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Ball impact has long been used as a repeatable source of stress waves in solids. The amplitude and
frequency content of the waves are a function of the force-time history, or force pulse, that the ball
imposes on the massive body. In this study, Glaser-type conical piezoelectric sensors are used to
measure vibrations induced by a ball colliding with a massive plate. These measurements are
compared with theoretical estimates derived from a marriage of Hertz theory and elastic wave
propagation. The match between experiment and theory is so close that it not only facilitates the
absolute calibration the sensors but it also allows the limits of Hertz theory to be probed. Glass, ruby
and hardened steel balls 0.4 to 2.5 mm in diameter were dropped onto steel, glass, aluminum, and
polymethylmethacrylate plates at a wide range of approach velocities, delivering frequencies up to
1.5 MHz into these materials. Effects of surface properties and yielding of the plate material were
analyzed via the resulting stress waves and simultaneous measurements of the ball’s coefficient of
restitution. The sensors are sensitive to surface normal displacements down to about =1 pm in the

frequency range of 20 kHz to over 1 MHz.

© 2010 Acoustical Society of America. [DOI: 10.1121/1.3466847]
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I. INTRODUCTION

The normal impact of a ball on a massive body has been
extensively used as a source of stress waves for non-
destructive testing techniques such as impact echo and
acoustic emission (e.g., Sansalone and Street, 1997; Breck-
enridge et al., 1990; Lange and Ustinov, 1983). Ball impact
is in some cases preferable to sources such as pencil lead
fracture (Hsu, 1977) or pulsed laser (Scruby and Drain,
1990) because the stress wave signature that it imparts is
intimately related to the force pulse that ball imposes on the
massive body, which can be calculated from Hertzian contact
theory (Hunter, 1957; Reed, 1985). Hertz (1882) contact
model is both elastic and quasistatic in nature; it neglects to
consider both radiated elastic waves and anelastic effects,
such as plasticity and viscoelasticity. Hertz law has been
used beyond the limits of its validity on the basis that it
accurately predicts those impact parameters which can be
experimentally verified (Love, 1927). As test methods be-
come more precise, and theoretical and numerical studies
more detailed, there is a need to experimentally validate the
Hertzian impact model and to quantitatively evaluate its lim-
its.

This paper presents a systematic study of ball impact as
a source of stress waves for a number of different material
combinations. Impact-generated vibrations were recorded
with an array of pm sensitive high-fidelity sensors, and by
carefully eliminating the wave propagation effects, estimates
of the force pulse were obtained and compared to the
Herztian-derived pulse. We experimentally verify the Reed
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(1985) correction to Hunter’s (1957) calculation of the force
pulse by measuring the locations of zeros in the spectral
content of measured waves. The validity of Hertzian theory
is also assessed for cases in which plastic deformation and
surface effects absorb some of the ball’s kinetic energy dur-
ing the collision. Our methodology is similar to that of pre-
vious researchers (Crook, 1952; Goldsmith and Lyman,
1960; Chang and Sun, 1989; Buttle and Scruby, 1990) but
employs a more exact treatment of wave propagation effects,
and takes into careful consideration the response function of
the sensors used to record the stress waves. The conical pi-
ezoelectric sensors used in this work were developed in our
laboratory and were absolutely calibrated by comparing re-
sults from capillary fracture and ball impact calibration
sources.

The present work focuses on the measurement of two
impact parameters: the force time history, or force pulse, that
the ball imposes on the massive body, and the coefficient of
restitution (e)—defined as the ratio of the magnitudes of the
rebound and approach velocities of the ball. The force pulse
describes the ball’s change in momentum over time, shown
to be intimately related to the stress waves radiated from the
collision, while e is a measure of the total kinetic energy lost
to non-conservative processes such as radiated stress waves,
plastic deformation, and viscoelasticity (Falcon er al., 1998).
We examine the applicability of different Hertzian deriva-
tions of the force pulse published by Hunter (1957) and Reed
(1985).

Il. METHODS

A schematic of the test setup is shown in Fig. 1. As
depicted, the collision of a ball (a) at location (b) on a mas-
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FIG. 1. (Color online) Schematic diagram of the test setup which includes a
massive plate, (a), and a ball, (b), colliding at the source location, (c), which
generates radiated stress waves, (d), detected by an array of sensors, (e),
each of which employs a conical piezoelectric sensing element, (f).

sive plate (c) of thickness h is the source of the radiating
stress waves (d) which are detected by an array of sensors
(e). The signals recorded and analyzed are a function of the
source, the test block and array geometry, and the sensors
themselves. Under the Green’s function formalism used in
this study, the source (either ball impact or glass capillary
fracture) is represented by a force function, the propagation
effects are represented by the Green’s function for a particu-
lar plate material and source-sensor orientation, and the ef-
fects of the sensor are represented by the sensor’s instrument
response function.

A. Test plates and Green’s functions

For these experiments, test blocks consisted of plates of
homogeneous materials. Material properties, geometry, and
P-wave travel times of the four plates used in this study are
shown in Table I. The propagation of elastic waves in these
materials is assumed to be well modeled by the elastody-
namic equations of motion for an elastic continuum (Graff,
1975, Eq. 5.1.2; Aki and Richards, 1980, Eq. 4.1). Solutions
to these equations can be found in the form of a Green’s
function, G;,(x,t; £, 7), which describes the displacement in
the i1 direction at point X at time t due to a unit impulsive
force at location & in the direction n at time 7 (Aki and
Richards, 1980, Eq. 2.36). If the location & at which the
dynamic force field acts is replaced by a point &, the Green’s
function can be expanded in a Taylor series about this point
(Stump and Johnson, 1977). By taking only the first term of
this series, the displacement at the sensor location can be
expressed as

ui(x’t) = Gin(-x’t;g()’ T) ®fn(§0»7-)7 (])

where ® represents convolution in time and f,(&y,7) is the
source function which is the sum of all forces in & If dis-
placements u,(r) and forces f,(7) are assumed to act only in

the plate-normal direction, Eq. (1) reduces to the scalar equa-
tion:

us(t) = g33(x,1: £, 7) ® f3(&0, 7), (2)

where the coordinate system is chosen so that “3” denotes
the plate normal direction. Little error is expected to be in-
troduced by these assumptions because sources such as a ball
impact or a glass capillary fracture produce forces that act on
regions which are small compared to measured wavelengths,
and the direction of imposed forces is very nearly normal to
the plane of the plate. Likewise, the sensors used in this
study are sensitive only to displacements normal to the sur-
face of the plate and the sensor contact area is typically quite
small compared to measured wavelengths.

For times less than t,,, (see Table I), the plate can be
considered infinite; therefore Green’s functions were calcu-
lated using a generalized ray theory code for infinite plates
(Hsu, 1985, similar to Ceranoglu and Pao, 1981). This solu-
tion was checked by the theoretical calculations of Knopoff
(1958) at the epicentral location, and Pekeris (1955) on the
same surface for times preceding the arrival of the first P
wave reflection, and by finite element models (McLaskey
and Glaser, 2009).

The sensor array, shown in Fig. 1, is configured such
that one sensor is located directly opposite and on the under-
side of the source location (Position 1), and two more are
located 45 mm from the source on the loaded surface of the
plate (Position 2). The Green’s functions for sensor Positions
1 and 2 on the steel plate, shown in Figs. 2(a) and 2(b),
respectively, are plotted against t,=t/t, where t, is the
P-wave travel time through the plate thickness. The corre-
sponding power spectra are shown in Fig. 2(c). The spikes at
t,=1,3,5, etc. in Fig. 2(a) correspond to the multiple reflec-
tions of the P-wave through the thickness of the plate.

The plates in this study are considered “thick” because,
for nearly all collisions considered, the contact duration t, is
less than twice t,,. Therefore, from the ball’s perspective, the
plate is infinitely thick and plate effects such as those studied
by Zener (1941) and the effects of the plate supports could
be neglected.

Damping (internal friction or intrinsic attenuation) in
each of the plate materials were estimated following the
methods of To and Glaser (2005). It was found that, for the
frequency range under consideration, only the polymethyl-
methacrylate (PMMA) plate produced non-negligible damp-
ing (Q=80). This damping term was included in PMMA
Green’s function calculations.

TABLE 1. Plate properties: density (p), P-wave velocity (c,), S-wave velocity (c,), plate thickness (h), side
length (w), time taken for P-waves to traverse the thickness of the plate (t,=h/c , , and time required for P
waves to reflect off the plate edge and return to the center (ty=W/c ) .

p Cp CS h w tW tmﬂx
Material (kg m~3) (mm us™) (mm us™) (mm) (mm) (us) (us)
Steel 7850 5.90 3.23 50.1 610 8.49 100
Aluminum 2700 6.35 3.17 324 610 5.09 96
Glass 2480 5.90 3.50 24.4 760 4.14 125
PMMA 1190 2.81 1.40 50.1 940 17.83 220
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FIG. 2. Green’s functions for sensor Position 1, (a), and sensor Position 2,
(b), and their corresponding amplitude spectra, (c).

B. The source function and Hertzian impact

While a number of different seismic sources have been
explored for calibration purposes (Breckenridge et al., 1990),
two dissimilar sources were chosen for this work: glass cap-
illary fracture and ball impact. The sudden fracture of a small
length (2 mm) of 0.25 mm diameter thin-walled glass capil-
lary laid horizontally and slowly loaded normal to the plate
is known to present a force function into the test block which
is very nearly equal to a step function with a rise time of less
than 200 ns (Breckenridge et al., 1975). The amplitude of the
step is equal to the force at which the fracture occurs (usually
between about 2 and 20 N), which can be independently
measured for absolute calibration. A small amount of vari-
ability (approximately 4 dB/MHz from 0.5-1.5 MHz) was
measured in the shape of the frequency spectra of this
source, likely due to variability in the wall thickness and
fracture strength of the glass.

A complete derivation of Hertzian impact theory can be
found in Goldsmith (2001), Johnson (1985), and Love
(1927); we present only an abbreviated formulation of the
equations useful for this study. The impulsive force (force
pulse) that a ball imparts to a massive body was derived by
Hunter (1957) and is very well approximated by a “half sine”
pulse of the form

Fu(t) = fo max sin(mtit,), 0=t =t.,
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FIG. 3. Two different force pulses (a) and their spectral content (b), both
derived from Hertzian contact laws. The locations of zeros in the spectral
content are used for quantitative evaluation.

fu(t)=0 otherwise, (3)
where the contact time
t.=4.53(4p,m(8, + 8)/13) Ryv, . (4)

For Egs. (3) and (4), 5,=(1- Viz)/(’ﬂE[), and E, and v are the
Young’s modulus and Poisson’s ratio, respectively. Subscript
1 refers to the material of the ball and subscript 2 refers to
the material of the plate. The constant fy .« depends on the
material properties of the ball and massive body as well as
R, vy, and p;, which are the radius, approach velocity, and
density of the ball, respectively. Time t=0 is the initiation of
contact.

Alternatively, Reed (1985), made a correction to Hunt-
er’s calculation by using the force deformation relation f
=k,a*? instead of Newton’s second law. (The constant k;
depends on the geometry and material properties of the two
bodies.) The result is a formulation:

J() = frnax sin(artit )2, 0=t =1,

f(1)=0 otherwise (5)
where the maximum force is

Frax=1.917p,"(8) + &) Ry 0, (6)

This force pulse is inserted into Eq. (2) to produce theoretical
estimates of displacements, and it is central to estimates of
the amount of energy contained in radiated stress waves
(Hunter, 1957; Hutchings, 1979; Reed, 1985).

The two variations of the Hertz-derived force pulse are
shown in Fig. 3: the “half sine” pulse used by Hunter [Eq.
(3)], and the “sin*?” pulse used by Reed [Eq. (5)] (all nor-
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malized in amplitude). The magnitudes of the Fourier trans-
forms of these pulses are plotted in Fig. 3(b) as a function of
normalized frequency. The shape of the spectral content of
this source consists of a series of lobes separated by zeros, or
frequencies void of spectral amplitude. The zero frequency
which separates the main lobe from n" side lobe can be
expressed as f,., ,=A,/t, where A, is a dimensionless num-
ber which depends on the shape of the pulse. A,=n+0.5 for
the “half sine” pulse, and A,=n+0.75 for the “sin®>” pulse.

C. Sensors and the instrument response function

Piezoelectric sensors were used because of their superior
sensitivity compared to capacitive transducers (Breckenridge
and Greenspan, 1981) and optical methods (Boltz and For-
tunko, 1995) and because of the relative ease with which
they can be mounted to a specimen in the form of a sensor
array. While most piezoelectric transducers take advantage of
some mechanical resonance to gain high sensitivity at the
expense of loss of bandwidth and signal distortion, the sen-
sors used in this study, which are manufactured in our labo-
ratory, are based on a design developed in the late 1970s
intended to provide a more faithful transduction of surface
displacement (Proctor, 1982; Greenspan, 1987).

The sensors contain an EBL# 2 PZT-5a (lead-zirconium-
titanate composition) truncated cone sensing element. The
one part of the sensor in contact with the specimen is the
1.75 mm diameter truncated tip of the conical PZT element
which is covered by a thin brass shim (which completes the
electrical circuit, and enhances the mechanical bond with the
specimen). The sensor is pressed onto the surface of the
specimen with a mounting force of about 10 N. Sensitivity
greater than many resonant sensors is made possible by the
incorporation of an impedance matching JFET driver circuit
located adjacent to the base of the PZT cone. This avoids
signal loss due to parasitic capacitance. More details on the
sensor design are described in Glaser et al. (1998).

Conical piezoelectric sensors are reported to have an
extremely flat response between 100 kHz and 1 MHz (e.g.,
Scruby er al., 1986; Proctor, 1982), but because these are
contact sensors, the actual response is a function of the im-
pedance match between the sensor and specimen (Brecken-
ridge et al., 1975), causing difficulties in the sensor’s abso-
lute calibration. Until now, a calibration on a number of
different materials which adequately addresses both ampli-
tude and phase information has been only briefly studied
(Miller and Mclntire, 1987).

The calibrations performed for this study follow a trans-
fer function approach fully described in Hsu and Brecken-
ridge (1981). In this method, the sensor output v(t) is ex-
pressed as the linear convolution of the surface displacement
and the sensor’s instrument response function:

(1) = u3(1) @ i(r), ()

where us(t) is the displacement normal to the surface of the
specimen at the sensor location x which would exist in the
absence of the sensor [estimated from Eq. (2)]. The complex
transfer function of the transducer I(w)=V(w)Us(w)~! can be
found from inversion of the Fourier transform of Eq. (7). The
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sensor response I(w)=pB-I,,,,(w), where I, (w) is the
shape of the frequency response, and S is the absolute sen-
sitivity given a specific 1,,,,,(®).

Once the transducer response function and Green’s func-
tion of the plate material/source-sensor orientation have been
determined, any or both of these effects can be removed
from recorded signals through inversion. This inverse prob-
lem is solved in the frequency domain by directly dividing
Fourier frequencies, or in the time domain using a least-
squares deconvolution strategy (Michaels, 1982; Yilmaz,
1987). Both methods were used in this study, and the accu-
racy of the inversion is discussed in Sec. IV B.

lll. EXPERIMENTS

Three collections of experiments were performed on the
four plates described in Table I. For all tests, the setup was
identical to that shown in Fig. 1, except that the ball source
was in some cases replaced by a capillary fracture. The glass
and PMMA plates were left in “as received” condition while
the steel and aluminum plates were polished to a mirror fin-
ish. The output from each sensor was recorded at 10 M
samples per second and 14-bit dynamic range. For spectral
estimates, recorded signals were windowed with a
Blackman-Harris window centered on the first wave arrival
and transformed using a fast Fourier transform algorithm.
The length of the window varied for different plate materials
but was always less than 2t,,,.

For the calibration tests, five capillary fracture tests were
performed on each plate specimen and the force at which
fracture occurred was independently measured with a force
sensor. Five ball-drop tests using small (0.40 mm and 0.50
mm diameter) ruby balls were also performed. To separate
sensor response from source-receiver geometry, one of the
sensors in Position 2 was switched with the sensor in Posi-
tion 1, and the sets of five capillary tests and five ball drops
were repeated.

In the second collection of experiments, sets of ball-drop
tests were performed using hardened steel balls and ruby
balls of 1.00 mm and 2.38 mm in diameter and glass balls of
1.00 mm and 2.5 mm in diameter, at three different drop
heights: 0.068 m, 0.127 m, and 0.315 m. For each test, a ball
was dropped from a platform of known height, allowed to
fall through the air, strike the plate, rebound, and then strike
the plate again; this procedure was repeated ten times for
each of the selected combinations of drop height, ball size,
and ball/plate materials. Signals were recorded for 1.6 ms
surrounding the first arrival of the elastic waves produced by
the initial collision of the ball on the plate, and for 105 ms
surrounding the expected time of the second bounce of the
ball on the plate. The incoming velocity of the initial colli-
sion was calculated from the known height of the ball drop
while the rebound velocity of the same collision was calcu-
lated from the time between successive bounces (Bernstein,
1977; Falcon et al., 1998).

For the third set of tests, the ball was dropped from a
wide range of heights (1 mm to 1 m) and allowed to bounce
repeatedly (tens of times in succession). Stress wave infor-
mation over the entire time period was recorded at a reduced
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FIG. 4. (Color online) Comparison between theory [using the “sin®?” Hert-
zian force pulse, Eq. (5)] and experiment for a 1.00 mm steel ball dropped
315 mm onto a thick aluminum plate. Subtle differences between experi-
ment and theory can be identified by the locations of zeros in the frequency
spectra in (b).

sampling rate (500 kHz), and the first wave arrival (deter-
mined to =2 us) from each successive impact was used for

e calculations (following Bernstein, 1977; and Falcon et al.,
1998).

IV. RESULTS
A. F ., results

The frequencies of zeros in the power spectrum of re-
corded signals (f,ero. 15 frer0.2, and f,er0 3) Were estimated from
local minima found in the magnitude of the Fourier trans-
form of recorded signals from the sensors in Position 2. An
example of one such signal, produced from the collision of a
1.00 mm steel ball dropped 325 mm onto the aluminum plate
is plotted in Fig. 4(a) along with the surface normal displace-
ments predicted by theory [Eq. (5) inserted into Eq. (2)]. The
transducer sensitivity is approximately 250 mV/nm, and the
noise is approximately =0.25 mV (%1 pm). The magnitude
of the Fourier transform of the recorded signals and theoret-
ical displacements are plotted in Fig. 4(b) along with the
power spectrum of a pure noise signal of the same length.

The results for f,er, 1, fyer02, and 5 for all material
combinations are plotted in Fig. 5 on a nondimensionalized
frequency scale which is normalized to t., found from Eq.
(4). The expected f,,,, locations for the “sin*?” force pulse
are shown as vertical dashed lines for reference. The ob-
served f,.,, locations strongly favor the “sin*?” force pulse
formulation over the “half sine” pulse described in Sec. II B,
thus validating the Reed (1985) correction to Hunter’s (1957)
theory. This quantitative evaluation of the force pulse does
not rely on an accurate calibration of the sensors. Note that
the results for ruby and steel balls colliding with the steel and
aluminum plates produce slightly low f,.,,, and slightly
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FIG. 5. (Color online) The frequencies of the first three zeros (f,er0.1, frero:
and f,,,3), found from local minima in the power spectra of recorded sig-
nals, are plotted against a nondimensionalized frequency parameter. The
vertical grid lines correspond to expected f,.,, frequencies based on a sin®?
force pulse formulation derived from Hertz theory [Eq. (5)]. The symbol
locations indicate the median frequency for each set of ten ball-drop tests
while the horizontal error bar extends from the first to the third quartiles of
the set of ten tests.

high f,,, and f,.,3, while the collisions on Glass and
PMMA plates are more consistent with theory (these devia-
tions are discussed in Sec. V B).

B. Calibration tests

Estimates of the instrument response function I(w) for
one sensor, found from the ratio of complex Fourier frequen-
cies obtained from experimental data to those obtained from
theory, are shown in Fig. 6 for a variety of different source
and plate combinations. The results from the four different

steel
o 50 S P SO
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el s
g B e e

£ 30

® ag PMMA o )

> g —— capillary
S0 e ball drop
[0

phase (radians)

| | I I 1
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frequency (kHz)

FIG. 6. The amplitude, (a), and phase, (b), estimates of the instrument
response function of one of the conical piezoelectric sensors coupled to the
four different test plates (each one offset for clarity) over a frequency range
of 100 kHz to 1 MHz. Each line is the average of 3-5 calibration tests—
either ball drops or capillary fractures (outliers were removed). Note that the
roughness in both the amplitude and phase (especially apparent in the
PMMA trace) is due to a slight mismatch between the Green’s function
estimates and the actual impulse responses of the plates.
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plate materials are offset for clarity, and are shown only in
frequency ranges for which a signal to noise ratio of at least
20 dB was attained.

Some variation was observed in instrument response be-
tween different sensors, but in all cases the underlying am-
plitude and phase spectra of the instrument response were
found to be smooth and flat enough to make its removal via
deconvolution a relatively straightforward affair. The results
presented in Fig. 6 show that the general shape of the instru-
ment response (I,,,,,(w)) is unchanged (to within =3 dB)
when coupled to the four different plate materials. The sen-
sor calibration results from Position 1 are shown for PMMA,
while the results for Position 2 are shown for the other three
materials. The roughness in both the amplitude and phase
response (especially apparent in the PMMA trace) is due to a
slight mismatch between the Green’s function estimates and
the actual impulse responses of the plates. Other than in-
creased roughness, calibration results for steel, aluminum,
and glass obtained from sensor Position 1 did not differ ap-
preciably (no more than *3 dB) from those obtained from
Position 2. The level of agreement between ball-source and
capillary-source sensor calibrations illustrates that either of
these sources can be successfully used for sensor calibration
purposes, but the divergence at high frequencies between the
ball and capillary test results establishes a bound on the re-
liability of both the capillary fracture model (step function)
and the Hertzian impact model [Eq. (5)].

The absolute sensitivity of the sensor, 8, was found to
be, on average, about 15 dB less sensitive when coupled to
PMMA (45 mV/nm) than when coupled to the steel, alumi-
num, and glass plates (250 mV/nm). This result is consistent
with Miller and Mclntire (1987) and is attributed to the
lower acoustic impedance of PMMA. On a given material, 8
varied by as much as a factor of 2 and was affected by the
physical bond between the sensor tip and the specimen (af-
fected by couplant, mounting force, and even time of sensor
contact). Sensor sensitivity was, on average, 200-250
mV/nm when coupled to Glass, Aluminum, and Steel, and
about 45 mV/nm when coupled to PMMA.

The removal of the Green’s function by inversion was
much more difficult and prone to error than that of the in-
strument response function because the Green’s function is
not minimum phase, has an infinite impulse response, and its
amplitude and phase spectra are not smooth [as shown in
Fig. 2(c)]. Difficulties in this inversion process are well
known (e.g., Ching et al., 2004; Michaels et al., 1981), and
errors are manifested as “overshoots” and “aftershocks” to
the calculated force pulses such as those shown in Fig. 8(b).

C. Impulse and force pulse

The impulse P that the ball imparts to the plate (equal to
the ball’s change in momentum) is defined as the time inte-
gral of the force pulse

P=ff3(t)dt=m1|vf—vo s (8)

where vy and m; are the rebound velocity and mass of the
ball, respectively. The force pulse can be found from the
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FIG. 7. (Color online) The proportionality between impulse derived from
recorded stress waves [Eq. (9)] and the ball’s change in momentum is illus-
trated for 1 to 2.5 mm diameter balls of various materials striking thick steel
and PMMA plates (a). The results for the 1 mm diamater balls are shown at
greater magnification (b). The results from the ten tests of 1 mm steel balls
dropped 127 mm onto the steel plate are shown in more detail in the inset.

inversion of recorded signals, but to circumvent the afore-
mentioned difficulties involved in the removal of the Green’s
function, the following approximation is made. For force
pulses f3(t) which are of short duration compared to t,, by
integrating Eq. (2) over time, the impulse can be well ap-
proximated by

1,=3
fﬁmmzfj us(1)dt, 9)
t,=0
where
1,=3
7=f gx(n)dt (10)
t =0

=

is a constant which only depends on the Green’s function for
a given plate material and sensor location and t,=t/t,,. In Eq.
(9), displacements u;(¢) are estimated by removing the in-
strument response i(7) from recorded signals.

In Fig. 7, the impulse that the ball delivers to the plate,
calculated from radiated stress wave measurements [Eq. (9)],
is graphed against the ball’s change in momentum, calculated
from v, and v¢ [Eq. (8)], for balls dropped on steel and
PMMA plates. Each group of points corresponds to a set of
ten ball drops performed under the same conditions. Figure
7(b) shows the same data at greater magnification. There is a
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FIG. 8. Normal displacements at sensor Position 1 (directly beneath the
location of impact) due to the collision of a 1 mm steel ball dropped 127 mm
onto a 50 mm thick steel plate. Small precursory forces which accompany
low e collisions can be seen in both the wave amplitudes (a) and the force
pulse (b) found from inversion.

linear proportionality between impulse calculated from stress
waves and change in momentum observed from incoming
and rebound velocities of the ball. The slope of the resulting
trend line is equal to the sensor sensitivity S relative to the
sensitivity assumed for the impulse calculation (which was 1
V/nm). All of the data lies within 0.5 dB of the B=
—14 dB and B=-29 dB lines shown, even for abnormally
low e collisions such as that shown in Fig. 7(b) inset. This
comparison serves a means of double checking the absolute
sensor sensitivity 3 over a wide range of amplitudes once the
instrument response I,,.,(w) (shown in Fig. 6) has been es-
timated. Note that the sensor is 15 dB more sensitive when
coupled to steel than when coupled to PMMA.

Each set of ball drop tests showed some variability in
measured coefficient of restitution, but a few of the collisions
showed e markedly lower than the others, with subtle differ-
ences in the shape of the force pulse. A well-pronounced
example of this aberration is illustrated in Fig. 8 for the case
of a 1.00 mm diameter steel ball dropped 127 mm onto the
steel plate, but similar results were observed for all types of
ball and plate materials tested. Note that the signals shown in
Fig. 8 correspond to the same data plotted in Fig. 7(b) inset.
In Fig. 8(a), the instrument response function i(¢) has been
removed from the raw experimental data and resulting dis-
placement time histories are plotted along side synthetic data
[obtained by inserting Eq. (5) into Eq. (2)]. The force pulses
shown in Fig. 8(b) were found by removing both the instru-
ment response function and the Green’s function [shown in
Fig. 2(a)] from the recorded signals. Of the data from the ten
ball drop tests performed under these conditions, nine of
them [the cluster in Fig. 7(b) inset] are very similar to that of
the “typical drop” plotted in Fig. 8. The remaining outlier
labeled “low e drop” is plotted for comparison. The
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FIG. 9. (Color online) Coefficient of restitution (e) plotted against the log of
incoming velocity for all ball and plate material combinations. Data is
grouped into logarithmically spaced bins on a velocity scale. Each symbol
location denotes the median e from sets of at least four data points, and the
vertical error bar extends from the first to the third quartiles. Note that the
scale in Figs. 9(a) and 9(b) is different from that in Figs. 9(c) and 9(d).

somewhat-lower-than-average amplitude and small precur-
sory force which precedes the first main wave arrival are
typical features of these low-restitution collisions and were
observed by every sensor in the array. Low-restitution colli-
sions of this type are thought to be due to surface effects
discussed in Sec. V C.

D. Restitution tests

The results of the restitution tests for all plate materials
are summarized in Figs. 9 and 10. As previously described,
incoming and rebound velocities of the ball were calculated
from the time between successive bounces (as in Bernstein,
1977, and Falcon et al., 1998) which was determined from
stress wave arrival information and contact times. In the ab-
sence of air resistance, the ball’s rebound velocity after the
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FIG. 10. (Color online) Coefficient of restitution measurements on PMMA:
comparison before (a) and after (b) cleaning the balls with acetone and
isopropyl alcohol.

i™ collision vi=gt,, '/2=v,". The total time the ball spends
in the air between the i"™ and i+1™ collisions ¢,
=tpi+l—tpi-tic. In these equations, t "is the arrival time of the
direct P-wave radiated from the i™ collision, tC1 is the contact
time of the same collision, and g is acceleration due to grav-
ity. Drag forces due to air resistance, estimated using a
simple model of a sphere in a fluid (Schlichting, 1979), were
also incorporated into the calculation of incoming and re-
bound velocities for the data presented in Figs. 9 and 10.
Errors in e estimates associated with air resistance are ex-
pected to be negligible for low velocities and could increase
to about 1% for smaller, less massive balls at higher veloci-
ties. For these figures, data is grouped into logarithmically
spaced bins on a velocity scale. Each symbol location de-
notes the median e from sets of at least four data points, and
the vertical error bar extends from the first to the third quar-
tiles of the data set. Note that the scale in Figs. 9(a) and 9(b)
is different from that in Figs. 9(c) and 9(d).

The e results reported here are consistent with that of
Tillet (1954) for PMMA at room temp, but since all experi-
ments in this study were performed at the same temperature,
effects of viscoelasticity were not apparent.

V. DISCUSSION
A. Momentum and energy

The comparison between the force pulse and e high-
lights the fundamental distinction between momentum and
energy, and how each relates to radiated stress waves. The
force pulse describes the ball’s change in momentum, which
is conserved, while e relates to the efficiency of kinetic en-
ergy transfer. In general, even when e results indicated that a
large amount of the ball’s kinetic energy was consumed dur-
ing the collision, the stress wave signature remained largely
unaffected. Figure 7 shows the direct proportionality be-
tween the ball’s change in momentum and stress waves, even
for low e collisions. Kinetic energy lost to anelastic
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processes—and radiated stress waves themselves—during
the collision will result in a small reduction in the ball’s
change in momentum, and therefore, a small reduction in the
amplitude of the radiated stress waves, but the (currently
measurable) frequency content of the waves will remain
largely unchanged. For the case of the “low restitution drop”
shown in Fig. 7(b) inset and Fig. 8, over half of the ball’s
kinetic energy was absorbed during the collision, yet the re-
sulting stress wave signature is not drastically different from
that of the Hertz-derived theory, which does not account for
any energy loss at all. The only clues in the stress wave
signature which indicate that an inelastic collision has taken
place are the subtle changes in the ball’s momentum transfer
such as the small precursory force, slight asymmetry, and
approximately 20% reduction in amplitude of the force
pulse. (These subtle changes are discussed in greater detail in
Sec. V C.) This conclusion emphasizes the difficulties of
studying energy-related seismic-source phenomena via radi-
ated stress waves, and reinforces the ball impact as reliable
source of stress waves despite energy-related deviations from
Hertzian theory.

For collisions at moderate velocities (vo~1 m/s), the
force pulse was adequately modeled by Hertzian theory even
when permanent plastic deformation was observed. This ob-
servation is consistent with those of Tillet (1954) and Lif-
shitz and Kolsky (1964), who showed that the duration of
contact, t., does not deviate appreciably from that predicted
by Hertzian theory even for incoming velocities eight times
greater than that at which plastic deformation is expected to
commence (Davies, 1949). The location of zeros found in the
spectral content of recorded stress waves shown in Fig. 5 are
very close to f,.,,=n+0.75 which clearly supports the
“sin*?” force pulse of Eq. (5) over the “half sine” pulse of
Eq. (3) (which would produce f,., ,=n+0.5). Though depar-
tures from Hertzian theory such as plastic deformation and
surface effects produced some observable changes in the
stress wave signature (discussed below), these deviations
were slight.

B. Plastic deformation

Plastic deformation was observed for collisions on the
steel and aluminum plates, characterized by a sharp decrease
in e with increasing v, shown in Figs. 9(a) and 9(b). More
subtle indications of gross yielding include (1) a slight asym-
metry and lower-than-expected amplitude of the force pulse,
(2) tiny (~100 wm) dents left in the plate material, and (3)
minor spectral changes in radiated stress waves such as a
reduction in f,,,; and an increase in f,.,, and f,,,3. The
collisions of glass balls on the steel plate were considerably
more elastic than those of ruby and steel balls on the steel
plate. This result was expected from Hertz theory because
the glass balls are less massive (which causes the maximum
impact force to be lower) and more compliant (which causes
the force to be distributed over a larger contact area). The
spectral properties of the collisions of the 2.5 mm glass balls
on the aluminum plate were inconsistent with previously
mentioned trends; the authors cannot account for this diver-
gence from theory.
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For the collisions of all the balls on the glass and
PMMA plates, measured e values were much closer to
Hertzian-derived predictions by Hunter (1957) and Reed
(1985), and the subtle indications of gross plastic deforma-
tion described in the previous paragraph were absent. Even
though the yield stress of PMMA is lower than that of steel
and aluminum, the compliance of this plate material pro-
duces a larger area of contact and a longer contact duration,
which reduces the maximum stresses developed during the
collision.

Counter to the prediction by Hutchings (1979), even
when a significant amount of plastic deformation occurred
during a collision (as evidence by e ~0.7), the asymmetry of
the force pulse was found to be minor. The lack of asymme-
try of the force pulse and its general insensitivity to plastic
yielding are likely due to strain rate effects. Also mentioned
in Hutchings (1977) and Goldsmith and Lyman (1960), the
rate of loading and unloading during the collision of a small
ball on a massive body is so great that there simply isn’t
enough time for plastic deformation to fully develop, and
stresses in excess of the yield stress may exist for a short
period of time. The loading rate is faster for smaller balls
than larger ones, and this is thought to be the reason why
higher e was measured for the small balls than the large ones
for collisions between steel and ruby balls on the steel plate,
as shown in Fig. 9(a).

C. Surface effect

Surface properties such as roughness (Lifshitz and Kol-
sky, 1964) and adhesion (e.g., Johnson and Greenwood,
1997) were previously suggested as a likely cause for energy
loss during impact. In the current study, a “surface effect”
was manifested as a decreased average value, and increase in
scatter, in e measurements at very low v,,. This was observed
for all ball and plate material combinations. Particularly low
e collisions were accompanied by a tiny precursory force
preceding the main force pulse. A very prominent example of
this is shown in Fig. 8. The duration and strength of this
curious precursory force was well correlated with the de-
crease in e. From the duration of the precursory force and the
incoming velocity of the ball, the spatial extent of the surface
irregularity required to make the force was estimated to be 1
to 4 wm for the largest precursory forces observed. These
estimates were consistent with observations of small par-
ticles on the surface of the balls when viewed under a mi-
croscope. As shown in Fig. 10, surface effects were dimin-
ished when the balls were cleaned with acetone and
isopropyl alcohol and dropped with a fine sponge instead of
from the fingers. Despite this reduction, surface effects are a
likely cause for the departure from theory (Reed, 1985) for
low v, collisions shown in Fig. 10(b). Note that all data
shown in Fig. 9 are the result of “after cleaning” experimen-
tal conditions.

The observed surface effects suggest that as the two col-
liding bodies first begin to interact, before full mechanical
contact has been formed in the Hertzian sense, the real area
of contact is small compared to the size of surface imperfec-
tions. At this stage, any roughness or surface imperfections
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such as grease or dust which may exist between the two
surfaces are loaded and deformed, and this deformation saps
some small amount of the ball’s kinetic energy. For bodies
with an abundance of kinetic energy and small contact areas,
surface effects can be ignored, but for micro particles im-
pacting real, unclean surfaces, these effects can be signifi-
cant.

VI. CONCLUSIONS

Recordings of radiated stress waves contain information
about the source, propagation medium, and sensor. A set of
experiments using multiple sources (ball and capillary), sen-
sors, source-sensor orientations, and test blocks were de-
signed so that the contributions from each of these factors
could be systematically identified. The results of this study
demonstrate that the impact of a small (1 to 2.5 mm diam-
eter) ball on a suitably massive body is a repeatable and
reliable source of stress waves in solid materials, even when
moderate yielding of the plate material is observed. For col-
lisions at moderate velocities (~1 m/s), the stress wave sig-
nature can be adequately modeled by a “sin*?” force pulse
derived from Hertz contact theory [Eq. (5)]. While capillary
fracture is an ideal source of high frequency stress waves, a
ball impact can serve as an effective complement due to its
repeatability, predictability, and the ease at which the fre-
quency content and amplitude of the introduced waves can
be modified simply by changing the incoming velocity, size
and material of the impinging ball.

Radiated stress waves were found to be linearly propor-
tional to the change of the ball’s momentum, even when
simultaneous measurements of the ball’s coefficient of resti-
tution (e) indicated that a large amount of the ball’s initial
kinetic energy was consumed by non-conservative processes
such as plastic deformation of the plate material. This result
suggests that the impulse rather than the energy of radiated
stress waves is the physical quantity which best describes
strength of the source. This has long been known in seismol-
ogy where the strength of an earthquake is judged by its
seismic moment; energy remains an elusive parameter.

This study emphasizes that stress wave recordings could
not be used to measure kinetic energy consumption directly.
Instead, phenomena such as plasticity and surface effects
were only identified by subtle changes in the calculated force
pulse. Plastic yielding in the steel and aluminum plates was
marked by a very slight asymmetry of the force pulse and
slight changes in the spectral content of radiated stress
waves, but these effects were minor, likely muted by strain
rate effects. Plastic yielding may play a more important role
during the collision of a larger ball with a longer duration of
contact.

Variability in the coefficient of restitution was found to
be a function of surface cleanliness; force-time pulses re-
corded from collisions with an abnormally low e were
marked by a tiny precursory force indicative of um scale
structures (dust) or roughness on the surfaces which are
loaded and inelastically deformed.

The shape of the frequency response I,,,,(w) of the
conical piezoelectric sensors used in this study was found to
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be unchanged (to within =3 dB) when coupled to the four
different plate materials, with the differences easily removed
by deconvolution due to the smoothness of its amplitude and
phase spectra (there were no apparent poles or zeros). Con-
sequently, measurements of high frequency surface displace-
ments down to a few pm in amplitude could be attained. The
absolute sensitivity, B, of the sensors was found to be highly
variable and dependent on the mechanical bond between the
sensor tip and specimen, which emphasizes the need for a
repeatable calibration source such as ball impact which de-
livers waves of a known amplitude and frequency content
into a solid body.
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