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Abstract This paper describes sensor calibration and sig-
nal analysis techniques applicable to the method of acous-
tic emission (AE) and ultrasonic testing. They are partic-
ularly useful for obtaining absolute measurements of AE
wave amplitude and shape, which can be used to constrain
the physics and mechanics of the AE source. We illustrate
how to perform calibration tests on a thick plate and how
to implement two different mechanical calibration sources:
ball impact and glass capillary fracture. In this way, the in-
strument response function can be estimated from theory,
without the need for a reference transducer. We demon-
strate the methodology by comparing calibration results for
four different piezoelectric acoustic emission sensors: Phys-
ical Acoustics (PAC) PAC R15, PAC NANO30, DigitalWave
B1025, and the Glaser-type conical sensor. From the results
of these tests, sensor aperture effects are quantified and the
accuracy of calibration source models is verified. Finally,
this paper describes how the effects of the sensor can be
modeled using an autoregressive-moving average (ARMA)
model, and how this technique can be used to effectively re-
move sensor-induced distortion so that a displacement time
history can be retrieved from recorded signals.
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1 Introduction

Nondestructive evaluation techniques, such as ultrasonic
testing and the method of acoustic emission (AE), use sig-
nals recorded from piezoelectric sensors to detect surface
vibrations and gain information about a material or struc-
ture [1, 2]. These signals are a function of source effects,
wave propagation effects, and instrumentation effects, as de-
scribed schematically in Fig. 1. To isolate and better un-
derstand the source or wave propagation, the effects of the
sensor and recording system must be characterized. Specif-
ically, we would like to know the precise physical quantity
(displacement, velocity, etc.) to which the recorded signal
is most closely related and quantify any distortion that the
sensor or recording system imparts to the signal. We refer to
this characterization as sensor calibration.

In many cases, researchers do not need to calibrate their
sensing instruments because measurements are based on ar-
bitrarily defined signal thresholds or the relative timing of
wave arrivals. Alternatively, researchers may wish to quan-
titatively evaluate the absolute amplitude of recorded waves
or discern the time history or shape of the waves emanating
from the wave source. This information can be used to iden-
tify the strength and time history of the forces or moments
associated with the wave source in order to constrain the
physical mechanisms involved (i.e. grain crushing, tensile
fracture, shear slip, piezoelectric pulse, etc.). (See [3, 4], for
example.) Additionally, absolute sensor calibration enables
researchers to quantitatively compare their results with oth-
ers and advance the collective understanding of the physics
and mechanics of AE and other stress wave sources, which
will lead to improved, traceable nondestructive evaluation
techniques.

As illustrated in Fig. 1, the sequence of events which lead
to a recorded signal can be separated into a number of dis-
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Fig. 1 Block diagram of the
sequence of events linking the
source to the recorded signal

tinct processes. In order to calibrate a sensor, both the in-
put and output of the instrument response box, shown in
Fig. 1, must be calculated or measured, so that the effects
of the sensor and recording system can be isolated from the
wave propagation and source effects. This is accomplished
by comparing the recorded signal, s(x, t), to the precise me-
chanical disturbance (e.g. the displacement, velocity, accel-
eration, strain) that produced the signal. Here we describe
the disturbance as displacement, uk(x, t), a quantity that
is either measured with an independently calibrated sensor
(a reference sensor), or is calculated from theory. In many
cases a reference sensor is not available, is not sensitive
enough, or must be calibrated itself. Therefore, we describe
the procedure for sensor calibration against theoretical cal-
culations.

An alternative category of calibration, reciprocity cali-
bration, utilizes the “reversible” nature of most piezoelectric
sensors: they can be used as both a transmitter and receiver,
see e.g. [5–7]. (Reciprocity calibration does not work with
newer sensors with built-in matching preamp, e.g. Digital-
Wave (DW) B1025LD, and Physical Acoustics PAC-R15-
AST.) A detailed discussion of reciprocity calibration is be-
yond the scope of the current paper.

The mathematical and conceptual framework upon which
the current calibration approach relies is described in Sect. 2.
Section 3 discusses calibration sources and focuses on two
different mechanical sources of stress waves used for cali-
bration: ball impact and glass capillary fracture. Section 4
describes the characterization of wave propagation effects,
using the elastodynamic Green’s function. The estimation of
the instrument response function in the frequency domain is
then demonstrated in Sect. 5. Lastly, we describe a conve-
nient method for modeling the instrument response function
in the time domain. This time domain model can be used
to simulate the sensor’s distorting effects, or to remove the
sensor effects from the recorded signals.

For the purposes of case study and example, we tested
four different types of AE sensors on a 50 mm thick steel
plate. The four sensors are the Glaser-type conical piezo-
electric sensor, e.g. [3, 4, 8, 9], the Physical Acoustics (PAC)
PAC R15, the PAC NANO30, and the DigitalWave (DW)
B1025. The Glaser-type sensor is a laboratory-standard,
wide-band displacement sensor (see Sect. 5.2), and the other
three are widely used commercial sensors. The PAC R15
is a general purpose 150 kHz resonant sensor. The PAC
NANO30 is described as a miniature sensor with nomi-
nal operating frequency of 270–970 kHz. The DigitalWave

B1025 is a wideband sensor with a nominal operating band-
width from 100 kHz to 3 MHz. Though we focus our at-
tention on AE sensors and analysis techniques for the char-
acterization of AE sources, the methodology is valid for a
wide variety of sensors common to the stress wave nonde-
structive testing methods such as impact-echo [10] and ul-
trasonic techniques which operate in the frequency range of
∼10 kHz to ∼4 MHz.

2 Theoretical Framework

The physics of wave propagation and transduction are ex-
tremely complicated. Instead of attempting to account for
every detail, we cast our analysis into a simplified and ide-
alized framework. This framework establishes the operating
assumptions or rules by which mathematical and concep-
tual models operate. In this paper, we present signal analy-
sis and sensor calibration schemes based on a transfer func-
tion framework [6, 11], which relies on a Green’s function
formalism [12, 13]. While this framework relies on some
assumptions, stated below, it acts as a starting point from
which problems can be posed and models can be tested.

Though all sensors have a finite aperture or sensing area
over which physical measurements are averaged in some
way, it is initially assumed that each sensor is essentially a
point receiver, and that recorded signals are proportional to
the wave field sampled at a single location, denoted x. Any
distortions due to sensor aperture are simply treated as er-
rors that cause the sensor response to diverge from the ideal
case of a point receiver. Likewise, the calibration sources de-
scribed in Sect. 3 are also assumed to act at point locations.
The point-source and point-receiver assumptions simply im-
ply that the source and sensor act on regions which are small
compared to the wavelengths of interest. In many cases this
is a valid assumption. These assumptions allow us to use a
single Green’s function for calibration and analysis. Alter-
natively, To and Glaser [14] demonstrated the technique of
integrating over multiple Green’s functions for finite source
or finite sensor problems.

The transfer function framework relies on the assumption
that both the wave propagation effects and the instrument re-
sponse (the two boxes in Fig. 1) can be modeled as linear,
time invariant systems (see, for example [15]). In the context
of AE and ultrasonics, this means that the materials and sen-
sors behave the same today as they will tomorrow, and that
signal amplitudes are directly proportional to source ampli-
tudes if the frequency content and location of the source
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does not change. Under these assumptions, wave propaga-
tion effects can be mathematically described as a convolu-
tion with the appropriate Green’s function, and the effects
of the sensor and recording system can be described as a
convolution with the instrument response function. In this
work, we treat the entire recording system (i.e. the sensor,
cables, any preamplifiers, and the data recorder) as a sin-
gle system which is described by the instrument response
function. Alternatively, each subcomponent could be char-
acterized separately. Because we employ a linear transfer
function approach, nonlinear details such as instrument sat-
uration must be treated as exceptions to these rules.

Following Fig. 1, the signal recorded from a sensor at
location x can be expressed as

s(x, t) = uk(x, t) ∗ ik(t) = fj (ξ , τ ) ∗ gkj (x, t; ξ , τ ) ∗ ik(t).

(1)

In this and subsequent equations, ∗ represents convolution,
fj (ξ , τ ) is the force acting in the j direction at location ξ

that the source imposes on the test specimen, gkj (x, t; ξ , τ )

is the elastodynamic Green’s function which describes the
displacement in the k direction at point x and time t due
to a unit impulsive force at location ξ in the direction j at
time τ [13]; ik(t) is the instrument response function in the
k direction which is to be determined in a calibration test.

Alternatively, if we wish to characterize the source with a
set of self-equilibrating forces, such as those from a source
buried within a specimen (as is typical in AE tests), the
force vector fj (ξ , τ ) can be replaced with a moment tensor
mjp(ξ , τ ). In this case, the recorded signal can be expressed
as

s(x, t) = uk(x, t) ∗ ik(t)

= mjp(ξ , τ ) ∗ gkj,p(x, t; ξ , τ ) ∗ ik(t), (2)

where gkj,p(x, t; ξ , τ ) is the first spatial derivative of the
elastodynamic Green’s function in the p direction. Regard-
less of how the source is characterized, the role of the instru-
ment response function ik(t) remains the same. Therefore,
for the calibration of an AE sensor, the calibration source
need not be representative of a real AE source, but it must
produce stress waves in the appropriate frequency range. In
this work, we employ (1) because the calibration sources
used in this study apply forces on the surface of the spec-
imen. In the above formulation, knowledge of the Green’s
function, gkj (x, t; ξ , τ ), and instrument response function,
ik(t), is sufficient to completely characterize the wave prop-
agation and instrumentation effects, respectively.

In a calibration test, the recorded signal, s(x, t), is com-
pared to a theoretically calculated mechanical disturbance.
In this work, we choose to compare recorded signals to cal-
culated displacement time history

uk(x, t) = fj (ξ , τ ) ∗ gkj (x, t; ξ , τ ). (3)

Alternatively, velocity, acceleration, and strain could be sub-
stituted, and can be derived from spatial or temporal deriva-
tives of uk(x, t). We refer to uk(x, t) as the ‘theoretical sig-
nal’ because it is the specimen displacement in the i direc-
tion which should theoretically exist at the sensor location x
on the calibration test specimen due to the forcing function
fj (ξ, τ ) of the calibration source. The instrument response
function ik(t) can be found by deconvolving (3) from (1):

ik(t) = s(x, t) ∗ uk(x, t)−1

= s(t) ∗ fj (ξ , τ )−1 ∗ gkj (x, t; ξ , τ )−1. (4)

This is most easily achieved in the frequency domain:

Ik(ω) = S(x,ω)/Uk(x,ω)

= S(x,ω)/[Fj (ξ ,�)Gkj (x,ω; ξ ,�)], (5)

where Ik(ω), S(x,ω), Uk(x,ω),Fj (ξ ,�), and Gkj (x,ω;
ξ ,�) are the temporal Fourier transforms of ik(t), s(x, t),
uk(x, t), fj (ξ , τ ), and gkj (x, t; ξ , τ ), respectively. To calcu-
late I (ω) in this way, we must first obtain an experiment-
theory pair: s(t) and uk(x, t), so an experiment must be de-
signed such that motions felt by the sensor under considera-
tion are very well modeled by the theoretical signal, uk(x, t).
This is achieved by employing a calibration source which
is modeled by a known forcing function fj (ξ , τ ), and con-
ducting the experiment on a specimen for which the wave
propagation effects can be modeled by a known or easily
computed Green’s function gkj (x, t; ξ , τ ).

3 Calibration Sources

In order to determine the instrument response function ik(t),
we must have a known source, fj (ξ , τ ), which produces vi-
brations of known amplitude and shape. An ideal calibration
source imposes a unidirectional force, acts on a region which
is small in size (in order to satisfy the point source approxi-
mation), introduces waves with a broad range of frequencies
into the test specimen, and has a smooth frequency spectrum
over the entire frequency range for which the calibration is
to be valid. Example sources can be found in [16].

Mechanical sources such as pencil lead break [17], capil-
lary fracture [18], and impact [3, 9, 19], are ideal because
they are intuitively simple, and the forces they introduce
to a specimen are directly linked to physically meaning-
ful, directly measurable quantities. These sources are impul-
sive or step-like, so they are very broadband in frequency,
and their short temporal duration results in ideal waveforms
for straightforward identification of the various wave phases
(P waves, S waves, etc.). This paper focuses on two dif-
ferent, well characterized, mechanical sources which can be
used for absolute sensor calibration: ball impact and glass
capillary fracture.
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Alternatively, electromechanical sources generated from
capacitive and piezoelectric transducers offer excellent re-
peatability and are easily automated. The difficulty with
electromechanical sources is that the precise electromechan-
ical properties of the transducer are complicated and are
typically unknown to the user. In order to precisely model
the forces that the transducer imposes on the specimen,
the source transducer itself must be well characterized: the
instrument response, coupling effects, and radiation pat-
tern must all be considered. Piezoelectric transducers them-
selves are often resonant and are therefore incapable of pro-
ducing short duration pulses or steps without ringing or
distortion [14]. Consequently, we suggest using transducer
sources only for relative calibration.

Thermo-mechanical sources excite stress waves in a ma-
terial by rapid localized heating of a specimen via a pulsed
laser, electric arc, or some other form of electromagnetic ra-
diation [20]. These sources hold many of the same advan-
tages as electromechanical sources—repeatability and easy
automation—but suffer from the same drawback: because of
their extremely complicated physics, they have not yet been
characterized to the level of the two mechanical sources de-
scribed below.

3.1 Glass Capillary Fracture

When conducting a calibration test using a glass capillary
fracture, a short (∼2 mm) length of thin walled glass capil-
lary tube is laid on its side and slowly loaded in the direction
perpendicular to the specimen face until it fractures. We sug-
gest loading the capillary with a small blunt object such as a
2 mm diameter metal cylinder rather than a razor blade. The
loading cylinder is oriented with its axis parallel to the sur-
face of the test block but perpendicular to the axis of the cap-
illary tube. Capillary diameter is typically 100 to 400 μm,
and under these conditions it typically breaks at a force of
5–25 N. When the capillary fractures, the surface unloads
very rapidly. The force time history, f (t), that the capillary
fracture imposes on the test specimen is very nearly equal to
a step function with a rise time (unload time), trise < 200 ns
[16, 18], though trise has some dependence on the size of the
capillary [3]. This source has been used by many researchers
because the force at which the fracture occurs, famp, is equal
to the amplitude of the step, and can be independently mea-
sured for absolute calibration. The capillary-break forcing
function can be modeled as

f (t) = famp/2 ∗ (1 − cos(πt/trise)) 0 ≤ |t | ≤ trise,

f (t) = 0 t < 0,

f (t) = famp t > trise.

(6)

The force time function and its spectrum are shown in
Fig. 2a and 2b, respectively. Typically, trise is very small and
results in a frequency bandwidth that is much greater than
that of the calibrated sensor. Therefore the exact value of
trise and the precise form of (6) are unimportant.

Fig. 2 Force time functions (a) and corresponding frequency spec-
tra (b) (estimated from (6) and (7)) for a glass capillary fracture cal-
ibration source and the impact of balls of various sizes and materials
dropped 310 mm onto the surface of a 50 mm thick steel plate

3.2 Ball Impact

For a ball impact calibration test, a small (∼1 mm) diameter
ball is dropped onto the test specimen. In these tests, the
ball is typically dropped through a small hole in a platform
of known height (from fingers or from a fine sponge) down
a tall, ∼40 mm diameter clear plastic tube. The platform
improves repeatability, and the tube prevents the ball from
being lost on subsequent bounces. The impact imposes an
impulse-like force. The precise forcing function, f (t), that
the ball imparts to the test specimen can be calculated from
Hertzian theory [3, 19], and is well modeled by

f (t) = fmax sin(πt/tc)
3/2 0 ≤ |t | ≤ tc,

f (t) = 0 otherwise,
(7)

where tc = 4.53(4ρ1π(δ1 + δ2)/3)2/5R1v
−1/5
0 is the time

the ball spends in contact with the specimen, and the max-
imum force fmax = 1.917ρ

3/5
1 (δ1 + δ2)

−2/5R2
1v

6/5
0 . In pre-

ceding equations, δi = (1 − μ2
i )/(πEi), and E and μ are

the Young’s modulus and Poisson’s ratio, respectively. R1

and v0 are the radius and incoming velocity of the ball. Sub-
script 1 refers to the material of the ball and subscript 2
refers to the material of the test specimen. The change in
momentum that the ball imparts to the test specimen, equal
to the area under the force time function f (t), can be inde-
pendently calculated based on the mass of the ball and the
rebound height [3]. Equation (7) is only strictly valid if the
ball bounces back to the same height as it was dropped, but
as an approximation, if the ball bounces back to only half
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its original height, then the peak force fmax1/2 ≈ 0.75fmax.
By using balls of various sizes and different drop heights,
the ball source offers variability in amplitude and frequency
content.

Three different types of balls were used for the calibra-
tion tests described in this paper: a 1.00 mm diameter glass
ball, a 0.79 mm diameter steel ball, and a 0.40 mm diameter
ruby ball, pictured in Fig. 2. Forcing functions, calculated
from (7), for the impact of these three balls when dropped
310 mm onto a 50 mm thick steel plate, are shown in Fig. 2a
compared with the forcing function for a glass capillary frac-
ture (6) with measured famp = 14 N and trise assumed to be
200 ns. The ruby ball produces a pulse ∼1 μs in duration;
the steel and glass balls produce pulses with a nearly identi-
cal ∼2.3 μs duration, but different amplitudes.

The amplitude of the Fourier transform of these source
functions are shown in Fig. 2b. As shown, the spectrum of
the ball source is flat at low frequencies and consists of a
series of lobes which are separated by zeros at higher fre-
quencies. The zeros in the spectrum of the ball source make
the calculation of ik(t) at these high frequencies particularly
challenging, therefore calibrations which use the ball source
are typically only assumed to be valid for frequencies below
0.85fzero ≈ 1.5/tc , where fzero is the frequency of the first
zero.

3.3 Source Repeatability

Though the glass capillary source is quite repeatable, some
small spectral variations can be observed (4 dB/MHz from
0.5–1.5 MHz) [3]. This variability is likely due to small
differences in the wall thickness and localized flaws in the
glass. The ball impact source is extremely repeatable. Small
variations in the rebound height of the ball produce negli-
gible variations in this source. Occasionally, the ball may
hit a piece of dust or a surface irregularity which saps the
ball’s kinetic energy and causes a significant reduction in the
ball’s rebound height as well as somewhat abnormal stress
waves [3]. Each calibration test reported in this paper was
repeated five times, but rather than plotting averages of the
five calibration tests (which may include some significant
outliers), each of the time series and spectra shown in this
paper (Figs. 5–9) are from single calibration tests which ex-
hibited, “normal” or non-outlier behavior.

4 Test Geometry and Green’s Functions

An ideal test specimen for primary, i.e. absolute, calibration
is one for which wave propagation can be well modeled. The
geometry should be simple and the specimen made from a
material which allows high frequency stress waves to propa-
gate without excess attenuation or scattering. Thick plates

of aluminum, steel, glass, and poly(methyl methacrylate)
(PMMA) can all be used as effective test specimens. Previ-
ous calibration studies [3, 6] have shown that while the abso-
lute sensitivity of a piezoelectric sensor can vary by an order
of magnitude when coupled to different materials (presum-
ably due to the differing acoustic impedance), the shape of
I (ω) does not change dramatically. Thus, it may be possible
to transfer calibration results from one material to another,
as long as absolute sensitivity is scaled appropriately.

Attenuation in PMMA is significant at higher frequen-
cies (>500 kHz for ∼50 mm propagation distances) and
should be estimated and modeled (e.g. following To and
Glaser [14]). In the other materials mentioned, attenuation
was shown to have negligible effect on recorded waves for
the frequency range/propagation distances described in this
study [3]. When studying wave propagation in rock or con-
crete, scattering of elastic waves may be non-negligible and
will add another layer of complexity to wave propagation
models.

Greens functions can be calculated analytically for only
a few geometries such as an infinite whole space and a half
space [13, 21, 22]. For other specimen geometries, numeri-
cal models such as finite element or finite difference codes
can be employed, but the calculation of Green’s functions in
this way is difficult because high frequencies require small
grid spacing and low frequencies require a long time dura-
tion. Green’s functions used in this study were calculated
with a computer program [23] which uses a generalized ray
theory approach. These Green’s functions were then verified
against theoretical solutions [22, 24, 25] and finite element
models [9].

AE and ultrasonic sources cause disturbances both nor-
mal and tangential to the surface where the sensor is
mounted. In the general case, a sensor will respond differ-
ently to displacements in different directions, but the vast
majority of AE sensors are predominantly sensitive to sur-
face normal motion (the 3 direction in Fig. 3), therefore we
assume i1(t) = 0, i2(t) = 0, and i3(t) = i(t), and calibrate
the sensor response against the surface normal component
of displacement, u3(x, t). Additionally, both the ball im-
pact and capillary fracture calibration sources impose forces
which act at location ξ , in the 3 direction, therefore only the

Fig. 3 Experimental setup for the calibration tests on a thick plate.
Three different sensor test positions relative to the location of the
source, ξ , are shown
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Green’s function, g33, is needed, and (4)–(5) reduce to the
scalar equations:

i(t) = i3(t) = s(x, t) ∗ u3(x, t)−1

= s(t) ∗ f3(ξ , τ )−1 ∗ g33(x, t; ξ , τ )−1, (8)

I (ω) = I3(ω) = S(x,ω)/U3(x,ω)

= S(x,ω)/[F3(ξ ,�)G33(x,ω; ξ ,�)]. (9)

If, instead, we wished to calibrate a shear sensor that is
sensitive to motions in the 1 direction, we would need the
Green’s function g13.

The calibration tests described below were performed
on a 50 mm thick steel plate, 610 mm square. All sensors
were coupled to the specimen surface with Sonotech ultra-
sonics gel shear couplant. The sensors were held in place
with a sensor holder made from a fixed acrylic plastic plate
which contains a threaded hole for the Glaser-type sensor
and press-fit holes of the appropriate sizes for the three com-
mercial sensors. A single exemplar of each model was used
for all experiments.

Three sensor positions relative to the location of the cal-
ibration source are shown in Fig. 3. Position 1 (x1) is a sur-
face location on the same side of the test block as the source
and 45 mm away. The largest signal to noise ratio is typically
achieved in Position 1 due to the presence of the Rayleigh
wave, and the spectrum of the Position 1 Green’s function is
typically smoother than those of Positions 2 and 3, as shown
in Fig. 4d. Position 2 (x2) is the epicentral location, directly
beneath the source. At this location all displacements are in
the plate normal direction and the aperture effect is mini-
mized. Additionally, the g33 Green’s function for Position 2
is insensitive to small changes in the source or sensor loca-
tions. Position 3 (x3) is an off-epicenter location for which
the wave displacements are at an oblique angle from the sur-
face normal. Sensors in Position 3 will see both a P wave
and a large S wave.

Note that true Green’s functions have units of pm/N/s and
are inconvenient to sketch. Therefore, Fig. 4 shows calcu-
lated ground displacements for the three sensor positions,
obtained from the convolution of the Green’s functions
g33(x1, t; ξ , τ ), g33(x2, t; ξ , τ ), and g33(x3, t; ξ , τ ) with the
force time function for the 400 μm ruby ball impact shown
in Fig. 2.

5 Instrument Response in the Frequency Domain

This section describes how the instrument response func-
tion can be estimated by simple spectral division. Once a
well-characterized calibration source and suitable Green’s
function for a particular sensor location have been found,
a calibration experiment must be conducted so that an
experiment-theory input-output signal pair, s(x, t) and

Fig. 4 Theoretical displacements in the 3 direction, u3(x1, t),
u3(x2, t), and u3(x3, t), for the three sensor positions shown in Fig. 3.
These synthetic signals are calculated by convolving the source func-
tion for a 0.40 mm ruby ball dropped 310 mm onto a 50 mm thick
steel plate with the appropriate Green’s functions for three different
sensor positions. (a) Displacements felt at Position 1, which is 45 mm
away from the source and on the same side of the plate as the source,
include a small amplitude P-wave, which arrives before a large ampli-
tude Rayleigh wave, and small amplitude PP, PS, PPPP, PPPS, etc. re-
flections. (b) Displacements felt at Position 2, which is located directly
beneath the source, through the thickness of the plate, are characterized
by a large amplitude initial P-wave arrival, a ramp in displacement re-
sulting from the near-field component of the displacement field, and
a number of evenly spaced reflections (PPP, PPPPP, PPPPPPP, etc.)
through the thickness of the plate. (c) Displacements felt at Position 3,
which is offset 64 mm from Position 2, are characterized by a mod-
erate-sized P wave and a strong S wave immediately preceded by a
converted evanescent wave, which has opposite polarity. (d) The am-
plitude of the Fourier transform of these three synthetic signals. The
zeros in the spectra at approximately 2.2, 3.3, and 4.4 MHz are the re-
sult of the 0.40 mm ruby ball source function, which is common to all
three signals, while the fine, tooth-like roughness of the spectra, par-
ticularly apparent in the u3(x2, t), and u3(x3, t) results below 1 MHz,
arise from the Green’s functions

u3(x, t), is obtained. Instrument response is then directly es-
timated from (9). Examples of s(x1,t) and u3(x1,t) are shown
in Fig. 5 for Position 1 on the 50 mm thick steel test plate
and a glass capillary fracture was used as a common source
for all four sensors tested. The theoretical signal, u3(x1,t),
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Fig. 5 Experiment-theory pairs from a calibration test in sensor Po-
sition 1 on a 50 mm thick steel plate, and a 0.40 mm glass capil-
lary calibration source. The top trace is the theoretical signal calcu-
lated from (3). The second through fifth traces are recorded signals
in response to a single glass capillary fracture source, simultaneously
recorded by each of the four sensors tested: Glaser-type, PAC R15,
PAC NANO30, and DW B1025, respectively. Each of the four sensors
have identical source-sensor geometry and measure mechanical dis-
turbances from the same glass capillary source, so any differences in
recorded signals are attributed to instrument response distortions

is calculated from (3) using g33(x1, t; ξ , τ ), while f3(ξ , τ )

was calculated from (6). In other tests, the ball impact source
was used and f3(ξ , τ ) was calculated from (7).

Once s(x, t) and u3(x, t) are obtained, each signal is
Fourier transformed in an identical fashion, and spectral ra-
tios are taken. Figure 6a shows the amplitude of the Fourier
transform (FT) of the signals shown in Fig. 5. All signals
were digitized at 10 MHz, windowed with a 400 μs Black-
man Harris window centered on the first wave arrival, and
Fourier transformed with the fast Fourier transform (FFT)
algorithm. Following (9), S(x,ω) is divided by U3(x,ω) at
each Fourier frequency to obtain Î (ω), which is an estimate
of the true instrument response spectrum, I (ω). The ampli-
tude and phase of Î (ω) are shown in Fig. 6c and 6d, respec-
tively, for the Glaser and NANO30 sensors. As shown, the
sensitivity of the PAC sensor has a peak at about 150 kHz,
while the Glaser-type sensor has a nearly flat response from
20 kHz to 1 MHz.

Each of the calibration experiments were repeated five
times, and some small differences in the estimated instru-

ment response were observed. When testing in Position 1
and 3, multiple sensors could be tested simultaneously,
therefore variations between calibration test results were
found to be overwhelmingly due to variations in the calibra-
tion source (see Sect. 3.3) rather than in wave propagation
effects or instrument response.

The calibration is not valid in any frequency range where
the signal to noise ratio (SNR) drops to one. As an illus-
trative example of the control of SNR over calibration band-
width, noise spectra are included in Fig. 6b–c. The noise sig-
nal, n(t), is a 400 μs segment of the recorded signal taken
before the first wave arrival and windowed with the Black-
man Harris window. The amplitude of the FT of the noise
signals (which are unique for each sensor and data acquisi-
tion setup) are shown in Fig. 6b for the Glaser and NANO30
sensors. Noise spectra are obtained by dividing the FT of
n(t) by U3(x,ω), and are shown in Fig. 6c. For this capil-
lary fracture test, the SNR drops to 1 at about 1.8 MHz for
the NANO30 sensor and at about 4 MHz for the Glaser-type
sensor. When the SNR drops to 1, calibration results are cer-
tainly not valid. Figure 6c illustrates one of the benefits of
the absolute calibration scheme: because the recorded signal
was in units of Volts and the theoretical signal was in units
of nm, the instrument response function has units of V/nm.
Finally, the phase of Î (ω) for the two sensors are shown in
Fig. 6d. Note that for both sensors, the phase of Î (ω) be-
comes erratic and diverges when the SNR becomes small.
This is because phase is undefined when the amplitude is
effectively zero.

5.1 Accuracy of Source Models

The accuracy of the source models is explored by comparing
Î (ω) obtained from calibration tests with different calibra-
tion sources. Figure 7 compares |Î (ω)| made using two dif-
ferent calibration sources and two different sensor positions.
The spikes in |Î (ω)| from the ball drop source, at approxi-
mately 2.2, 3.3, and 4.4 MHz, are due to the presence of
zeros in the spectrum of the 0.40 mm diameter ruby ball im-
pact source model at those frequencies. The ball impact and
capillary fracture source models yield |Î (ω)| that are in very
good agreement at lower frequencies; at higher frequencies
(above 500 kHz) the results from the two gradually diverge,
indicating that the source models may not be entirely ac-
curate for the estimation of spectral amplitudes in the MHz
range (see Sect. 3.3 for a discussion of the variability of the
calibration sources). While this calibration approach relies
on a number of idealizations, such as the point source and
point receiver approximations and the source models of (6)
and (7), the close match between the results of ball drop and
capillary source calibrations (Fig. 7), demonstrates the va-
lidity of the approach.
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Fig. 6 Spectra for the calculation of the instrument response function
in the frequency domain. (a) The amplitude of the FT of the five sig-
nals shown in Fig. 5, (b) the amplitude of the FT of the Glaser-type and
PAC NANO30 signal shown alongside the amplitude of the FT of the

noise for these two sensors, (c) amplitude of Î (ω), obtained via spec-
tral ratios, for the Glaser-type and PAC NANO30 sensors are compared
to and the amplitude of the respective noise spectra, and (d) the phase
of Î (ω)

5.2 Directionality and the Aperture Effect

For many sensors, the instrument response may be a func-
tion of the direction of arrival of incoming waves. Here we
describe this phenomenon as a directionality effect. Sen-
sor directionality can be estimated from a comparison of
Î (ω) obtained from tests with different sensor positions,
as shown in Fig. 7. Note that a different Green’s function
must be used for each different sensor position. For the
Glaser-type sensor, there is little difference between |Î (ω)|
obtained from tests in Position 1 and Position 2 (no di-
rectionality effect). For the other sensors, instrument re-
sponse is a function of the direction of arrival of incom-
ing waves. The PAC R15, PAC NAN030, and the DW
B1025 sensors have decreased high frequency sensitivity
when tested in Position 1 compared to Position 2. While
it is difficult to identify the cause of the observed direc-
tionality, the finite sensor aperture is the most likely can-
didate.

Known as the aperture effect (e.g [6]), a decrease in the
recorded wave amplitude at high frequencies is due to mul-
tiple wavelengths being averaged over the area of contact,
or aperture, of a sensor. The aperture effect is maximized in
Position 1, where waves arrive tangential to the sensor face,
and minimized in Position 2, where the waves arrive normal
to the sensor face. Therefore, comparing the results from Po-
sition 1 and 2 provides a good way of assessing the aperture
effect. The aperture effect is most evident on the DW B1025
and PAC R15 sensors, and the diameter of their piezoelec-
tric elements is large compared to those of PAC NANO30
and Glaser-Type sensors. The nominal area of contact of the

DW B1025 sensor has a diameter of 8 mm, which is equal
to the wavelength of S waves in steel at 400 kHz. Above
this frequency, the results from Position 1 and Position 2
have clearly diverged. Similarly, for the PAC R15 (nomi-
nal diameter of 16 mm), significant aperture effects can be
seen above 200 kHz, for the PAC NANO30 sensor (5.5 mm
diameter) these effects occur above 550 KHz, and for the
Glaser-type sensor (0.5 mm diameter) aperture effects occur
above 6.4 MHz. In materials with a lower wave speed, such
as plastic, the wavelengths at a fixed frequency are some-
what smaller than in steel, therefore the aperture effect will
be more significant and will affect a lower frequency band.

In this study, sensors are calibrated against a theoretical
displacement time history, therefore |Î (ω)| is an estimate of
the displacement response spectra. The Glaser-type sensor
has a nearly flat response spectrum, therefore it is best de-
scribed as a displacement sensor in the frequency band of
interest. This means that voltage is linearly proportional to
surface normal displacements in that frequency band. The
DW B1025 sensor has a nearly linear displacement response
spectrum with a slope of 1 (20 dB per order of magnitude in
frequency), therefore it is best described as a velocity sensor
in the same frequency band. A reference line with a slope
of 1 is shown in Fig. 7d as a guide for the eye. A perfect fit
to this line would indicate a flat velocity response spectrum.
The PAC sensors show multiple resonant frequencies and
are therefore not easily described as displacement sensors
or velocity sensors. Instead, they are sensitive to a combina-
tion of displacement, velocity, and acceleration which varies
with frequency.
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Fig. 7 Calibrations using different combinations of sensor positions
(x1 and x2) and calibration sources (0.40 mm ruby ball impact and
0.40 mm glass capillary fracture), for the four different sensors tested.
Deviation between |Î (ω)| from tests using different sensor positions

illustrates aperture effects. The similarity between |Î (ω)| from tests
using different sources verifies the two source models. The reference
line shown in (d) indicates a flat velocity response spectrum

6 Time Domain Modeling of Instrument Response

The frequency domain methodology described in Sect. 5 re-
quires only spectral division (9), but in that approach, im-
portant phase information can be easily lost or distorted due
to the influence of noise and windowing. Alternatively, when
calculating the sensor response in the time domain (8), phase
information is more robustly incorporated into the solution,
and this is advantageous when we want to simulate or re-
move the effects of the sensor, so that a precise displacement
time history can be obtained from recorded signals. The
main challenges of the time domain approach are the prac-
tical issues involved in deconvolution [26]. In order to cir-
cumvent many of these problems, we do not directly invert
for the instrument response function using (4). Instead, we
approximate the sensor response with a time domain model
(see for example [27]), and use u3(x, t) and s(x, t) as the
input and output, respectively, to estimate the model param-
eters. For brevity, we consider only one type of model and
its usefulness for AE analysis. We chose the commonly-used

autoregressive moving average (ARMA) model [27–29] of
the form:

s(x, t) =
n∑

k=0

bku3(x, t − kT ) −
m∑

j=1

aj s(x, t − jT ) (10)

where T is the sampling period (T = 100 ns, for the exam-
ples in this study), and a and b are arrays containing the
autoregressive and moving average (convolutional) model
parameters, respectively.

A time domain model is a way of representing a system
or process (a transfer function) which maps one signal (in
this case, u3(x, t)) to another signal (s(x, t)). The purpose
of the current ARMA model is to numerically simulate the
distorting effect that the sensor and recording system has on
u3(x, t) and to allow it to be efficiently removed from an ar-
bitrary s(x, t). The ARMA model itself will have a response
function, referred to here as the ARMA response spectrum
in the frequency domain. The ARMA model has much fewer
parameters than the number of data points in the u3(x, t)

and s(x, t) signals, so the parameters can be estimated using
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Fig. 8 ARMA model building
and validation for the PAC R15
sensor. (a) The ARMA response
spectra (solid lines) are
compared to |Î (ω)| (dashed
lines) for four ARMA models
with m = n = 16, 50, 160, and
220 parameters. A larger
number of parameters yields a
more detailed ARMA response
spectrum. (b) Estimates of
displacement time history
obtained by deconvolving the
ARMA response spectrum from
sval(t) are compared to uval(t)

for each of the four ARMA
models of increasing
complexity. Signals shown
in (b) have been band passed
between 15 kHz and 1 MHz

a least squares formulation. Many criteria exist by which
the user can determine the number of parameters (m and n,
in (10)) to be included in the ARMA model (i.e. Akaike’s
information criterion [27]), but ultimately it is a tradeoff be-
tween fewer parameters, which decreases the sensitivity of
the model to noise and small errors in the Green’s function
estimates, and more parameters, which allows a more com-
plicated model, and will thus provide a better fit between
the ARMA response spectrum and the instrument response
spectrum, Î (ω). A sensor which has a flat or smoothly vary-
ing response spectrum will require only a simple model with
few model parameters, while a sensor with a very rough or
jagged spectrum will require a more complicated model and
more parameters (larger m and n) for the same quality of fit
between the ARMA response spectrum and Î (ω).

We employ the system identification toolbox of the com-
mercial software MATLAB [30] for the determination of
ARMA model parameters for each of the four sensors tested.
An example of ARMA model building and validation is
shown in Fig. 8 for the PAC R15 sensor calibrated in Po-
sition 2, using the impact of a 0.40 mm ruby ball dropped
310 mm onto the steel test plate as a calibration source. First,
we obtain an input-output pair (u3(x, t) and s(x, t)) from the
calibration test. Here, we denote these signals as ubuild(t)

and sbuild(t). Then, to illustrate the effect of different model
complexity, four different ARMA models (m = n = 16, 50,
160, 220) were derived from this pair. We used the “arx”
command in MATLAB which computes least squares esti-
mates of a and b vectors, given ubuild(t) and sbuild(t). (For
simplicity, we chose only models where m = n.) The am-
plitude of the ARMA response spectra for each of the four
models are shown in Fig. 8a. As shown, when the number
of parameters of the ARMA model is increased, the ARMA
response spectrum becomes more detailed and more closely

matches |Î (ω)| (Fig. 8a, dashed lines) which was estimated
from ubuild(t) and sbuild(t) following the methodology of
Sect. 5.

Once the model parameters have been determined, the
ARMA model can be used in a forward sense (as a filter) to
simulate the distorting effects of the sensor on an arbitrary
displacement time history. This is accomplished by substi-
tuting an arbitrary displacement time history for u3(x, t)

in (10), or by means of the “filter” command in MATLAB or
equivalent software. Alternatively, the ARMA model can be
used in an inverse sense to remove the effects of the sensor
from an arbitrary recorded signal, s(x, t), and obtain an es-
timate, û(t), of the displacement time history, u3(x, t), felt
by the sensor. The ARMA response spectrum is intended
to match Î (ω), therefore deconvolving the ARMA response
function from any recorded signal will essentially remove
the effects of the sensor from that signal. We prefer the
ARMA deconvolution method for removing sensor distor-
tion over other methods (e.g. inverse Fourier transforming
the result of (9) or calculating g33(x,ω; ξ ,�)−1) because
with ARMA deconvolution we divide S(x,ω) by the rela-
tively smooth ARMA spectrum rather than by Î (ω). Here,
we assume I (ω) is a relatively smooth function and that we
have intelligently chosen the ARMA model order so that
the ARMA spectrum is detailed enough to capture the gen-
eral features of I (ω) but still smoothes over the fine details
of Î (ω), which are assumed to be the result of noise from
sbuild(t). To accomplish the ARMA deconvolution, we di-
vide S(x,ω) by the ARMA response spectrum, calculated
using MATLAB “freqz” command, and apply an inverse FT
to the result.

Finally, the models are validated with a second input-
output pair, denoted uval(t) and sval(t), obtained from a sec-
ond calibration test, this time using a glass capillary frac-
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Fig. 9 An example of an ARMA model (m = n = 20) intended to
mimic the Glaser-type sensor. The model was built with an input-out-
put pair obtained from a calibration test in Position 2, using the impact
of a 0.40 mm ruby ball dropped 310 mm onto the steel test plate, and it
is validated using an input-output pair obtained from a glass capillary
test in the same position

ture as a source. Figure 8b shows a comparison between the
theoretical displacement time history, uval(t) (dashed lines),
and displacement time history estimates, û(t) (solid lines),
obtained by deconvolving the ARMA response spectrum
from sval(t). As the number of parameters of the ARMA
model increases, û(t) more closely matches uval(t). In this
case, the ARMA model with m = n = 16 does a poor job of
capturing the complicated response of the PAC R15 sensor.
Some improvements are made by increasing the parameters
to m = n = 50. The third model (m = n = 160) does an ex-
cellent job of capturing all but the low frequency effects of
the PAC R15 sensor, while the fourth model (m = n = 220)

shows modest improvements over the third. The goal of
the ARMA model building is to intelligently choose the
ARMA model with the lowest number of parameters whose
response spectrum adequately matches I (ω). The ARMA
model can then be used to mimic or remove sensor distor-
tions.

Model error can be quantified with the normalized mean
square error (NMSE) [31],

NMSE = 1

p

p∑

i=1

(û(t + iT ) − uval(t + iT ))

u2
max

2

, (11)

where umax is the maximum of uval(t). The four models de-
scribed in Fig. 8 (m = n = 16, 50, 160, and 220) produced
NMSE of 27%, 11%, 5.7%, and 0.37%, respectively. In con-
trast, the smoothness of the spectrum of the Glaser-type sen-
sor required an ARMA model of only m = n = 20 parame-
ters to achieve a NMSE of 0.46%. This model for the Glaser
type sensor is shown in Fig. 9.

7 Conclusions

Starting with a description of the theoretical framework for
AE and ultrasonic signal analysis, this paper describes how
calibration sources and wave propagation effects can be
modeled so that the instrument response can be estimated
from simple but powerful experiments. The framework and
methodology are useful for obtaining absolute amplitudes
and displacement time histories from recorded AE signals,
but are also designed to be practical for the AE researcher.
Unique to this method, two different calibration sources are
employed so that the accuracy of both source models can
be estimated. Additionally, two different source-sensor ori-
entations were studied, each with unique Green’s functions.
This allows the effects of directionality, such as the aper-
ture effect, to be evaluated. Results from these calibration
studies highlight the differences between the four sensors
tested and illustrate some of the ways in which real sensor
response deviates from the ideal case. For example, the DW
B1025 sensor is well described as a velocity sensor in the
80 kHz to 1 MHz frequency band, but, when waves arrive
from low incidence angles, the effect of the 8 mm aperture
of the sensor can cause considerable distortions at frequen-
cies above about 300 kHz. In contrast, the Glaser-type sen-
sor is well described as a displacement sensor in the 20 kHz
to 1 MHz frequency band, and the 0.5 mm sensor contact
area introduces negligible aperture effects. The response of
the two PAC sensors is not easily linked to a single physical
quantity such as surface velocity or displacement. Instead,
multiple resonances in the frequency band of interest cause
these sensors to respond to a frequency-dependent mixture
of displacement, velocity, and acceleration, which is consid-
erably more complicated to model.

The theoretical framework described in this paper is valid
for any frequency band. Experimental constraints are what
limit the calibration range to ∼50 kHz–∼2.0 MHz. At high
frequencies, a very strong source is needed to achieve a high
SNR because the sensors described tend to lose sensitivity
in the MHz range. Additionally, source models ((6) and (7))
may lose accuracy in those high frequency ranges. At low
frequencies, long time windows are needed so that many
periods are captured within the recorded signal. Long-time
Green’s functions require the inclusion of reflections from
the side edges of the plate, and these additions make the
Green’s functions more complicated. In this study, Green’s
functions were calculated for an infinite plate geometry, so
the 610 mm square steel test plate restricts time windows to
400 μs. Consequently, there is high uncertainty in spectral
estimates below about 50 kHz, where less than 20 periods
were captured in the time window.

The frequency domain methods described in Sect. 5 are
convenient for estimating the instrument response spectrum,
so that the flatness or resonant frequencies of a sensor can
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be determined, and different sensors can be compared or
classified, but the time domain models of Sect. 6 are more
useful for the simulation or removal of sensor effects, be-
cause indispensable phase information is “hard-wired” into
the solution. The determination of a model which captures
the salient features of a sensor’s instrument response al-
lows physical quantities (i.e. surface displacements) to be
obtained from recorded signals. Building a suitable time do-
main model to mimic a particular sensor’s effects is some-
what of an art. Nevertheless, this study demonstrates that
it is possible to build, validate, and quantify the suitability
of a given model from the results of simple calibration ex-
periments, even for the more complicated PAC R15 sensor.
The calibration techniques described in this paper allow re-
searchers to ascertain the strengths and limitations of instru-
mentation and the physical meaning of recorded signals—
necessary steps toward building reliable and standardized
nondestructive evaluation techniques.

Acknowledgements The authors would like to acknowledge con-
structive reviews by three anonymous reviewers which improved this
paper. This work was funded by National Science Foundation grant
CMS-0624985.

References

1. Miller, R., McIntire, P.: Nondestructive Testing Handbook Second
Edition, vol. 5: Acoustic Emission Testing. American Society for
Nondestructive Testing, Columbus (1987)

2. Grosse, C., Ohtsu, M.: Acoustic Emission Testing: Basics for
Research—Applications in Civil Engineering; With Contributions
by Numerous Experts. Springer, Heidelberg (2008)

3. McLaskey, G., Glaser, S.: Hertzian impact: experimental study of
the force pulse and resulting stress waves. J. Acoust. Soc. Am.
128, 1087–1096 (2010)

4. McLaskey, G., Glaser, S.: Micromechanics of asperity rupture
during laboratory stick slip experiments. Geophys. Res. Lett. 38,
L12302 (2011)

5. Hsu, N., Breckenridge, F.: Characterization of acoustic emission
sensors. Mater. Eval. 39, 60–68 (1981)

6. Eitzen, D., Breckenridge, F.: Acoustic emission sensors and their
calibration. In: Miller, R., McIntire, P. (eds.) Nondestructive Test-
ing Handbook Second Edition, vol. 5: Acoustic Emission Test-
ing, pp. 121–132. American Society for Nondestructive Testing,
Columbus (1987)

7. Hatano, H., Watanabe, T.: Reciprocity calibration of acoustic
emission transducers in Rayleigh-wave and longitudinal-wave
sound fields. J. Acoust. Soc. Am. 101, 1450–1455 (1997)

8. Proctor, T.: An improved piezoelectric acoustic emission trans-
ducer. J. Acoust. Soc. Am. 71, 1163–1168 (1982)

9. McLaskey, G., Glaser, S.: High-fidelity conical piezoelectric
transducers and finite element models utilized to quantify elastic
waves generated from ball collisions. In: Tomizuka, M., Yun, C.,
Giurgiutiu, V. (eds.) Proc. SPIE, vol. 7292, pp. 72920S-1–72920S-
18 (2009)

10. Sansalone, M., Street, W.: Impact Echo: Nondestructive Evalua-
tion of Concrete and Masonry. Bulbrier Press, Ithaca (1997)

11. Hsu, N., Simmons, J., Hardy, S.: An approach to acoustic emission
signal analysis—theory and experiment. Mater. Eval. 35, 100–106
(1977)

12. Stump, B., Johnson, L.: The determination of source properties by
the linear inversion of seismograms. Bull. Seismol. Soc. Am. 67,
1489–1502 (1977)

13. Aki, K., Richards, P.: Quantitative Seismology: Theory and Meth-
ods. Freeman, San Francisco (1980), Chapter 4

14. To, A., Glaser, S.: Full waveform inversion of a 3-D source inside
an artificial rock. J. Sound Vib. 285, 835–857 (2005)

15. Oppenheim, A., Schafer, R.: Discrete Time Signal Processing,
2nd edn. Prentice Hall, New Jersey (1999)

16. Breckenridge, F., Proctor, T., Hsu, N., Fick, S., Eitzen, D.: Tran-
sient sources for acoustic emission work. In: Yamaguchi, K., Taka-
hashi, H., Niitsuma, H. (eds.) Progress in Acoustic Emission V,
pp. 20–37. The Japanese Society for NDI, Sendai (1990)

17. Hsu, N.: Acoustic emission simulator, U.S. Patent No. 4018084
(1977)

18. Breckenridge, F., Tscheigg, C., Greenspan, M.: Acoustic emis-
sion: some applications of Lamb’s Problem. J. Acoust. Soc. Am.
57, 626–631 (1975)

19. Goldsmith, W.: Impact. Dover, New York (2001)
20. Scruby, C., Drain, L.: Laser Ultrasonics: Techniques and Applica-

tions. Taylor & Francis, London (1990)
21. White, J.: Seismic Waves: Radiation, Transmission, and Attenua-

tion. McGraw-Hill, New York (1965)
22. Johnson, L.: Green’s function for Lamb’s problem. Geophys. J. R.

Astron. Soc. 37, 99–131 (1974)
23. Hsu, N.: Dynamic Green’s functions of an infinite plate—a com-

puter program. Technical Report No. NBSIR 85-3234, National
Bureau of Standards, Center for Manufacturing Engineering,
Gaithersburg, MD (1985)

24. Pekeris, C.: The seismic surface pulse. Proc. Natl. Acad. Sci. 41,
469–480 (1955)

25. Knopoff, L.: Surface motions of a thick plate. J. Appl. Phys. 29,
661–670 (1958)

26. Michaels, J.: Fundamentals of deconvolution with applications to
ultrasonics and acoustic emission. MS thesis, Cornell University,
Ithaca (1982)

27. Shumway, R., Stoffer, D.: Time Series Analysis and Its Applica-
tions. Springer, New York (2006)

28. Ljung, L.: System Identification: Theory for the User. Prentice-
Hall, Englewood Cliffs (1987)

29. Marple, S. Jr., Lawrence, S.: Digital Spectral Analysis with Appli-
cations. Prentice-Hall, Englewood Cliffs (1987)

30. Ljung, L.: System Identification Toolbox, for Use with Matlab.
The Mathworks, Natick (2006)

31. Baise, L., Glaser, S., Sugano, T.: Consistency of dynamic site re-
sponse at port island. Earthquake Eng. Struct. Dyn. 30, 803–818
(2001)


	Acoustic Emission Sensor Calibration for Absolute Source Measurements
	Abstract
	Introduction
	Theoretical Framework
	Calibration Sources
	Glass Capillary Fracture
	Ball Impact
	Source Repeatability

	Test Geometry and Green's Functions
	Instrument Response in the Frequency Domain
	Accuracy of Source Models
	Directionality and the Aperture Effect

	Time Domain Modeling of Instrument Response
	Conclusions
	Acknowledgements
	References


