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Abstract
This paper describes a calibration method for acoustic emission and ultrasonic sensors that is effective from 1 kHz to 1 MHz.
The method combines generalized ray theory and finite element analysis to model wave propagation at higher and lower
frequencies, respectively. A ball impact is used as a calibration source, a thick aluminum plate is used as the test block, and
hot glue is used as the couplant. We demonstrate this method on five commercial piezoelectric sensors: Physical Acoustics
(PAC) R15a, PACWSa, Panametrics V101, Panametrics V103, and Valpey-Fisher Pinducer. Our calibration results show that
reflections and other wave phases can be more clearly identified with the less-resonant Panametrics sensors. The PAC sensors
have the greatest sensitivity and are able to detect surface normal displacements at least down to 1 pm amplitude in the 100s
of kHz frequency band. Aperture effect is minimized by the small size of the Pinducer. Our method focuses on the amplitude
response of the sensors (phase is ignored) and extends the calibration to a frequency band that is lower than typical analyses.
Low frequency information is useful for determining the seismic moment of a seismic source (analogous to the magnitude of
an earthquake) and can increase the amount of information acquired in a single recording.

Keywords Broadband sensor calibration · Generalized ray theory · Finite element · Aperture effect · Couplant · Absolute
sensitivity

1 Introduction

Acoustic emission (AE) and ultrasonic sensors can detect
transient sources of kHz- to MHz-frequency vibrations that
arise from source mechanisms ranging from tensile crack-
ing (e.g. [1]) to shear slip events (e.g. [2,3]) to granular
flow (e.g. [4]). Quantitative characterization (i.e. calibration)
of such sensors, allows researchers to link recorded signals
to physically meaningful quantities and separate the source
mechanisms and wave propagation effects from the distor-
tions or resonance introduced by the sensor and recording
system. Calibration also allows the relative merits of differ-
ent sensor models to be compared. Purely electrostatic or
electromagnetic transducers that are reversible (can be used
as a source and receiver of mechanical energy) have been
calibrated using reciprocity techniques (e.g. [5–7]), but this
approach cannot be used for sensors with built-in preampli-
fiers. We report on a calibration approach that lumps the
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sensor response, the effects of coupling, and any pream-
plification into a single instrument response function. This
technique utilizes a comparison of the recorded signal, s(x, t)
to the mechanical disturbance felt by the sensor that pro-
duced the signal. In this paper, we assume the mechanical
disturbance to be displacement time history u(x, t), but sim-
ilar methods can utilize velocity or another physical quantity
(acceleration, strain, etc.).

Past researchers have determined u(x, t) either by direct
measurement with a reference sensor or from theory wherein
the elastodynamic solution is determined from numerical
simulation by finite element (FE) analysis or a generalized
ray theory approach. While making direct measurements of
u(x, t) using a laser interferometer [8] or another reference
sensor [9], both the reference transducer and the sensor under
testing are placed in locations symmetric about the source.
If the source is repeatable, they can also be placed in the
same location. In practice, reference transducers need to be
high fidelity, high sensitivity, absolutely calibrated, and are
often expensive. In this work, we describe calibration tech-
niques that utilize u(x, t) estimated from theory.We use both
FE analysis [10–12], and generalized ray theory [13–16] to
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Fig. 1 Photograph of the five
commercial sensors. From left
to right: Valpey-Fisher Pinducer,
Panametrics V101, Panametrics
V103, PAC WSa, PAC R15a. A
U.S. penny is shown for
reference

estimate the surface displacement time history to which a
recorded signal is compared.

Calibration results are expressed as the instrument response
function in the time domain as i(t), or the instrument
response spectrum in the frequency domain as I (ω), which is
determined over a specific frequency band. Here we refer to
I (ω) simply as the “calibration curve”. Since the instrument
response obtained in this procedure contains information
about the entire measurement system including sensor, cou-
pling, cables, and digitizer, we try to calibrate the sensors
under conditions similar to those used in typical experiments.

In this paper, we describe techniques to increase the
bandwidth over which the calibration is valid to span three
decades, from 1 kHz to 1 MHz. Previous calibration pro-
cedures have traditionally focused on 100 kHz to 1 MHz
(e.g. [6,9,16]) and neglected lower frequencies where sensor
sensitivity diminishes. Spectral amplitude at low frequencies
is related to the seismic moment, or magnitude, of discrete
sources of seismic waves, and recent work has shown that
AE sources range from magnitude −6 down to −10 [1–3].
Our extension of the calibration to lower frequencies can
aid in the estimation of the seismic moment as well as radi-
ated energy and the corner frequency, which is related to
the spatial and temporal dimensions of the source (e.g. [2]).
Lower frequency information can also be important for other
wideband analysis methods including diffusewavefield tech-
niques developed in the past 15 years (e.g. [17,18]).

A complete characterization of instrument effects includes
both the amplitude and phase of I (ω). Here, we focus on the
determination of the amplitude, which is all that is needed for
many signal analysis techniques described above. To simu-
late or remove the distorting effects of the sensor in the time
domain, both amplitude and phase information are needed,
and techniques of this type are described in [16] for the 100
kHz to 1 MHz frequency band.

At low frequencies (<50kHz), details of sensor behav-
ior are often unclear due to inherent uncertainty of spectral
estimates made using recordings with short time windows
[19]. To extend the calibration curve to lower frequencies,

we obtain long-time-duration calculations of the mechanical
disturbance using FE models.

At high frequencies, the calibration is limited by atten-
uation and scattering, which cause the signal-to-noise ratio
(SNR) to drop significantly. If not explicitly accounted for,
these effects can cause an apparent loss of sensitivity at high
frequencies. Another influencing factor for sensor calibration
experiments at high frequency is the aperture effect. When
the direction of wave propagation is parallel to the sensor sur-
face, multiple wavelengths will average over the finite sensor
contact area and decrease the recorded wave amplitude, as
described in Sect. 3.4.

In Sect. 2, we describe the transfer function framework
upon which our calibration approach relies.We also describe
the modeling of elastic wave propagation using both gener-
alized ray theory and FE models. In Sect. 3 we describe how
the instrument response I (ω) is obtained from recorded sig-
nals and u(x, t), and we concatenate the calibration curves
derived from the different methods to form a broadband cal-
ibration curve. Figure 1 shows a photograph of the five types
of commercial sensors used to demonstrate the broadband
calibration technique. Their properties are listed in Table 1
and differences in their instrument responses are discussed
in Sect. 3. In Sect. 4, we demonstrate how the hot glue used
as a couplant causes frequency-dependent attenuation of the
recorded signal.

2 Methods

2.1 Calibration Framework

The sensor characterization experiments cast wave prop-
agation and instrumentation effects into a transfer func-
tion framework, as defined by previous work [8,16,20–22].
This framework assumes that wave propagation and sensor
response can be modeled as linear, time-invariant systems.
Wave propagation between the source and sensor is mathe-
matically described as convolutionwith theGreen’s function,
Gkj (x, t; ξ , τ ), which denotes the displacement at x at time
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Table 1 Commercial sensors
used in calibration experiments

Name Manufacturer Diameter (mm) Published resonance
frequency (MHz)

V103 Panametrics 12.7 1

V101 Panametrics 25.4 0.5

WSa Physical Acoustics 19.1 0.1–1

R15a Physical Acoustics 19.1 0.15

Pinducer Valpey-Fisher 2.3 Unspecified

Fig. 2 Schematic diagram of the test specimen. Its length in the out-
of-plane dimension is 614 mm. The test specimen rests on a pair of
90 × 90 mm wooden blocks topped with a 1.6 mm thick layer of cork.
The source location is shown by an arrow and sensor positions for the
different calibration tests are shown as triangles

t in the k-direction due to an impulse loading at ξ at time
τ in the j-direction. We obtain the Green’s function solu-
tions using generalized ray theory [23,24] or FE analysis
(Sect. 2.4). Similarly, the instrumentation effect (a combined
effect including the digitizer, cables, sensor, and couplant)
are mathematically described as convolution with the instru-
ment response, i(t):

s(x, t) = f j (ξ , τ ) ∗ Gkj (x, t; ξ , τ ) ∗ ik(t), (1)

where s(x, t) is the recorded signal from a sensor at location
x at time t , f j (ξ , τ ) is a force–time function that describes
the source at location ξ at time τ in the j-direction (Sect. 2.3).
Summation convention is implied. ‘*’ denotes convolution in
the time domain.

The calibration source described in this work acts normal
to the surface of the test specimen (the 3 direction, Fig. 2).
The sensors under calibration are primarily sensitive to the
3 direction (i(t) ∼= i3(t)). In this case, Eq. 1 can be further
simplified:

s(x, t) = u3(x, t) ∗ i3(t), (2)

where the displacement is defined as u3(x, t) = f3(ξ , τ ) ∗
G33(x, t; ξ , τ ).

To compute the instrument response, i(t), we wish to
deconvolve the theoretical displacement from the recorded
signal. Deconvolution becomes division in the frequency

domain, so it is more convenient to compute the instrument
response spectrum:

I (ω) = S(x, ω)

U (x, ω)
= S(x, ω)

F(ξ , ω)G(x, ω; ξ , ω)
(3)

where S(x, ω),U (x, ω), F(ξ , ω), and G(x, ω; ξ , ω) are the
Fourier transforms of s(x, t), u(x, t), f (ξ , t), and
G(x, t; ξ , τ ), respectively.

When working in the frequency domain, individual sam-
ples of the discrete Fourier transform (DFT) are inherently
uncertain, so we take the average of many samples of the
DFT that fall into the same frequency bin. We desire fre-
quency bins that are equally spaced on a log scale, but the
samples of the DFT (the Fourier frequencies) are linearly
spaced every d f , (where d f = 1/T and T is the length of
the time window). As a result, the lowest frequency bins con-
tain only a few samples of the DFT. We chose a frequency
resolution of 17 frequency bins per decade and required at
least nmin = 3 samples of the DFT in each frequency bin.

This results in the relationship 1
17 = log10

(
fmin+nmind f

fmin

)
.

Solving for fmin, we find the minimum reliable frequency
based on our time window T and averaging scheme

fmin ≈ 20 d f = 20/T . (4)

2.2 Test Setup

Calibration experiments were performed on a rectangular
aluminum plate resting on 90 mm by 90 mm wooden blocks
topped with a 1.6 mm thick layer of cork. The dimensions
of the plate are 614 mm by 614 mm by 100 mm in the 1,
2, and 3 directions. The propagation speed of longitudinal
and shear waves in the aluminum are measured to be 6.3
and 3.0 km/s, respectively. Figure 2 shows a schematic dia-
gram of the test setup. The source is a ball dropped 900
mm onto the top center of the plate. When testing in sensor
position 1, (epicenter location) directly beneath the source,
the main waveform feature is the longitudinal (P) wave and
reflections through the thickness of the plate occurring at
equal time increments (P, PPP, 5P, etc). Theoretically, we
expect no vertical displacement from S waves due to its radi-
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ation pattern [10], but we can still identify a near-field term
that produces a discontinuity in the vertical displacement
at the time of the S wave arrival. Aperture effect is mini-
mized at position 1 because most wave arrivals (besides the
later-arriving reflections off the side of the test specimen) are
normal to the sensor face (incidence angle = 90◦). At sensor
position 2, the direction of propagation is parallel to the plate
surface (incidence angle = 0◦). The aperture effect will be
most severe (shown in Sect. 3.4). Themain waveform feature
is the Rayleigh surface wave that travels slower than the S
wave. Sensors were coupled to the plate using hot glue, and
the effects of this coupling are compared to a Vaseline cou-
plant using two identical sensors at position 3, as described
in Sect. 4.1.

2.3 Calibration Source

Many sources have been used in calibration experiments,
including the glass capillary fracture [9], pencil lead break
[25], laser-generated pulse [26,27], and ball impact [16,28].
Ball impact is selected as the source in this paper because
its frequency content can be controlled by selection of ball
size, it has a force–time function that is readily derived from
Hertzian theory and can be easily applied to a FE model, it
can be treated as a point source (source area �1mm), it acts
only in the surface-normal direction, and it is inexpensive
and convenient.

For the ball impact, a spherical ball is dropped verti-
cally onto the test plate inside a transparent cylindrical tube
(0.9 m tall, 60 mm in diameter). By Hertz impact theory,
the precise forcing function is formulated from the stress
equilibrium equation and the force deformation relation
[28,29]:

f (t) = fmax sin

(
π t

tc

)1.5

, 0 ≤ t ≤ tc, (5)

where fmax = 1.92ρ0.6 (δ1 + δ2)
− 0.4 R2

1v
1.2
0 is the max-

imum force upon impact and tc = 4.53
(
4ρ1π(δ1+δ2)

3

)0.4

R1v
− 0.2
0 is the contact time. In preceding equations, δi =(

1 − μ2
i

)
/ (πEi ), and E and μ are the Young’s modu-

lus and Poisson’s ratio, respectively. R1 and v0 are the
radius and incoming velocity of the ball. Subscript 1 refers
to the material of the ball and subscript 2 is the mate-
rial of the more massive test specimen. Equation 4 was
verified experimentally for a variety of materials [28] and
for balls of different diameters dropped at different heights
(Sect. 3.2).

Table 2 lists the properties of the balls used in the calibra-
tion experiments. Figure 3 shows the theoretical force–time
functions determined from Eq. 5 and their respective spectra
for selected sources. From Fig. 3b we observe that the spec-

Table 2 Properties of 0.9 m high ball drops used in calibration experi-
ments

Ball diameter
(mm)

Material Corner frequency
f0 (kHz)

Change in
momentum �P
(N s)

0.5 Ruby 1200 3.7e−7

0.8 Titanium 640 0.9e−5

2.38 Steel 150 3.0e−4

3.15 Steel 140 0.7e−3

4.75 Steel 77 2.4e−3

Fig. 3 Force–time functions and their spectra. a Force–time function of
three different ball impact sources derived theoretically from Hertzian
theory (Eq. 5) assuming a drop height of 1 m onto aluminum. Balls with
smaller diameter generally have a smaller contact time tc and amplitude.
b Frequency spectra of the same sources. Notice the spectrums share a
general pattern: flat at low frequencies followed by a series of lobes at
high frequencies above the corner frequency f0 = 1/tc. The amplitude
at low frequencies is equal to the change in momentum of the ball upon
impact with the test block

tra all have flat amplitude at low frequencies with amplitude
equal to the ball’s change in momentum �P . Above the cor-
ner frequency f0 = 1/tc spectral amplitudes decrease and
are characterized by a series of lobes separated by zeros. The
zeros makes solving for the sensor instrument response chal-
lenging. Thus, we assume each source is only valid up to
f0. Small balls have the higher f0 and are used to extend the
high frequency range of the calibration. Larger balls generate
better SNR at low frequencies.

The ball’s change in momentum �P can be determined
from Hertzian theory as �P = ∫ f (t) dt = v0 − vrebound
where f (t) is found from Eq. 5. This formulation assumes
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that no energy is lost in the elastic impact (v0 = −vrebound).
In reality, the local contact stresses often exceed the yield
stress of the aluminum, and tiny dents are visible in the
test plate. Yet, energy dissipation due to plastic yielding and
other deviations frompurely elastic, Hertzian contact primar-
ily affect frequencies higher than f0 [28]. Below f0, where
we utilize the ball source, spectra depend only on the ball’s
change inmomentum, which can bemeasured from the ball’s
drop height h1 and rebound height h2, and used to make a
small correction. In our experiments, the steel balls dropped
from h1 = 0.91 m onto the aluminum test plate rebounded
to h2 = 0.21 m. Since vo = √

2gh, the change in momen-
tum of the ball �P ∝ (√

h1 + √
h2

)
which is only 74% of

the change in momentum assumed by Hertz theory. Thus a
20 ∗ log10 (0.74) = − 2.6 dB correction was made.

2.4 Wave Propagation: Determination of Green’s
Function

Analytical solutions for the wave equation have been derived
for an infinite half space [30]—the elastodynamics of stresses
and strain in an elastic body are governed by Navier’s equa-
tion, which can be derived by substituting the kinematic and
constitutive relations of an isotropic material into the equa-
tion of motion. For our sensor calibration experiments, we
find the solution to thewave equation in the form of aGreen’s
function G (x, t; ξ), described in Sect. 2.1. We obtain the
Green’s function using two techniques. The first is a general-
ized ray theory solution for an infinite plate [24]. The second
utilizes FE analysis.

2.4.1 Generalized Ray Theory

Pao et al. [23] first calculated the Green’s function for an
isotropic elastic plate in the form of an infinite series expan-
sion, in which each term represents a ray path. Explicit
formulae for Green’s function solutions have been devel-
oped for the infinite plate in Fortran [24] and translated to
MATLAB [28]. The accuracy of the solutions has been ver-
ified against theory [30] by McLaskey and Glaser [28]. By
assuming an infinite plate, generalized ray theory is only valid
before reflections off the sides of the test plate arrive at the
sensor location. This limits the time duration (T ) that can be
studied using this Green’s function approach, which creates
a lower limit for the calibration bandwidth: fmin = 50 kHz
for T = 400µs, based on Eq. 4.

2.4.2 Finite Element

We use FE analysis as a second method of calculating the
Green’s function. Previously, the FE method has been used
to model elastic waves in an elastic solid [10–12,31]. We use
the FE method to extend the theoretical displacement time

history u (x, t) to significantly longer durations so that the
sensor instrument response at lower frequencies can be esti-
mated. The FE model can take into account the reflections
from the sides of the plate which are not accounted for by the
generalized ray theory code. Although a 2D axial-symmetric
FE model can act as a starting point for understanding wave
propagation inside the plate, we used a 3Dmodel that is capa-
ble of generating more accurate reflections from the plate’s
sides.

Explicit analysis was used instead of implicit analysis
since it is more computationally efficient. Explicit analy-
sis does not enforce equilibrium of internal structure forces
with externally applied loads, thereby eliminating the need to
reconstruct the global stiffness matrix at every time step. The
stability of the FE solution is influenced by the element size
(a) of the model with respect to the minimum wavelength of
elastic waves that a selected source introduces into the plate.
As a rule of thumb, we allocate five elements to span themin-
imum wavelength of interest (λm), which can be estimated
using the shear wave velocity (CS) and the corner frequency
( f0) of the source:

a = 1

5
λm = 1

5

CS

f0
, (6)

ANSYS Explicit Dynamics was used to perform all the FE
simulations in this study. The geometry of the 3D model
matched that of the actual test specimen. No boundary con-
ditions were applied, so the plate was effectively floating
in space. We justify this in Appendix A by experimentally
showing that, when the plate is resting on wooden blocks,
boundary conditions do not significantly affect the first 50ms
of vibrations felt at the center of the aluminum plate down to
1 kHz. We input the force time history of the ball (Sect. 2.3)
as a point force into themodel, and obtained the displacement
time history at the epicenter location. The material constants
were computed from the longitudinal and shear wave speeds,
Cp and CS measured in the plate material [32]:

μ = α2 − 2

2
(
α2 − 1

) , E = C2
Pρ

(1 + μ) (1 − 2μ)

1 − μ
, (7)

where E, μ and ρ are the elastic modulus, Poisson’s ratio,
and density of the test specimen and α = Cp/Cs .

TheFEGreen’s function can be computed in the frequency
domain:

GFE(ω) = U (ω)

F(ω)
, (8)

Where U (ω) is the Fourier transform of the displacement
time history obtained from the FEmodel, and F (ω) is the FT
of the force–time function applied to the FEmodel. Note that
the FE solution is not accurate at high frequencies or when
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Fig. 4 Validation of the FEmodel using the force–time functions of the
0.8 mm titanium ball (a, b) and 3.15 mm steel ball (c, d) as input. In a, c
the impact of the ball onto the plate occurs at t = 0. b Fourier transform
of the Green’s function computed from FE and generalized ray theory

(d) Fourier transform of the PCB accelerometer recorded signal and FE
acceleration are shown alongside averaged spectra resampled with 17
frequency bins per decade, as described in Sect. 2.1

F(ω) = 0. GFE(ω) is only valid at frequencies above 20 d f
(Eq. 4) and below 0.4 f0, as described in the next section.

2.4.3 Validation of Finite Element Model

Figure 4 shows the validation of FE simulations against
generalized ray theory at short times/high frequencies and
against a PCB accelerometer (model 352C03) at longer
times/lower frequencies. At short time duration, before side
reflections arrive at the epicenter location, the FE-derived
Green’s function was computed (Eq. 8) and compared with
generalized ray theory to validate its high frequency com-
ponent (Fig. 4a, b). The force–time function of a 0.8 mm

Titanium ball was chosen as an input to the FE model. A fine
mesh (0.9 mm element size) was necessary to capture the
high frequency energy content of the source ( f0 = 640 kHz,
Table 2), making the FE model costly to run (large file size,
RAM requirements, etc.). There is excellent agreement in the
time domain (Fig. 4a). The only discrepancy occurs around
18µs in the form of spurious oscillations due to the zero-
energy modes of the FEs [10]. These are excited because
some energy is input into the model at frequencies higher
than its f0. At high frequencies, the FE-derivedGreen’s func-
tion starts to diverge from the generalized ray theory Green’s
function (Fig. 4b), but is accurate to within 2 dB for frequen-
cies up to 0.4 f0.
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Next, the validation was extended to lower frequencies
using a long duration FE-generated time series. The force–
time history of a 3.15 mm steel ball was chosen because
it has a low corner frequency (140 kHz, Table 2). With
increased source diameter, the FE model can be meshed
using coarser elements, significantly reducing computation
cost. Even larger ball sizes were not chosen because different
wave arrivals (P, S, PPP, etc.) would be indiscernible due to
the long contact time (Sect. 2.3).

For validation of the FE model at low frequencies, we
cannot compute the Green’s function via generalized ray the-
ory because it doesn’t account for the side reflections and
becomes computationally expensive due to the many rays
required. Instead, we differentiated the FE displacement time
history twice to produce an acceleration time history, and
compared this to the recorded signal from a PCB accelerom-
eter (Fig. 4c, d). At the lower frequencies (1–10 kHz) the
spectra are dominated by the plate’s resonances and anti-
resonances, as shown in Figs. 4d and 5e. As a result, small
differences (in Cp, Cs , dimensions, etc.) between the FE
model and the true test block, which cause a slight mismatch
in the locations of resonant peaks and result in significant dif-
ferences in spectral amplitudes. This can limit the accuracy
of the calibration in this low frequency band, but after aver-
aging the samples of the DFT into logarithmically-spaced
frequency bins, as described in Sect. 2.1, the spectra of the
FE solution the accelerometer signal agree to within a few
dB, with somewhat larger differences (10 dB) in the 6–8 kHz
band.

3 Results

3.1 General Procedure for Broadband Calibration

In this section we describe a procedure to obtain a broadband
calibration, spanning three decades in frequency from 1 kHz
to 1 MHz. Once we have established a well-defined source
(Sect. 2.3) and verified the Green’s function by FE analysis
and generalized ray theory (Sect. 2.4.3), we can calculate
the instrument response using an input/output pair of theo-
retical displacement (u(x, t)) and recorded signal (s (x, t)).
We determine u (x, t) using generalized ray theory for a
short time window to determine I (ω) for high frequencies,
and we determine u(x, t) using the FE model for a longer
time window to determine I (ω) for lower frequencies. We
then concatenate the two segments of I (ω) together to cre-
ate a broadband calibration curve. We first demonstrate the
technique with the V103 sensor and compare this sensor’s
instrument response to the others in Sect. 3.3.

The upper limit of the calibration is determined by the
upper frequency band of the source (Fig. 3). The source with
the highest f0 (0.5 mm ruby ball, Table 2) was chosen. To

capture energy up to f0, a FE model would need 0.5 mm
elements (Eq. 6, Sect. 2.4.2) and would be costly to run.
Thus, we used generalized ray theory to compute u (x, t) for
the ruby ball source and compared it to the recorded signal
in the time domain (Fig. 5a). Once u(x, t) and s (x, t) were
obtained, they were Fourier transformed in an identical fash-
ion, and spectral ratios were taken (Eq. 3, Fig. 5b, c). We
show the amplitude of I (ω) and ignore phase information in
this study. Both signals were sampled at 10 MHz, windowed
with a 400µs Blackman–Harris window centered on the first
wave arrival. Fourier transformswere performedwith the fast
Fourier transform (FFT) algorithm.

Asmentioned inSect. 2.1, the lower limit of the calibration
is determined by the time duration (T ) of the time series and
the manner in which the spectrum is averaged. Following
Eq. 5, the lower bound of the sensor instrument response is
20/T = 50 kHz (Fig. 5c).A longer timewindowTcan extend
the lower bound of the sensor calibration. The FE model is
the best candidate to extend u (x, t). The ideal source for the
FE model should have a low fc so that coarser elements are
adequate to capture its energy content. At the same time, its
corner frequency should be greater than 50 kHz to ensure
there is overlap between the two segments of I (ω). Based
on the corner frequencies of the different sources (Table 2),
a 3.15 mm diameter steel ball was chosen for low frequency
calibration. A FE simulation using 5 mm elements (Eq. 6)
was computed to T = 11 ms (Fig. 5d).

The instrument response I (ω) from generalized ray the-
ory (Fig. 5c) and FE (Fig. 5e) are shown with reference lines
corresponding to displacement, velocity, and acceleration.
Phase information is not shown. From 100 kHz to 1 MHz,
the V103 has a nearly linear response and measures a phys-
ical quantity between velocity and displacement. There is
a distinctive decrease in sensitivity at 20 kHz as shown in
Fig. 5f. In the 1–10 kHz frequency band, the sensor sen-
sitivity decreases and the slope of the frequency response
nearly matches that of acceleration; thus the V103 can be
considered an accelerometer in this frequency band. Fig-
ure 5e shows the resonances and anti-resonances of the test
plate that are apparent at lower frequencies (1–10 kHz). The
S-wave wavelengths (0.3–3 m) in that frequency range are
within an order ofmagnitude of the plate’s length (0.6m).We
observe a similar trough between 40 and 50 kHz in Fig. 5b
that is due to reflections traversing the thickness of the plate.
These peaks and troughs in G(ω) make the computation of
I (ω) sensitive to wave velocities and geometry assumed in
the FE and generalized ray theory models and decreases the
accuracy of the calibration in this 1–10 kHz frequency band.
Consequently, we perform the spectral averaging technique
described in Sect. 2.1 before computing the spectral ratios
in order to help retain accuracy at the expense of frequency
resolution.
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Fig. 5 Calibration results for Panametrics V103 (a). Theoretical dis-
placement u(x, t) and recorded signal s(x, t) at epicenter location of
a 0.5 mm ruby ball impact. The impact of the ball onto the plate is at
t = 0. The recorded signal is normalized to the first P-wave arrival (40
mV/nm), and then offset vertically [identical treatment is performed
in (d)]. The first P-/S- arrivals are labeled. b Fourier transforms of the
signals in (a) are offset vertically for better comparison. The troughs

near 40 kHz correspond to an anti-resonance of the test plate. c I (ω)

is computed by spectral division (Eq. 3) using U (x, ω) and S (x, ω).
d Recorded signal s(x, t) and FE simulated theoretical displacement
u (x, t) of a 3.15 mm diameter steel ball for 11 ms. e Fourier transforms
of the signals in (d) are shifted vertically for better comparison. f I (ω)

is computed by spectral division (Eq. 3) using U (x, ω) and S (x, ω)

that were resampled with 17 frequency bins per decade

3.2 Validity of Source Model

Before implementing the broadband calibration technique on
other commercial sensors, the validity of the source model
(Eq. 5) was tested using sources of various diameters (D)

from different drop heights (h). For each case (D, h), the
spectral ratio of S(ω)/F(ω) should be identical (Eq. 3). Fig-
ure 6 shows S(ω)/F(ω) calculated using signal processing
techniques described in Sect. 3.1 and plotted to each source’s
corner frequency. A variety of D, h yields S(ω)/F(ω) that
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Fig. 6 Validation of the source
model using different diameter
sources dropped from multiple
heights. Each curve is
S(ω)/F(ω) and is plotted up to
the corner frequency of its
corresponding source

agree to within 3 dB up to 640 kHz, effectively validating the
shape of the Hertzian source model proposed in Sect. 2.3.

3.3 Broadband Calibration Curves

Figure 7 compares the responses of five commercial sensors
(PAC R15a, PAC WSa, V103, V101, pinducer) in time and
frequency domains. Figure 7a shows the theoretical displace-
ment time history u(x, t) from generalized ray theory and
the output from the five commercial sensors at the epicenter
location (position 1 in Fig. 2) using the 0.5 mm ruby ball
as a source. Hot glue was the couplant between the sensor
and the aluminum test plate and the responses shown include
attenuation due to the hot glue (described in more detail in
Sect. 4.1.1). Figure 7b contains the concatenated instrument
response for each commercial sensor that contains a high fre-
quency segment derived using generalized ray theory and a
low frequency segment derived from FE analysis.

Observations about the commercial sensors are made
based on Fig. 7. Time domain oscillations can be associ-
ated with frequency domain resonances. The PAC R15a time
series contains many oscillations (ringing) following the ini-
tial P arrival with a period of approximately 7µs, which
corresponds to the distinctive resonant peak at 150 kHz
visible in I (ω). (This matches the manufacturer-specified
resonance.) Later arrivals (S, 3P, etc) are buried in the reso-
nant “coda”. The PACWSa also contains some ringing after
the initial P-wave arrival but has less dominant resonances,
and a correspondingly smoother instrument response from
100 kHz to 1 MHz. As a result, later P-wave reflections
can be discerned. Peak sensitivity is at about 550 kHz. Both
Panametrics sensors, V103 and V101, clearly show the ini-
tial P-wave arrival and its reflections through the thickness
of the plate (3P, 5P, etc) as well as the initial S-wave arrival,
shown as an upward discontinuity between the P and 3P. Peak
sensitivities of the V101 and V103 are around 500 kHz and
1 MHz, consistent with published resonant frequencies. The
Pinducer has “coda” oscillations and many large resonances

of I (ω) at high frequency. The PAC sensors, while more
resonant than the Panametrics sensors, are 20–40 dB more
sensitive from 50 kHz to 1 MHz. The Panametrics V101 and
V103 have nearly flat responses from 100 kHz to 1MHz. The
Valpey-Fisher Pinducer is 10–30 dB less sensitive compared
to the other four sensors from 50 to 600 kHz. Table 3 lists
the peak sensitivity (and its corresponding frequency) and
maximum resolution (Sect. 4.2) of the five sensors.

In the 1–10 kHz frequency band, all five sensors have
slopes close to 40 dB/decade indicating that they all are sen-
sitive to acceleration in this band. The oscillations that are
common for the I (ω) of all the sensors is due to a slight mis-
match of the resonant/anti-resonant peaks between U (x, ω)

and S (x, ω), evident in Fig. 5e.

3.4 Aperture Effect

For waves propagating in a given test specimen, at high fre-
quencies when the wavelength is less than sensor’s aperture,
multiple wavelengths will average out in the sensor’s area of
contact, causing decreased amplitude in the recorded signal.
Such an effect is called the aperture effect (e.g. [7,22,33,34]).
For epicenter calibration described above, (position 1 in
Fig. 2), the incidence angle = 90◦ so all wave motion
is in phase across the face of the sensor, and the aper-
ture effect is minimized. However, in some circumstances
a surface calibration is preferred. In this case, incidence
angle = 0◦ and aperture effect will affect sensitivity at high
frequencies.

3.4.1 Theory

Past efforts have modeled the aperture effect while assuming
a straight-line wavefront incident on a circular sensor (e.g.
[22]), described by the source-sensor geometry of position 2
in Fig. 2 (incidence angle = 0◦). Displacement is then

u(x, t) = B cos (kx − ωt) , (9)
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Fig. 7 Calibration results for
five commercial sensors. a Top
trace is the theoretical
displacement for a 0.5 mm ruby
ball source at the epicenter
location, followed by the
recorded signal of the five
commercial sensors, as labeled.
b Concatenated I (ω) computed
using FE analysis for low
frequencies and generalized ray
theory for high frequencies.
Different reference lines
indicate displacement, velocity,
and acceleration

where k is the scalar wavenumber and ω is the angular fre-
quency.

The sensor response is defined as the surface integral of the
displacement over the sensor’s face combined with its local
sensitivity, which is often assumed to be uniform across the
sensor face (e.g. [7]) but is sometimes treated as nonuniform
(e.g. [34]). The aperture function is the ratio between the
surface integral and the initial wave equation. When uniform

sensitivity across the sensor face is assumed, it and takes the
form of a Bessel function of the first kind [22]:

Aperture function = 4J1 (kφ/2)

kφ
, (10)

where φ is the sensor aperture, or diameter.
The wavenumber k can be expressed as 2π f /C (where

C is wave speed in the medium). For surface calibrations,
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Table 3 Peak sensitivity and max resolution for commercial sensors
coupled to aluminum with hot glue

Sensor Peak sensitiv-
ity (V/nm)

Frequency
(kHz)

Max. resolution
(pm)

PAC R15a 1.1 150 2

PAC WSa 1.2 560 1

Panametrics V101 0.10 500 10

Panametrics V103 0.079 910 12

Valpey-Fisher Pinducer 0.012 250 60

Fig. 8 Aperture function of theV103 sensor at the Rayleighwave speed
at 0 incidence angle. a Linear frequency, as seen in [22]. b The same
plot is converted to logarithmic frequency and amplitude to highlight
the lobes at higher frequencies

most of the wave energy that reaches the sensor is trav-
eling at the Rayleigh wave speed CR , so we use CR to
compute faper = CR

φ
= 200 kHz. Figure 8 shows the theo-

retical aperture function of the V103 sensor (φ = 12.7mm)
against frequency in both linear and log scale. Sensor out-
put is unaffected by the aperture for frequencies lower than
faper.

3.4.2 Demonstrating the Aperture Effect

Figure 9 demonstrates the aperture effect by comparing the
epicenter (position 1) and surface (position 2) calibration
curves for the Panametrics V101 (φ = 25.4mm, faper =
102kHz), V103 (φ = 12.7mm, faper = 200kHz), and Pin-
ducer (φ = 2.6mm, faper = 1MHz). I (ω) at positions 1 and
2 match to within 10 dB for frequencies less than faper. At
frequencies higher than faper, the aperture effect causes the

calibration curve to decrease in the form of a series of lobes,
in agreement with the theoretical aperture function shown
in Fig. 8. Each epicenter I (ω), scaled by its corresponding
theoretical aperture function determined from Eq. 10, is also
shown in Fig. 9 to illustrate the moderate agreement. The
aperture effect is minimal in the Pinducer due to its small
sensor diameter.

Besides utilizing Eq. 10, other ways to account for the
aperture effect discretize the sensor surface into regions
whose dimensions are determined by the minimum wave-
length of interest (λm = CR/ f0 where CR is the Rayleigh
surface wave speed). A forward approach assigns a weight-
ing function to theGreen’s function in each discretized region
based on its area and local sensitivity. They are then super-
posed into a finite receiver Green’s function [33]. Another
approach is to solve for the weighting function as an inverse
problem, using iterative deconvolution techniques [35].

4 Discussion

4.1 Comparison with Previous Studies

The general shape of I (ω) and the location of resonances
for the different sensors obtained in this study and shown in
Fig. 7 matches well with results reported by Ono [6] using
face-to-face reciprocity calibration. For example, for the PAC
R15a, both studies identify the peak sensitivity at about 150
kHzwith a secondary resonance peak at about 300 kHz that is
6 dB lower in amplitude. Both studies indicate that the V101
is about 5 dB more sensitive than the V103 in the 300–600
kHz band and both studies identify the broad resonant peaks
of the V101 and V103 close to the published values of 500
kHz and 1000 kHz, respectively.

The absolute sensitivity of AE and ultrasonic sensors is
more difficult to measure accurately, since recorded signal
amplitudes are affected by the type of couplant used and
the impedance contrast between sensor and test material.
The absolute amplitude of the ball impact source function
depends on the change in momentum of the ball, so the
measured coefficient of restitution must be used to make a
small (2.6 dB) correction to Hertz theory, as described in
Sect. 2.3. In general, the sensitivities reported in Table 3
are lower than those reported by Ono [6]. The main cause
for the discrepancy is coupling type (hot glue vs. Vase-
line), as described in the next section. Other sources of error
may be differences in the impedance of the test specimen
material (aluminum versus face-to-face sensor calibration),
differing sensor response between different sensors of the
same model, or inaccuracy of the Hertz contact model, par-
ticularly for the tiny ruby ball and frequencies close to 1
MHz.
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Fig. 9 Aperture effects on
V101, V103, and Pinducer. In
each subplot the black trace is
I (ω) estimated from a recorded
signal and mechanical
disturbance at the epicenter
location, the green curve is I (ω)

from position 2, and the red
curve is the black curve scaled
by the sensor’s theoretical
aperture function determined
from Eq. 10. The calibration
curves are plotted up to when
the SNR drops to 10 dB. The
source used for the V101 and
V103 sensors is the 0.5 mm
ruby ball. The source used for
the Pinducer is the 0.8 mm
Titanium ball. In c the solid and
dashed red curves overlap since
faper of the Pinducer is over 1
MHz (Color figure online)

4.1.1 The Effects of Hot Glue as a Couplant

The calibration results reported in Fig. 7 correspond to the
sensitivity of the various sensors when coupled to aluminum
using hot glue. To better compare our results to those of Ono
[6], we conducted an experiment to examine the frequency-
dependent attenuation by hot glue compared to Vaseline
which was used in those experiments. Two identical V103
sensors (sn 952678 and sn 1116882) were placed on the bot-
tom surface of the test plate at locations symmetric about
the epicenter (position 3 in Fig. 2). One was coupled with
a 0.82 mm thick layer of hot melt glue as in all previous
experiments and the other was coupled with Vaseline and
taped to the specimen using a 0.5 m-long section of pack-
aging tape. The plate was then excited by the impact of a
0.8 mm Titanium ball, and the fracture of a 0.2 mm diam-
eter thin wall glass capillary tube [16]. In this experiment
the source characteristics, wave propagation, digitizer, and
cable length are carefully kept constant, leaving the cou-
pling method as the only variable. The sensors were then
switched and experiments repeated in order to account for
any differences between the two individual V103 sensors
(found to be ≤ 6 dB). Figure 10a compares the two cou-

pling methods for the 0.8 mm titanium ball dropped from
a height of 110 mm onto a 51 mm thick aluminum plate.
Figure 10b shows the average of spectral ratios of the two
coupling methods obtained from all combinations of sources
and sensor positions. Differences between the two coupling
methods are modest (< 6dB) below 6 kHz, but for higher
frequencies, attenuation of hot glue compared to Vaseline
increases at roughly 8 dB/decade from 6 to 600 kHz, with
notable deviations from this overall trend. This comparison
demonstrates the important effect of sensor coupling on both
the amplitude and the shape of recorded signals.

4.2 Frequency Dependent Resolution

The smallest amplitudewave that anAEandultrasonic sensor
can detect (R(ω)) is obtained from

R(ω) = Snf(ω)

I (ω)
, (11)

where Snf(ω) is the spectrum of the noise floor obtained from
the Fourier transform of a recorded signal before the first
wave arrival (all noise signal). Better resolution is achieved
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Fig. 10 Comparison between hot glue and Vaseline showing how hot
glue attenuates and affects the frequency content of recorded signals
(relative to Vaseline). a Signals were recorded while two V103 sensors
were placed in locations symmetric about the source impact location
(position 3 in Fig. 2). All differences between the signals should be due
to coupling.bThe average of spectral ratios of the two couplingmethods
obtained from different source types and by switching the location and
coupling type of the two sensors (see text)

with a lower noise floor, so it is important to reduce noise
in all components of the recording system (preamps, cables,
etc.). Figure 11 shows the sensor resolution (or rather, instru-
ment resolution for an in-situ calibration) as a function of
frequency from 60 kHz to 1 MHz obtained with our Elsys
TraNet EPCe data recorder while a 200 mV digitization
range is selected on the recording system. Spectral averaging
(described in Appendix A) is applied. It is possible that the
limiting noise floor was not in the sensors themselves but
due to other links in our recording system (cable, digitizer,
couplant), so these resolution estimates should be considered
as upper bounds.

The peak resolution (in pm) of each sensor is listed in
Table 3. The PAC sensors (WSa, R15a) can resolve dis-
placements down to 1 pm from 100 kHz to 1 MHz. The
Panametrics sensors (V101, V103) are sensitive down to 10
pm from 100 kHz to 1MHz. The pinducer has the lowest res-
olution, only capable of detecting down to ∼100 pm. Since

Fig. 11 Frequency dependent resolution for five commercial sensors
when coupled to aluminum using hot glue. The best resolution (lowest
value) for each sensor is achieved near its specified resonant frequency

hot glue was shown to attenuate signal by 8–15 dB in this fre-
quency band (when compared to Vaseline), better resolution
could be achieved with a different choice of couplant.

4.3 Displacement, Velocity, or Acceleration?

In this study all sensors are calibrated against the theoret-
ical displacement (Eq. 3), therefore I (ω) is an estimate of
the displacement instrument response spectrum. A flat I (ω)

indicates an ideal displacement sensor. Taking a derivative
in the time domain is equivalent to multiplying by iω in the
frequency domain [19]. Therefore, velocity has a slope of 20
dB per decade frequency while acceleration has a slope of
40 dB per decade frequency. In the time domain, the shape
of the longitudinal wave arrivals (P, PPP, 5P, etc.) would be
perfect double-sided pulses for a velocity sensor and a single-
sided pulse for a displacement sensor. The V101 instrument
response has a slope near 20 dB per decade in the ∼70 kHz
to 500 kHz frequency band (Fig. 7b) and shows double-sided
pulses in time domain (Fig. 7a) and therefore acts as a veloc-
ity sensor in that frequency band. The V103 response has a
slope between 0 and 20 dB in the 50 kHz to 1MHz frequency
band and in the time domain the wave arrivals are double-
sided pulses with the first side of the pulse stronger than the
second side (Figs. 5a, 7), so the V103 about halfway between
a displacement and a velocity sensor in this frequency band.
The PAC R15a and Pinducer are strongly resonant and there-
fore cannot be categorized.

The PACWSa has a slope of approximately 20 dB/decade
from 100 kHz to 1MHz. Figure 12 demonstrates the calibra-
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Fig. 12 Calibration of PACWSa against velocity. a Comparison of the-
oretical velocity v(x, t) against the recorded signal s(x, t).bTheFourier
transform of v(x, t) and s(x, t). c The velocity instrument response
spectra and the displacement response spectra

tion of the PAC WSa against theoretical velocity (v(x, t)).
The theoretical velocity is computed by convolving the
force–time function of the source with the time derivative
of the Green’s function for the epicenter location:

v(x, t) = f (ξ , τ ) ∗ d

dt
G33 (x, t; ξ , τ ) , (12)

The velocity instrument response is then computed in a fash-
ion similar to Eq. 3:

I (ω) = S (x, ω)

V (x, ω)
, (13)

where V (x, ω) is the FT of the theoretical velocity, v(x, t).
Note that the velocity instrument response is equivalent to
multiplying the displacement instrument response by iω in
the frequency domain. This additional calibration process
shows that the PACWSa ismost sensitive to velocity at∼230
kHz.

5 Conclusion

This paper demonstrates a technique to calibrate AE and
ultrasonic sensors using a ball impact as a calibration source
and a thick aluminum plate as a test block. Following pre-
vious work [16], recorded signals were compared to the
mechanical disturbance (surface displacement time history)
felt by the sensor, which is calculated from theory. General-
ized ray theory and the FEmethod were combined to achieve
a broadband calibration effective from 1 kHz to 1 MHz,
spanning three decades of frequency. The 3D FE model was
verified at high frequencies against the generalized ray theory
and was verified at low frequencies by a PCB accelerometer.
This serves as an inexpensive substitute for a high-fidelity
reference sensor or laser vibrometer.

We are interested in how the sensors behave in practice,
and the calculated instrument response I (ω) includes the
effects of coupling and other characteristics of the recording
system.We found that attenuation causedby the couplant (hot
glue in the current study) is not negligible at higher frequen-
cies (> 10 kHz). Most of the calibrations reported here were
performed in the epicenter position, where the sensor under
test is located on the opposite side of the plate and directly
beneath the location of ball impact. For surface calibrations,
the aperture effect can no longer be ignored and we demon-
strated how this affects sensor response at high frequencies.

The broadband calibration techniques proposed in this
paper allow us to better understand the relative merits of
different AE and ultrasonic sensors. In addition to having
a resonant frequency, a sensor measures different phys-
ical quantities at different frequency bands with varying
sensitivity. All of the sensors studied here act nearly as
accelerometers in the 1–10 kHz band and are closer to veloc-
ity or displacement sensors in the 100 kHz to 1 MHz band.
Quantification these frequency-dependent attributes enables
quantitative analysis of source parameters including themag-
nitude, radiated energy, and source dimensions in space and
time. This study focused on the amplitude of the instru-
ment response—since that is all that is needed to determine
the above source parameters—and ignored phase, which is
needed to simulate the sensor’s effects in the time domain.
Future work will be focused on applying the technique to
sensors coupled to other materials such as rock, plastic, and
concrete. These materials will require a consideration of vis-
coelasticity, intrinsic attenuation, and scattering.
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Appendix A

Boundary conditions certainly affect displacement output
measured in the center of the plate, yet high-frequencywaves,

Fig. 13 Boundary condition comparison. a Comparison of the Fourier
transform of signals recorded with different boundary conditions using
a hammer tap source and keeping source-sensor geometry constant.
b Setups for the flat/vertical boundary conditions. The black arrows
indicate the direction of impact and the purple triangle represents the
sensor under testing

due to their short wavelength, will be minimally affected by
the boundary conditions, at least for short time durations after
the time of impact. This appendix describes a physical exper-
iment that probes the effects of the boundary conditions in the
experiments. We explore the frequency below which bound-
ary conditions start to affect the displacement-time history
in order to guide how we construct the boundary conditions
for the FE model.

Figure 13b shows two kinds of boundary conditions
selected for comparison: the aluminum plate sitting flat and
vertical on two pieces of 90× 90 mm wooden blocks topped
with a 1.6 mm thick layer of cork. When the plate was ver-
tical, we introduced impact onto the plate by attaching a
piece of string to the ball and swinging it in a pendulum-like
manner so that the ball hit the center of the plate from the
surface-normal direction (illustrated in Fig. 13b). To keep the
boundary condition as the sole variable, for each source we
only compared ball drop/swing trials of equal amplitude. The
spectra of recorded ground motions from different boundary
conditions were consistent within 6 dB up to their respec-
tive corner frequencies and down to 5 kHz before the SNR
dropped to 1. The comparison was further extended to lower
frequencies by using a hammer tap as the source. The spec-
tral estimates of the hammer tap were resampled into 17
equally-spaced intervals per decade frequency (as described
in Sect. 2.1). As shown in Fig. 13a, down to approximately 50
Hz (SNR drops to 1), the spectra from two boundary condi-
tions were consistent to within 6 dB. Therefore, this physical
experiment shows that the recorded signal at the epicenter
location is relatively indifferent to the boundary conditions
at least for the first 50 ms and down to about 50 Hz.
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