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Introduction

To investigate the scaling of seismologically estimated breakdown energy1 G′, we started

from the length scale of laboratory earthquakes in our previous studies2, 3 and scaled the results

with numerical models in two different scaling cases with identical interfacial properties. Here,

we provide details of the numerical approaches (Supplementary Note S1 and Fig. S1), different

methods of averaged stress drop calculation (Supplementary Note S2 and Fig. S2), different meth-

ods of radiated energy calculation (Supplementary Note S3 and Fig. S3), the relations between

sampling frequency fs and the minimum resolvable critical slip distance δc (Supplementary Note

S4 and Fig. S4), scaling relations of seismologically estimated breakdown energyG′ with different
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approaches (Fig. S5), scaling relations of stress overshoot (τr − τE
f ) (Fig. S6), an example of the

spatial distribution of stress τ , stress change ∆τ , stress overshoot (τr − τE
f ), and slip δ over time

(Fig. S7-S8), stress overshoot normalized by static stress drop (Fig. S9), a comparison between

simulations with center nucleation versus edge nucleation (Fig. S8), and an example of randomly

generated pseudo-earthquakes (Fig. S11) overlayed on the observations of ref.1.

Supplementary Note S1. Numerical simulations

Ruptures were nucleated by a seed crack at the center of the fault, in which the peak strength

τp was manually decreased to the residual strength τr and extended at 10% of the Rayleigh wave

speed. The effective fracture energy G = 1
2
(τp − τr)δc is 0 within the seed crack since τp = τr.

The growth of the seed crack is stopped when its radius reaches a certain prescribed limit to avoid

further affecting the fault behavior. This limit was chosen to be slightly larger than the critical

nucleation length through linear elastic fracture mechanics theory4. All of the models in this study

initiate identically from within the constant initial stress region (r < a), with identical critical

nucleation length Lc = 16
π
µ(λ+µ)
(λ+2µ)

G
(τi−τr)2 ≈ 0.072 m.

The element size is identical for all the models in this study and was chosen through the

trade-off between accuracy (smaller element size) and maximum achievable χ (larger element

size). For a fixed domain {x ∈ [−L/2, L/2); y = 0; z ∈ [−L/2, L/2)}, we uniformly discretized

the domain with element size ∆x = ∆z = L/Nx = L/Nz =
√
N , where N = Nx × Nz is the

total number of elements and L = 2χ m. At χ = 2−2, we analyzed the convergence of all the

parameters of interest, i.e., A, D, M0, ∆τ , fc, waz/2R, ∆τ (see Supplementary Note S2), ∆W/A,
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ED/A, and ER/A (see Supplementary Note S3), as shown in Fig. S1. With consideration of the

range of χ, we finally selected element size of 1/128 = 0.0078 m in both x and z directions. Note

that this convergence study was done with a set of models with initial stress τi, strengths τp and

τr, and δc that were all 10x smaller than the values in the simulations shown in the manuscript

(and closer to the laboratory values). However, the two sets of models did not required separate

convergence studies since they have identical critical nucleation length Lc = and cohesive zone

width5 wcoh = 9π
32E

G
(τi−τr)2 with G = 1

2
(τp − τr)δc. The two sets of models also exhibited nearly

identical scaling relations.

Supplementary Note S2. Averaged stress drop

We define the spatial distribution of static stress drop ∆τ(x, z) as

∆τ(x, z) = τi(x, z)− τf(x, z) , (S1)

where τi(x, z) = τ(x, z, t = 0) is the initial stress distribution and τf(x, z) = τ(x, z, t = tend)

is the final stress distribution. By assuming the stress drop is uniform within the ruptured area6,

the seismologically estimated average stress drop ∆τ
S

can be calculated through seismic source

parameters by

∆τ
S

=
7

16

M0

R3
, (S2)

whereR =
√
A/π is the source radius of a circular rupture with areaA. ∆τ

S
has been widely-used

as a first-order estimation of stress drop. However, the underlying uniform stress drop assumption

is not always valid, especially for the models in scaling case A considered in this study. The spatial

average stress drop over the whole ruptured area is the most straightforward averaging scheme and
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can be expressed as

∆τ
A

=
1

A

∫
Σ

∆τ(x, z)dS . (S3)

However, this quantity is highly affected by the heterogeneity of the rupture, e.g., ∆τi(x, z) in our

models, and has been shown mostly irrelevant to the fault constitutive law7. Fig. S1f shows that the

estimation of ∆τ
A

is not converged for the selected element size. We believe it is mainly due to

the final rupture size of the χ = 2−2 model is not large enough. Thus, the error should be quickly

diminished for larger models. As shown in Fig. S2, all three different estimates of ∆τ are nearly

scale-independent.

Supplementary Note S3. Radiated Energy

As shown by Kostrov8 and Appendix C in ref.9, the radiated energy can be computed through

time history of shear stress and slip rate at the fault plane,

EN
R =

1

2

∫
U

[τf(x, z)− τi(x, z)] δf(x, z) dS −
∫ tend

0

∫
U

[τ(x, z, t)− τi(x, z)] δ̇(x, z, t) dS dt .

(S4)

Considering
∫ tend

0
τi(x, z)δ̇(x, z, t) dt = τi(x, z)δf(x, z), the equation above can also be rearranged

into

EN′
R =

1

2

∫
U

[τf(x, z) + τi(x, z)] δf(x, z) dS −
∫ tend

0

∫
U

τ(x, z, t)δ̇(x, z, t) dS dt . (S5)

Other than EN
R and EC

R , we also considered a seismological approach for ER estimation.

Following Eqn. 16 in ref.10, ER can be estimated through seismic moment rate by

ES
R =

4π

5ρc5
s

∫ ∞
0

f 2Ω2(f) df , (S6)
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where ρ is the density of the surrounding medium and cs is the shear-wave speed.

Fig. S3 shows estimations ofER computed through different methods. EC
R andEN′

R yield very

close estimations. However, they are actually less accurate than EN
R according to the convergence

study in Supplementary Note S1, as shown in Fig. S1i. All estimates scale similarly, with a slight

deviation in EN
R and ES

R at lower χ, as shown in Fig. S3. We believe that this deviation was

caused by the area of the seed crack described in Supplementary Note S1 is relatively large, and

the rupture front has not fully accelerated to the Rayleigh wave speed before it reaches unfavorable

stress conditions and starts to arrest. ES
R is systematically higher than other estimates for χ > 1/2

and is therefore not considered in further discussions.

Supplementary Note S4. Local-point approach of breakdown energy estimation

Theoretically, the breakdown energy at a specific point within the rupture area can be accu-

rately estimated through

G(τ(δ)) =

∫ δf

0

(τ(δ)− τmin) dδ , (S7)

if the transient responses in τ(t) and δ(t) are faithfully recorded or recovered through kinetic

inversion approaches, and τ over/undershoots are corrected for. Averaging procedures7 could be

applied but require corrections for energy partition and remain imperfect11 estimations forG. Even

when the local-point approach is correctly applied, overestimation on G can still occur. Assuming

the sampling rate of both δ(t) and τ(t) measurements is fs, consider an extreme scenario that one

sample was done right on the timing of τ reaching τp and the next sample was done when τ first
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dropped to τr. The measured location slipped δc during the time difference between two samples

∆t = 1/fs, i.e., the averaged slip rate δ̇ = δcfs. If the fault accelerated instantaneously and slipped

at a constant rate δ̇max, then the minimum resolvable δc at a specific fs and δ̇max will be

δc = δ̇max/fs , (S8)

as shown in Fig. S4b. To demonstrate how low sampling rate affects the estimation of G and δc,

we down-sample δ(t) and τ(t) from our simulations and show that the area associated with the

fracture energy increases (Fig. S4a). This concept is also discussed in ref.12.
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Figure S1: Convergence of extracted parameters of the earthquake rupture in χ = 2−2 model

(identical in both scaling cases) with
√
N =50, 64, 96, 128, 256, 512, 1024, 2048, 4096. The

filled marker indicates the selected element size (
√
N = 128) in this study. See Supplementary

Note S1.
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S

(Eqn. S2), ∆τ
E

(Eqn. M7), and ∆τ
A

(Eqn. S3). See Supplementary Note S2.
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Figure S3: Radiated energy ER/A estimated through different methods: EC
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(Eqn. M7; Eqn. S4), EN′
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R (Eqn. S6). See Supplementary Note S3.
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Figure S4: Effect of sampling rate fs on apparent fault constitutive law. (a) The evolution of τ(δ)

from the χ = 1 model in scaling case A at (x, y, z) = (0.2, 0, 0.2) m measured at different fs. Each

dot represents an individual measurement. The measurement location is within the plateau region

but outside the seed crack. Evidently, low fs could make δc appear to be larger. (b) The minimum

resolvable δc for given fs and δ̇max given by Eqn. S8. See Supplementary Note S4.
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Figure S5: Breakdown energy G′ estimated by different methods (see Methods).
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Figure S7: Snapshots of numerical simulations at y = z = 0. (a-d) Models of χ = 20 and χ = 23

in scaling case A and B, respectively. The τ−τr panel shows that the amplitude of stress overshoot

correlates with the amplitude of slip δ, mainly due to the distance from the arrest location. There

seem to be two arrest fronts, one comes from the arrest of the rupture front in the mode-II direction

and the other one comes from the mode-III arrest.
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Figure S8: Snapshots of the same numerical simulations shown in Fig. S7, but at x = y = 0.
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stress overshoot normalized by the averaged stress changes. Here we show λ =
(
τr − τE

f

)
/∆τ

E

is nearly scale-invariant in both scaling cases and spans from 13% to 17% and from 13% to 20%

for scaling case A and B, respectively.
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Figure S10: Comparison between center nucleation (a, c) and edge nucleation (b, d) models at

χ = 4. (a, b) Cross sections of the 3D model at z = 0, (c, d) cross sections of the same models at

x = 0. For the edge nucleation, the rupture starts at (x, y, z) = (0.7a, 0, 0.7a), where r = 0.99a.
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Figure S11: Randomly generated pseudo-earthquakes overlaid on data used in ref.1, Fig. 8. Red

circles are 50 randomly generated earthquake events that obey self-similarity and are uniformly

distributed over −2 ≤ Mw ≤ 8 with magnitude-independent overshoot −1 MPa ≤ ∆τOS ≤

2 MPa. 30% of the events are not shown since G′ ≤ 0. G′ of random events are computed by

G′ = G + ∆τOSD, where G is assumed to be negligible (G = 1 Jm−2). While the observed

scaling is not an exact match, we argue that it is within the uncertainty of the data.
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