ECE 4070 / MSE 5470: Physics of Semiconductors and Nanostructures

Spring 2015, Cornell University

 

Instructor

Prof. Debdeep Jena (web)

Departments of ECE and MSE, Cornell University

Office(s): Bard 326 (Phillips 415)

 

Class Hours

MWF 3:35 pm – 4:25 pm, Phillips 407

Office hours: Wednesdays 4:30 – 6:00 pm

 

Course Description

The course covers the fundamentals of solid state physics relevant to semiconductors, electronic and photonic devices, and nanostructures.The topics covered are:

             Classical free-electron models of solids

             Quantum mechanics of electrons in atoms to nanostructures to bulk solids

             Crystals, bandstructure of metals, semiconductors, insulators [e.g. Si, graphene, 2D atomic materials, nanotubes,Ö]

             The effective mass theorem, semiconductor heterostructures: Designer quantum wells, wires, dots

             Electron statistics and dynamics in bands

             Quantum/ballistic electron transport, conductance quantization

             Nanoelectronic device example: The ballistic field-effect transistor

             Phonons, scattering, Fermiís golden rule, and the Boltzmann transport equation

             Electron-photon interaction, optical interband and intraband processes

             Nanophotonic device example(s): LEDs, Lasers, Photovoltaics

             Many-particle/collective effects in light-matter interaction: plasmons and polaritons

 

Background

Basic knowledge of quantum mechanics and statistical physics

 

Topics [Handouts are required reading materials, rest are supplementary]

1) Electronic and photonic phenomena from the classical (Drude) models of electrons in solids [Handout1 (handouts prepared by Prof. Rana)]

2) Quantum theory of the electron gas [Handout2, supporting slides, primer notes]

3) The free electron gas in 3D, 2D, and 1D [Handout 3, quantum transport theory, quantized conductance paper]

4) Crystal lattices and the reciprocal lattice [Handout 4, Handout 5]

5) Electrons in periodic potentials [Handout 6, perturbation theory primer1, perturbation theory primer2]

6) DOS, Bands and Metals vs Semiconductors vs Insulators [Handout 7, Handout 8, Handout 9]

7) Examples of Bandstructure Calculations (Si, Ge, GaAs, graphene, etc) [Handout 10, Handout 11, Handout 12, Kronig-Penney & Greenís Functions]

8) Symmetry, spin-orbit coupling, special properties of Bloch functions and bands [Handout 13a, Handout 13, Handout 14]

9) Effective mass theorem, Doping, Semiconductor Heterostructures and Nanostructures [Handout 24, Handout 25, Handout 26, Handout 27, Kroemer Nobel Lecture]

10) Electron dynamics and fundamentals of carrier transport [Handout 15, Handout 16, Handout 22, Handout 23, Handout 28, The Ballistic FET]

11) Fermiís Golden Rule, Phonons and Photons [Fermiís golden rule, Handout 17, Handout 18, Handout 19, Handout 20, Handout 21]

12) Electron-photon interactions, optical gain, LEDs and Lasers [Handout 29, Handout 30, Notes]

13) Electron-phonon interactions, Cooper pairs, superconductivity and correlated transport [Notes1, Notes 2]

 

Course calendar [planned]

 

Assignments

1 - pdfposted: 01/25/2015 †††† due: 02/02/2015†††††††††††††††††††††† solutions

2 - pdfposted: 02/02/2015 †††† due: 02/09/2015†††††††††††††††††††††† solutions

3 - pdfposted: 02/10/2015 †††† due: 02/20/2015†††††††††††††††††††††† solutions

4 - pdfposted: 02/27/2015 †††† due: 03/09/2015†††††††††††††††††††††† solutions

5 - pdfposted: 03/13/2015 †††† due: 03/20/2015†††††††††††††††††††††† solutions

6 - pdfposted: 03/22/2015 †††† due: 04/09/2015†††††††††††††††††††††† solutions

7 - pdfposted: 04/12/2015 †††† due: 04/20/2015†††††††††††††††††††††† solutions

8 - pdfposted: 04/24/2015 †††† due: 05/01/2015†††††††††††††††††††††† solutions

9 - pdfposted: 05/04/2015 †††† due: 05/15/2015†††††††††††††††††††††† solutions

 

Exams

Prelim 1†††††††††† 02/24/2015 †††† questions††††††††† solutions†††††††††

Prelim 2 ††††††††† 04/14/2015††††† questions††††††††† solutions

Final††††††††††††† 05/18/2015††††† questions††††††††† solutions

 

Textbooks

The required reading will be the posted handouts.No text is required, but you are strongly encouraged to refer to the following texts:

-Ashcroft & Mermin (Solid State Physics)

-Kittel (Introduction to Solid State Physics)

-Davies (The Physics of Low Dimensional Semiconductors)

-Herbert Kroemer (Quantum Mechanics)

-Griffiths (Quantum Mechanics – if you have not had quantum before)

 

Grading

35% Homeworks

40% 2x Prelim Exams (20% each)

25% Final Exam

 

Contact

Email: djena at cornell dot edu if you have any questions