characteristics

When a voltage Vds is applied on the drain, the energy band diagram looks as indicated in

Figure 10.1. Now the band edge Ec(x) varies along the channel, with a maximum in the

x�y plane occurring at x = xmax, which is referred to as the ‘top-of-the-barrier’ (TOB)

plane. The ground state of the quantum well Enz(x) also varies along x depending upon

the local vertical electric field, but has the fixed value Enz(xmax) at the TOB plane.

Interestingly, there is no x�oriented electric field at xmax. The energy band diagram

along the z�direction in the TOB plane is also indicated in Figure 10.1. Let’s focus on

this plane exclusively.



Chapter 10. Application II: The Ballistic Field-E↵ect Transistor 67
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Figure 10.3: Field e↵ect transistor, energy band diagram, and k�space occupation
of states.

At Vds = 0 V, there was a unique EF at xmax, but the quasi-Fermi levels of the right-

going carriers and left-going carriers are no longer the same, since EFs � EFd = qVds.

Due to +ve drain voltage, it has become energetically unfavorable for the drain contact

to inject left-going carriers. In the absence of any scattering in the channel, the right-

going carriers are still in equilibrium with the source, and the left-going carriers are

still in equilibrium with the drain. Thus, the current components now become J!2d =

J2d
0 F1/2(⌘s) and J 2d = J2d

0 F1/2(⌘d). Here ⌘s = [EFs � Enz(xmax)]/kT and ⌘d = [EFd �
Enz(xmax)]/kT = ⌘s�vd, where vd = qVds/kT . The net current of the ballistic transistor

is then given by J2d = J!2d � J 2d as

J2d =
qgsgv

p
2m?(kT )

3
2

2⇡2~2 [F 1
2
(⌘s)� F 1

2
(⌘s � vd)] = J2d

0 [F 1
2
(⌘s)� F 1

2
(⌘s � vd)]. (10.10)

The first term is the right-going current carried by the larger gray half-circle in k�apace

in Figure 10.1, and the second term is the smaller left-going current carried by the left-

going carriers. To evaluate the current, we need to find the dependence of ⌘s on the gate

and drain voltages Vgs and Vds.

When Vds = 0 V, we found the relation between the unique ⌘ and Vgs in Eq. 10.6. How do

we determine ⌘s when the carrier distribution looks as in Figure 10.1 with the asymmetric
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left-and right-going occupation? Here we make the assumption that the net 2DEG

density in the TOB plane at x = xmax is completely controlled by the gate capacitance.

This means the net 2DEG density in the TOB plane has not changed from the Vds = 0

V case. Experimentally, this is possible when the transistor is electrostatically well

designed, with negligible short-channel e↵ects. Let us assume that such design has been

achieved.

Then, just like for the current, we split the carrier distribution equation Cg(Vgs�VT ) =

CqVthF0(⌘) from Equation 10.4 into the right-going and left-going carriers as

Cg(Vgs � VT ) = CqVthF0(⌘) ! CqVth[
F0(⌘!) + F0(⌘ )

2
]. (10.11)

Identifying ⌘! = ⌘s and ⌘ = ⌘s � vd and using F0(x) = ln[1 + exp(x)], we get the

relation

ln[(1 + e⌘s)(1 + e⌘s�vd)] =
2Cg

Cq
(
Vgs � VT

Vth
) = 2⌘g = ln[e2⌘g ], (10.12)

which is a quadratic equation in disguise. Solving for ⌘s yields

⌘s = ln[
q

(1 + evd)2 + 4evd(e2⌘g � 1)� (1 + evd)]� ln[2], (10.13)

which reduces to Equation 10.6 for vd = 0. The expression for ⌘s with J2d(Vgs, Vds) =

J2d
0 [F 1

2
(⌘s) � F 1

2
(⌘s � vd)] provides the complete on-state output characteristics of the

ballistic FET at any temperature. Note that the expression depends on the values of

Fermi-Dirac integrals of order j = 1/2. At Vds = 0 V, the drain current is zero, as it

should be.

Because of the use of Equation 10.11, just as in Equation 10.4, Equation 10.13 works

only for the ‘on-state’ of the ballistic transistor. The advantage of this form is that

the current can be calculated directly. However, if the o↵-state characteristics of the

ballistic FET are desired, one must find the charge self consistently from Equation 10.7

which read e
qns

CbVth (e
qns

CqVth � 1) = e
Vgs�VT

Vth and gave us ns(Vgs). Then, the expression to

use for the entire ‘on-state’ and ‘o↵-state’ or sub-threshold behavior of the ballistic FET

is simply

⌘s = ln[

r
(1 + evd)2 + 4evd(e

2ns(Vgs)
nq � 1)� (1 + evd)]� ln[2], (10.14)
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where we have simply replaced ⌘g ! ns(Vgs)/nq in Equation 10.13. Based on this

general expression, we can evaluate the entire on-state and o↵-state characteristics of

the ballistic FET.

10.4 Examples

The derived expression of the current of the ballistic FET does not depend on the gate

length L. This is a consequence of ballistic transport. Figure 10.4 illustrates the entire

output characteristics of a ballistic Silicon transistor. The left figure shows the ‘transfer’

characteristics in log scale, and the middle figure shows the same in linear scale. Note

that Equation 10.14 must be used to obtain the on-o↵ switching characteristics exhibited

in this figure. Note that the switching is much steeper at a lower temperature, since

the subthreshold slope is ⇠ 60 · (T/300) mV/decade. The right figure shows the drain

current per unit width Id/W as a function of the drain voltage Vds. When Vds is much

larger than kT , vd >> 1, and ⌘s ! ln[e2⌘g � 1]. The current then becomes independent

of Vds, i.e., saturates to J2d ! J2d
0 F1/2(ln[e

2⌘g � 1]).
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Figure 10.4: Ballistic Silicon FET. The device dimensions are t
b

= 1 nm, ✏
b

= 10✏0,
and for Silicon, m? = 0.2m0 and g

v

= 2.5 are used.

The ballistic FET current expression in equation 10.10 is used to plot a few representative

cases. The results at room temperature are shown in Figure 10.5. The barrier thickness

for all three FETs is chosen to be tb = 2 nm, of a dielectric constant of ✏b = 10✏0. The

channel materials chosen are Si, GaN, and In0.53Ga0.47As. For Si, an e↵ective valley

degeneracy of gv = 2.5, and an e↵ective mass m? ⇡ 0.2m0 is used. For GaN, gv = 1,

and m? ⇡ 0.2m0, and for In0.53Ga0.41As gv = 1, and m? ⇡ 0.047m0 are used. Note
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Figure 10.5: Ballistic FET characteristics at T = 300 K for Si, GaN, and
In0.53Ga0.47As channels.

that these are representative material parameters, for correlation with experiments, one

must make accurate extraction of band parameters from the electronic bandstructures.

The current in Si channels is higher than GaN and In0.53Ga0.47As channels at low Vds,

since it takes advantage of multiple valleys. At high drain bias voltages, the on-current

is higher for low e↵ective-mass materials for the same gate overdrive voltage Vgs � VT .

This boost is due to the higher velocity of carriers due to the low e↵ective mass. For

example, at Vgs�VT = 0.5 V, the higher saturation currents in GaN and In0.53Ga0.47As

channels are shown by arrows in the Figure. However, it takes higher Vds to attain

current saturation.

Due to the ultra thin gate and high gate overdrive voltages, the on-currents predicted

are rather high. Experimental highest on-current densities approach ⇠ 4 mA/micron

for nanoscale GaN HEMTs, and lower for Si MOSFETs. The experimental currents are

limited by source/drain ohmic contact resistances, and gate leakage. These e↵ects have

been neglected in the treatment of the ballistic FET.

However, it is remarkable that even for a ballistic FET with zero source and drain

contact resistances and no scattering, the low-Vds regime of the ballistic FET has linear

Id�Vds characteristics and looks like a resistor. One can extract e↵ective on-resistances

of the order of ⇠ 0.05 ⌦�mm from the linear regions. The origin of this resistance goes

back to the limited number of |ki states available for transport in the 2DEG channel.
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