
Chapter 3

Static Longitudinal Stability and

Control

The most critical aspects of static longitudinal stability relate to control forces required
for changing trim or performing maneuvers. Our textbook [1] treats primarily the situ-
ation when the controls are fixed. This is, of course, and idealization, even for the case
of powered, irreversible controls, as the position of the control surfaces can he held fixed
only to the extent of the maximum available control forces. The opposite limit – that of
free control surfaces – also is an idealization, limited by the assumptions of zero friction
in the control positioning mechanisms. But, just as the control fixed limit is useful in
determining control position gradients, the control free limit is useful in determining con-
trol force gradients. And these latter are among the most important vehicle properties
in determining handling qualities.

3.1 Control Fixed Stability

Even for the controls-fixed case, our text is a bit careless with nomenclature and equations, so we
review the most important results for this case here. We have seen that for the analysis of longitudinal
stability, terms involving products of the drag coefficient and either vertical displacements of the
vehicle center-of-gravity or sines of the angle of attack can be neglected. Then, with the axial
locations as specified in Fig. 3.1 the pitching moment about the vehicle c.g. can be written

Cmcg = Cm0w
+ CLw

(xcg

c̄
−

xac

c̄

)

− η
St

S
CLt

[

ℓt

c̄
−

(xcg

c̄
−

xac

c̄

)

]

+ Cmf (3.1)

where we assume that Cm0t
= 0, since the tail is usually symmetrical. Note that, as is the usual

convention when analyzing static longitudinal stability and control, the positive direction of the
x-axis is taken to be aft ;1thus, e.g., the second term on the right-hand side of Eq. (3.1) contributes
to a positive (nose-up) pitching moment for positive lift when the c.g. is aft of the wing aerodynamic
center.

1Also, the origin of the x-axis is taken, by convention, to be at the leading edge of the mean aerodynamic chord
of the wing, and distances are normalized by the length of the wing mean aerodynamic chord. Thus, for example, we
might specify the location of the vehicle center-of-gravity as being at 30 per cent m.a.c.
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Figure 3.1: Geometry of wing and tail with respect to vehicle c.g., basic neutral point, and wing
aerodynamic center. Note that positive direction of the x-axis is aft.

Grouping the terms involving the c.g. location, this equation can be written

Cmcg = Cm0w
+

(xcg

c̄
−

xac

c̄

)

[

CLw + η
St

S
CLt

]

− ηVHCLt + Cmf (3.2)

where VH = ℓtSt

c̄S
is the tail volume parameter . Note that this definition is based on the distance

between the aerodynamic centers of the wing and tail, and is therefore independent of the vehicle
c.g. location. Note that the total vehicle lift coefficient is

CL =
Lw + Lt

QS
= CLw + η

St

S
CLt (3.3)

where η = Qt/Q is the tail efficiency factor, and this total vehicle lift coefficient is exactly the
quantity appearing in the square brackets in Eq. (3.2). Now, we can introduce the dependence of
the lift coefficients on angle of attack as

CLw = CLαw
(αFRL + iw − α0w

)

CLt = CLαt

(

αFRL + it −

[

ε0 +
dε

dα
αFRL

])

(3.4)

Note that, consistent with the usual use of symmetric sections for the horizontal tail, we have
assumed α0t

= 0. Introducing these expressions into Eq. (3.3), the latter can be expressed as

CL = CLαw
(iw − α0w

) + η
St

S
CLαt

(it − ε0) +

(

CLαw
+ η

St

S

[

1 −

dε

dα

]

CLαt

)

αFRL (3.5)

This equation has the form
CL = CL0 + CLααFRL (3.6)

where the vehicle lift curve slope is

CLα = CLαw
+ η

St

S

(

1 −

dε

dα

)

CLαt
(3.7)

and

CL0 = CLαw
(iw − α0w

) + η
St

S
CLαt

(it − ε0) (3.8)

is the vehicle lift coefficient at zero (fuselage reference line) angle of attack. Finally, if we define the
vehicle angle of attack relative to the angle of attack for zero vehicle lift, i.e.,

α ≡ αFRL − α0 (3.9)
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where

α0 = −

CL0

CLα

(3.10)

then
CL = CLαα (3.11)

where CLα is the vehicle lift curve slope, given by Eq. (3.7).

Introducing the angle of attack into Eq. (3.2), the expression for the vehicle pitching moment coef-
ficient becomes

Cmcg =Cm0w
+
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c̄
−

xac

c̄

)

[
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S
CLαt
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]

− ηVHCLαt
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{
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−
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c̄

)
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S
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)
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]
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(
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)
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+ Cmαf

}

αFRL

(3.12)

This can be expressed in terms of the angle of attack from zero vehicle lift as

Cmcg = Cm0w
+

(xcg

c̄
−

xac

c̄

)

[

CLαw
(iw − α0w

) + η
St

S
CLαt

(it − ε0)

]

− ηVHCLαt
(it − ε0)

+ Cmαα0 +

{
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c̄
−
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c̄

)

CLα − ηVHCLαt

(

1 −

dε

dα

)

+ Cmαf

}

α

(3.13)

This equation has the form
Cm = Cm0 + Cmαα (3.14)

with the vehicle pitching moment coefficient at zero lift

Cm0 = Cm0w
+

(xcg

c̄
−

xac

c̄

)

[

CLαw
(iw − α0w

) + η
St

S
CLαt

(it − ε0)

]

−ηVHCLαt
(it − ε0)+Cmαα0

(3.15)
and the vehicle pitch stiffness

Cmα =
(xcg

c̄
−

xac

c̄

)

CLα − ηVHCLαt

(

1 −

dε

dα

)

+ Cmαf
(3.16)

Note that Eq. (3.15) can be simplified (using Eq. (3.16)) to

Cm0 = Cm0w
− ηVHCLαt

[

it − ε0 +

(

1 −

dε

dα

)

α0

]

+ Cmαf
α0 (3.17)

Note that Eq. (3.17) correctly shows that the pitching moment at zero net vehicle lift is independent
of the c.g. location, as it must be (since at zero lift the resultant aerodynamic force must sum to a
pure couple).

The basic (or control-fixed) neutral point is defined as the c.g. location for which the vehicle is
neutrally stable in pitch – i.e., the c.g. location for which the pitch stiffness goes to zero. From
Eq. (3.16) the neutral point is seen to be located at

xNP

c̄
=

xac

c̄
+ ηVH

CLαt

CLα

(

1 −

dε

dα

)

−

Cmαf

CLα

(3.18)
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Note that Eq. (3.16) for the pitch stiffness can be expressed as

Cmα =

{

xcg

c̄
−

[

xac

c̄
+ ηVH

CLαt

CLα

(

1 −

dε

dα

)

−

Cmαf

CLα

]}

CLα (3.19)

where the quantity in square brackets is exactly the location of the basic neutral point, as shown in
Eq. (3.18). Thus, we can write

Cmα =
{xcg

c̄
−

xNP

c̄

}

CLα (3.20)

or, alternatively,
∂Cm

∂CL

= −

(xNP

c̄
−

xcg

c̄

)

(3.21)

Thus, the pitch stiffness, measured with respect to changes in vehicle lift coefficient, is proportional
to the distance between the c.g. and the basic neutral point. The quantity in parentheses on the
right-hand side of Eq. (3.21), i.e., the distance between the vehicle c.g. and the basic neutral point,
expressed as a percentage of the wing mean aerodynamic chord, is called the vehicle static margin.2

3.2 Static Longitudinal Control

The elevator is the aerodynamic control for pitch angle of the vehicle, and its effect is described in
terms of the elevator effectiveness

ae =
∂CLt

∂δe

(3.22)

where CLt is the lift coefficient of the horizontal tail and δe is the elevator deflection, considered
positive trailing edge down. The horizontal tail lift coefficient is then given by

CLt =
∂CLt

∂αt

(α + it − ε) + aeδe (3.23)

and the change in vehicle lift coefficient due to elevator deflection is

CLδe
= η

St

S
ae (3.24)

while the change in vehicle pitching moment due to elevator deflection is

Cmδe
= −η

St

S
ae

[

ℓt

c̄
+

xac − xcg

c̄

]

= −CLδe

[

ℓt

c̄
+

xac − xcg

c̄

] (3.25)

The geometry of the moment arm of the tail lift relative to the vehicle c.g. (which justifies the
second term in Eq. (3.25)) is shown in Fig. 3.1.

The vehicle is in equilibrium (i.e., is trimmed) at a given lift coefficient CLtrim when

CLαα + CLδe
δe = CLtrim

Cmαα + Cmδe
δe = −Cm0

(3.26)

2Again, it is worth emphasizing that the location of the basic neutral point, and other special c.g. locations to be
introduced later, are usually described as fractional distances along the wing mean aerodynamic chord; e.g. we might
say that the basic neutral point is located at 40 per cent m.a.c.
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These two equations can be solved for the unknown angle of attack and elevator deflection to give

αtrim =
−CLδe

Cm0 − Cmδe
CLtrim

∆

δtrim =
CLαCm0 + CmαCLtrim

∆

(3.27)

where
∆ = −CLαCmδe

+ CmαCLδe
(3.28)

Note that the parameter

∆ = −CLαCmδe
+ CmαCLδe

= −CLα

[

−CLδe

(

ℓt

c̄
+

xac − xcg

c̄

)]

+ CLα

(

xcg − xNP

c̄

)

CLδe

= CLαCLδe

(

ℓt

c̄
+

xac − xNP

c̄

)

= CLαCLδe

ℓtN

c̄

(3.29)

where
ℓtN

= ℓt + xac − xNP (3.30)

is the distance from the basic neutral point to the tail aerodynamic center. Thus, the parameter
∆ is independent of the vehicle c.g. location, and is seen to be positive for conventional (aft tail)
configurations, and negative for canard (forward tail) configurations.

An important derivative related to handling qualities is the control position gradient for trim, which
can be seen from the second of Eqs. (3.27) to be given by

dδe

dCL

)

trim

=
Cmα

∆
(3.31)

It is seen from Eq. (3.31) that the control position gradient, which measures the sensitivity of trimmed
lift coefficient to control position, is negative for stable, aft tail configurations, and is proportional
to the static margin (since ∆ is independent of c.g. location and Cmα is directly proportional to
the static margin). In fact, using Eq. 3.29, we can see that

dδe

dCL

)

trim

=
−1

CLδe

xNP − xc.g.

ℓtN

(3.32)

Thus, the control position gradient is seen to be determined by the static margin, normalized by
ℓtN

, scaled by the effectiveness of the control deflection at generating lift CLδe
.

These results can be used in flight tests to determine the location of the basic neutral point. For
each of several different c.g. positions the value of lift coefficient CL is determined as a function of
control position (as indicated by the data points in Fig. 3.2 (a).) For each c.g. location the value
of the control position gradient is estimated by the best straight-line fit through these data, and
is then plotted as a function of c.g. location. A best-fit straight line to these data, illustrated in
Fig. 3.2 (b), is then extrapolated to zero control position gradient, which corresponds to the basic
neutral point.

3.2.1 Longitudinal Maneuvers – the Pull-up

Another important criterion for vehicle handling qualities is the sensitivity of vehicle normal accel-
eration to control input. This can be analyzed by considering the vehicle in a steady pull-up. This
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Figure 3.2: Schematic of procedure to estimate the location of the basic neutral point using control
position gradient, measured in flight-test.

is a longitudinal maneuver in which the vehicle follows a curved flight path of constant radius R at
constant angle of attack, as sketched in Fig. 3.3. For this maneuver, the pitch rate q is constant,
and is given by

q =
V

R
(3.33)

We define the dimensionless pitch rate

q̂ =
q

2V
c̄

=
c̄q

2V
(3.34)

and will need to estimate the additional stability derivatives

CLq ≡

∂CL

∂q̂
(3.35)

and

Cmq ≡

∂Cm

∂q̂
(3.36)
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θ = q = V/R
.

Figure 3.3: Schematic of flight path and forces acting on vehicle in a steady pull-up.
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These derivatives characterize the sensitivity of vehicle lift and pitching moment to pitch rate. For
vehicles with tails (either aft or canard), the largest contribution to these derivatives comes from
the increment in tail lift due to the change in angle of attack of the tail arising from the rotation
rate. This change in angle of attack is approximately3

∆αt =
ℓt

V
q =

2ℓt

c̄
q̂ (3.37)

and the resulting change in vehicle lift coefficient is

∆CL = η
St

S

∂CLt

∂αt

∆αt = 2ηVH

∂CLt

∂αt

q̂ (3.38)

so

CLq = 2ηVH

∂CLt

∂αt

(3.39)

This increment in tail lift acts through the moment arm ℓt, so the corresponding estimate for the
tail contribution to pitch damping is

Cmq = −

ℓt

c̄
CLq = −2η

ℓt

c̄
VH

∂CLt

∂αt

(3.40)

The fuselage and wing (especially if the wing is swept) also contribute to the vehicle pitch damping,
but it is difficult to develop simple formulas of general applicability, so these contributions will be
neglected here. Note that the derivative CLq will be positive for aft tail configurations (and negative
for canard configurations), but the pitch damping Cmq will be always be negative, regardless of
whether the tail is ahead or behind the vehicle center of gravity.

We analyze the motion at the point on the trajectory when the velocity vector is horizontal, so the
balance of forces acting at the vehicle c.g. is

L − W = m
V 2

R
= mV q =

2mV 2

c̄
q̂ (3.41)

This equation can be written as

QS
{

CLα(α + ∆α) + CLδe
(δe + ∆δe) + CLqq̂

}

− W =
2mV 2

c̄
q̂ (3.42)

where α and δe are the angle of attack and elevator deflection for trim in the unaccelerated case,
and ∆α and ∆δe correspond to the increments in these angles due to the maneuver. If we introduce
the weight coefficient

CW ≡

W/S

Q
(3.43)

the dimensionless form of this equation can be written

{

CLα(α + ∆α) + CLδe
(δe + ∆δe) + CLq q̂

}

− CW = 2µq̂ (3.44)

where

µ ≡

2m

ρSc̄
(3.45)

3Here, and in the equations through Eq. (3.40), the distance ℓt should represent the distance from the vehicle
center-of-gravity to the aerodynamic center of the tail. The distance ℓt is a good approximation so long as the c.g. is
near the wing aerodynamic center, which is usually the case.
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is the vehicle relative mass parameter , which depends on ρ, the local fluid (air) density. As a result
of this dependence on air density, the relative mass parameter is a function of flight altitude.

Subtracting the equilibrium values for the unaccelerated case

CLαα + CLδe
δe − CW = 0 (3.46)

from Eq. (3.44) gives

CLα∆α + CLδe
∆δe =

(

2µ − CLq

)

q̂ (3.47)

Finally, if we introduce the normal acceleration parameter n such that L = nW , then the force
balance of Eq. (3.41) can be written in the dimensionless form

(n − 1)CW = 2µq̂ (3.48)

which provides a direct relation between the normal acceleration and the pitch rate, so that the lift
equilibrium equation can be written

CLα∆α + CLδe
∆δe = (n − 1)CW

(

1 −

CLq

2µ

)

(3.49)

The pitching moment must also remain zero for equilibrium (since q̇ = 0), so

Cmα∆α + Cmδe
∆δe + Cmq q̂ = 0 (3.50)

or

Cmα∆α + Cmδe
∆δe = −Cmq

(n − 1)CW

2µ
(3.51)

Equations (3.49) and (3.51) provide two equations that can be solved for the unknowns ∆α and ∆δe

to give

∆α =
−(n − 1)CW

∆

[(

1 −

CLq

2µ

)

Cmδe
+

Cmq

2µ
CLδe

]

∆δe =
(n − 1)CW

∆

[(

1 −

CLq

2µ

)

Cmα +
Cmq

2µ
CLα

] (3.52)

where

∆ = −CLαCmδe
+ CmαCLδe

(3.53)

is the same parameter as earlier (in Eq. (3.28)).

The control position derivative for normal acceleration is therefore given by

dδe

dn
=

CW

∆

[(

1 −

CLq

2µ

)

Cmα +
Cmq

2µ
CLα

]

(3.54)

Using Eq. (3.20) to express the pitch stiffness in terms of the c.g. location, we have

dδe

dn
=

CW

∆

[(

1 −

CLq

2µ

)

(xcg

c̄
−

xNP

c̄

)

+
Cmq

2µ

]

CLα (3.55)



3.3. CONTROL SURFACE HINGE MOMENTS 25

The c.g. location for which this derivative vanishes is called the basic maneuver point , and its
location, relative to the basic neutral point, is seen to be given by

xNP

c̄
−

xMP

c̄
=

Cmq

2µ

1 −
CLq

2µ

≈

Cmq

2µ
(3.56)

Since for all configurations the pitch damping Cmq < 0, the maneuver point is aft of the neutral
point. Also, since the vehicle relative mass parameter µ increases with altitude, the maneuver point
approaches the neutral point with increasing altitude. If Eq. (3.56) is used to eliminate the variable
xNP from Eq. (3.55), we have

dδe

dn
= −

CWCLα

∆

(

1 −

CLq

2µ

)

(xMP

c̄
−

xcg

c̄

)

(3.57)

where
(xMP

c̄
−

xcg

c̄

)

(3.58)

is called the maneuver margin.

3.3 Control Surface Hinge Moments

Just as the control position gradient is related to the pitch stiffness of the vehicle when the controls
are fixed, the control force gradients are related to the pitch stiffness of the vehicle when the controls
are allowed to float free.

3.3.1 Control Surface Hinge Moments

Since elevator deflection corresponds to rotation about a hinge line, the forces required to cause
a specific control deflection are related to the aerodynamic moments about the hinge line. A free
control will float, in the static case, to the position at which the elevator hinge moment is zero:

He = 0.

The elevator hinge moment is usually expressed in terms of the hinge moment coefficient

Che =
He

QSec̄e

(3.59)

where the reference area Se and moment arm c̄e correspond to the planform area and mean chord
of the control surface aft of the hinge line. Assuming that the hinge moment is a linear function of
angle of attack, control deflection, etc., we write

Che = Che0
+ Chαα + Chδe

δe + Chδt
δt (3.60)

In this equation, α is the angle of attack (from angle for zero vehicle lift), δe is the elevator deflection,
and δt is the deflection of the control tab (to be described in greater detail later).

The derivative Chα characterizes the hinge moment created by changes in angle of attack; it is
called the floating tendency, as the hinge moment generated by an increase in angle of attack
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Figure 3.4: Schematic illustration of aerodynamic forces responsible for (a) floating and (b) restoring
tendencies of trailing edge control surfaces. Floating (or restoring) tendency represents moment
about hinge line of (shaded) lift distribution acting on control surface per unit angle of attack (or
control deflection).

generally causes the control surface to float upward. The derivative Chδe
characterizes the hinge

moment created by a deflection of the control (considered positive trailing edge down); it is called
the restoring tendency, as the nose-down hinge moment generated by a positive control deflection
tends to restore the control to its original position. The floating tendency in Eq. (3.60) is referred
to the vehicle angle of attack, and so it is related to the derivative based on tail angle of attack αt

by

Chα =

(

1 −

dǫ

dα

)

Chαt
(3.61)

which accounts for the effects of wing induced downwash at the tail. The aerodynamic forces
responsible for generating the hinge moments reflected in the floating and restoring tendencies are
sketched in Fig. 3.4. Only the shaded portion of the lift distribution in these figures acts on the
control surface and contributes to the hinge moment.

The angle at which the free elevator floats is determined by the fact that the hinge moment (and,
therefore, the hinge moment coefficient) must be zero

Che = 0 = Che0
+ Chαα + Chδe

δefree + Chδt
δt

or

δefree = −

1

Chδe

(Che0
+ Chαα + Chδt

δt) (3.62)

The corresponding lift and moment coefficients are

CLfree = CLαα + CLδe
δefree

Cmfree = Cm0 + Cmαα + Cmδe
δefree

(3.63)

which, upon substituting from Eq. (3.62), can be written

CLfree = CLα

(

1 −

CLδe
Chα

CLαChδe

)

α −

CLδe

Chδe

(Che0
+ Chδt

δt)

Cmfree = Cmα

(

1 −

Cmδe
Chα

CmαChδe

)

α + Cm0 −
Cmδe

Chδe

(Che0
+ Chδt

δt)

(3.64)

Thus, if we denote the control free lift curve slope and pitch stiffness using primes, we see from the
above equations that

CL
′

α = CLα

(

1 −

CLδe
Chα

CLαChδe

)

Cm
′

α = Cmα

(

1 −

Cmδe
Chα

CmαChδe

) (3.65)
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Inspection of these equations shows that the lift curve slope is always reduced by freeing the controls,
and the pitch stiffness of a stable configuration is reduced in magnitude by freeing the controls for
an aft tail configuration, and increased in magnitude for a forward tail (canard) configuration (in
all cases assuming that the floating and restoring tendencies both are negative).

3.3.2 Control free Neutral Point

The c.g. location at which the control free pitch stiffness vanishes is called the control free neutral

point . The location of the control free neutral point x′

NP can be determined by expressing the pitch
stiffness in the second of Eqs. (3.65)

Cm
′

α = Cmα −

Cmδe
Chα

Chδe

as

Cm
′

α =
(xcg

c̄
−

xNP

c̄

)

CLα +
ChαCLδe

Chδe

(

ℓt

c̄
+

xac

c̄
−

xcg

c̄

)

=
(xcg

c̄
−

xNP

c̄

)

CLα +
Chα

Chδe

η
St

S
ae

(

ℓt + xac − xNP

c̄
+

xNP − xcg

c̄

)

=
(xcg

c̄
−

xNP

c̄

)

[

CLα −

CLδe
Chα

Chδe

]

+ ηVHN

Chαae

Chδe

(3.66)

where ae = ∂CLt/∂δe is the elevator effectiveness and

VHN
=

(

ℓt

c̄
+

xac

c̄
−

xNP

c̄

)

St

S
(3.67)

is the tail volume ratio based on ℓtN
, the distance between the tail aerodynamic center and the

basic neutral point, as defined in Eq. (3.30). The quantity in square brackets in the final version of
Eq. (3.66) is seen to be simply the control free vehicle lift curve slope CL

′

α, so we have

Cm
′

α =
(xcg

c̄
−

xNP

c̄

)

CL
′

α + ηVHN

Chαae

Chδe

(3.68)

Setting the control free pitch stiffness Cm
′

α to zero gives the distance between the control free and
basic neutral points as

xNP

c̄
−

x′

NP

c̄
= ηVHN

ae

CL
′

α

Chα

Chδe

(3.69)

Finally, if Eq. (3.69) is substituted back into Eq. (3.68) to eliminate the variable xNP , we have

Cm
′

α = −

(

x′

NP

c̄
−

xcg

c̄

)

CL
′

α (3.70)

showing that the control free pitch stiffness is directly proportional to the control free static margin

(

x′

NP

c̄
−

xcg

c̄

)
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Figure 3.5: (a) Typical location of trim tab on horizontal control (elevator), and (b) schematic
illustration of aerodynamic forces responsible for hinge moment due to trim tab deflection.

3.3.3 Trim Tabs

Trim tabs can be used by the pilot to trim the vehicle at zero control force for any desired speed. Trim
tabs are small control surfaces mounted at the trailing edges of primary control surfaces. A linkage
is provided that allows the pilot to set the angle of the trim tab, relative to the primary control
surface, in a way that is independent of the deflection of the primary control surface. Deflection of
the trim tab creates a hinge moment that causes the elevator to float at the angle desired for trim.
The geometry of a typical trim tab arrangement is shown in Fig. 3.5.

Zero control force corresponds to zero hinge moment, or

Che = 0 = Che0
+ Chαα + Chδe

δe + Chδt
δt

and the trim tab deflection that achieves this for arbitrary angle of attack and control deflection is

δt = −

1

Chδt

(Che0
+ Chαα + Chδe

δe) (3.71)

so the tab setting required for zero control force at trim is

δttrim = −

1

Chδt

(Che0
+ Chααtrim + Chδe

δetrim) (3.72)

The values of αtrim and δetrim are given by Eqs. (3.27)

αtrim =
−CLδe

Cm0 − Cmδe
CLtrim

∆

δetrim =
CLαCm0 + CmαCLtrim

∆

(3.73)

Substituting these values into Eq. (3.72) gives the required trim tab setting as

δttrim = −

1

Chδt

(

Che0
+

Cm0

∆
(−ChαCLδe

+ Chδe
CLα) +

1

∆
(−ChαCmδe

+ Chδe
Cmα)CLtrim

)

(3.74)
Note that the coefficient of CLtrim in this equation – which gives the sensitivity of the trim tab
setting to the trim lift coefficient – can be written as

dδt

dCL

= −

Chδe

Chδt
∆

(

Cmα −

ChαCmδe

Chδe

)

= −

Chδe

Chδt
∆

Cm
′

α = −

Chδe

Chδt
∆

(

x′

NP

c̄
−

xcg

c̄

)

CL
′

α (3.75)



3.3. CONTROL SURFACE HINGE MOMENTS 29

C

c.g. forward
trimtδ

L trim

Figure 3.6: Variation in trim tab setting as function of velocity for stable, aft tail vehicle.

and Eq. (3.74) can be written

δttrim = −

1

Chδt

[

Che0
+

Cm0

∆
(−ChαCLδe

+ Chδe
CLα) +

Chδe

∆
CL

′

α

(

x′

NP

c̄
−

xcg

c̄

)

CLtrim

]

(3.76)
Thus, the tab setting for trim is a linear function of trimmed lift coefficient whose slope is propor-
tional to the control free static margin. This variation is shown schematically for a conventional (aft
tail) configuration in Fig. 3.6.

3.3.4 Control Force for Trim

As mentioned earlier, the most important aspects of stability relating to handling qualities of the
vehicle are related to control forces . For longitudinal control, the control force F is related to the
elevator hinge moment He through a gearing constant G, so that

F = GHe (3.77)

This equation defines a positive control force as a pull , corresponding to the force required to balance
a positive (nose up) elevator hinge moment.4 The units of the gearing constant G are inverse length,
which can be interpreted as a mechanical advantage corresponding to radians of control deflection
per unit distance (foot) of control yoke displacement.

Expressing the hinge moment in terms of the corresponding dimensionless coefficient, we have

F = GSec̄eQChe = GSec̄eQ (Che0
+ Chαα + Chδe

δe + Chδt
δt) (3.78)

Since this equation is linear in tab deflection, the control force required for a tab setting other than
the trim value is

F = GSec̄eQChδt
(δt − δttrim) (3.79)

4It is important to be careful when reading other books; positive control force is sometimes defined as a push,
in which case there is a minus sign inserted on the right hand side of Eq. (3.77) and subsequently throughout the
analysis.
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Figure 3.7: Typical variation in control force as function of vehicle velocity for stable configuration.

and, substituting the tab setting required for trim from Eq. (3.76), we have

F = GSec̄eQ

[

Chδt
δt + Che0

+
Cm0

∆
(−ChαCLδe

+ Chδe
CLα) +

Chδe

∆
CL

′

α

(

xcg − x′

NP

c̄

)

CLtrim

]

(3.80)
Finally, substituting

CLtrim =
W/S

Q
(3.81)

for level flight with L = W , we have

F =GSec̄e(W/S)
Chδe

CL
′

α

∆

(

xcg − x′

NP

c̄

)

+

GSec̄e

[

Chδt
δt + Che0

+
Cm0

∆
(−ChαCLδe

+ Chδe
CLα)

]

1

2
ρV 2

(3.82)

The dependence of control force on velocity described by this equation is sketched in Fig. 3.7. Note
from the equation that:

1. The control force F ∝ Sec̄e, i.e, is proportional to the cube of the size of the vehicle; control
forces grow rapidly with aircraft size, and large aircraft require powered (or power-assisted)
control systems.

2. The location of the c.g. (i.e., the control free static margin) affects only the constant term in
the equation.

3. The vehicle weight enters only in the ratio W/S.

4. The effect of trim tab deflection δt is to change the coefficient of the V 2 term, and hence
controls the intercept of the curve with the velocity axis.

If we denote the velocity at which the control force is zero as Vtrim, then Eq. (3.82) gives

GSec̄e

(

Chδt
δt + Che0

+
Cm0

∆
(−ChαCLδe

+ Chδe
CLα)

)

1

2
ρV 2

trim =

− GSec̄e(W/S)
Chδe

CL
′

α

∆

(

xcg − x′

NP

c̄

) (3.83)
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so

F = GSec̄e(W/S)
Chδe

CL
′

α

∆

(

xcg − x′

NP

c̄

)

[

1 − (V/Vtrim)2
]

(3.84)

and
dF

dV

)

Vtrim

= −

2

Vtrim

GSec̄e(W/S)
Chδe

CL
′

α

∆

(

xcg − x′

NP

c̄

)

(3.85)

These last two equations, which also can be interpreted in terms of Fig. 3.7, show that:

1. For a given control free static margin (or c.g. position) the control force gradient decreases
with increasing flight velocity; and

2. At a given trim velocity, the control force gradient decreases as the c.g. is moved aft toward
the control free neutral point (i.e., as the static margin is reduced).

3.3.5 Control-force for Maneuver

Perhaps the single most important stability property of an aircraft, in terms of handling properties,
describes the control force required to perform a maneuver. This force must not be too small to
avoid over-stressing the airframe, nor too large to avoid making the pilot work too hard.

We will again consider the steady pull-up. The change in control force required to effect the maneuver
is

∆F = GSec̄eQ∆Che (3.86)

where

∆Che = Chα∆α + Chδe
∆δe + Chq q̂ (3.87)

where q̂ is the dimensionless pitch rate, as defined in Section 3.2.1. It was also seen in that section
that the dimensionless pitch rate for a pull-up could be related directly to the excess load factor
(n − 1), so, using Eq. (3.48), we have

∆Che = Chα∆α + Chδe
∆δe +

(n − 1)CW

2µ
Chq (3.88)

The derivative Chq arises from the change in hinge moment due to the change in tail angle of attack
arising from the pitch rate. Thus

∆Che = Chαt
∆αt = Chαt

2ℓt

c̄
q̂ (3.89)

and

Chq ≡

∂Che

∂q̂
= 2

ℓt

c̄
Chαt

(3.90)

Now, we can use the solution for ∆δe from Eq. (3.52)

∆δe =
(n − 1)CW

∆

[(

1 −

CLq

2µ

)

Cmα +
Cmq

2µ
CLα

]

(3.91)
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along with the lift coefficient equation, Eq. (3.49), which can be written

∆α =
1

CLα

[

(n − 1)CW

(

1 −

CLq

2µ

)

− CLδe
∆δe

]

(3.92)

in the hinge moment equation to give

∆Che = Chα

n − 1

CLα

[(

1 −

CLq

2µ

)

CW − CLδe

∆δe

n − 1

]

+ Chδe
∆δe +

(n − 1)CW

2µ
Chq (3.93)

which can be rearranged into the form

∆Che

n − 1
=

CW

CLα

[(

1 −

CLq

2µ

)

Chα +
Chq

2µ
CLα

]

+
∆δe

n − 1
Chδe

CL
′

α

CLα

(3.94)

Finally, using Eq. (3.57) for ∆δe/(n − 1), the equation for the hinge moment increment can be
written

∆Che

n − 1
=

CW CL
′

αChδe

∆

(

1 −

CLq

2µ

) [

xcg − xMP

c̄
+

∆

CL
′

αChδe

(

Chα

CLα

+
Chq

2µ − CLq

)]

(3.95)

The control free maneuver point is defined as the c.g. location for which the control force gradient
(per g) (or, equivalently, the hinge moment coefficient gradient) vanishes. This is seen from Eq. (3.95)
to give

xMP − x′

MP

c̄
=

∆

CL
′

αChδe

(

Chα

CLα

+
Chq

2µ − CLq

)

(3.96)

Note that this quantity is positive for aft tail configurations, and negative for forward tail (canard)
configurations. Substitution of this expression back into Eq. (3.95) then gives

∆Che

n − 1
=

CWCL
′

αChδe

∆

(

1 −

CLq

2µ

) (

xcg − x′

MP

c̄

)

(3.97)

Finally, the control force gradient (per g) is

∂F

∂n
=

∆F

n − 1
= GSec̄eQ

∆Che

n − 1

= GSec̄eQ
CWCL

′

αChδe

∆

(

1 −

CLq

2µ

) (

xcg − x′

MP

c̄

) (3.98)

or, since QCW = W/S,

∂F

∂n
= GSec̄e(W/S)

CL
′

αChδe

∆

(

1 −

CLq

2µ

) (

xcg − x′

MP

c̄

)

(3.99)

The distance
x′

MP−xcg

c̄
, seen from the above equation to be directly related to the sensitivity of

normal acceleration of the vehicle to control force, is called the control free maneuver margin.

Note that the control force gradient (per g) is

1. Directly proportional to the vehicle wing loading W/S;
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Figure 3.8: Allowable c.g. travel as imposed by limits on control force gradient (per g).

2. Directly proportional to the cube of the linear size of the vehicle;

3. Directly proportional to the (control free) maneuver margin (x′

MP − xcg)/c̄; and

4. Independent of airspeed.

The control force gradient should be neither too small nor too large. If the gradient is too small,
the vehicle will be overly sensitive to small control inputs and it will be too easy for the pilot to
over stress the airframe. At the same time, the control forces required for normal maneuvers must
not be larger than the pilot can supply (or so large that the pilot becomes unduly tired performing
normal maneuvers). The lower and upper limits on control force gradient (per g) determine allowable
rearward and forward limits on c.g. travel, as sketched in Fig. 3.8. The values of these limits will
depend on the vehicle mission; in general the limits will be higher for transport aircraft, and lower
for vehicles which require greater maneuverability (such as military fighters or aerobatic aircraft).

3.4 Forward and Aft Limits of C.G. Position

The various control position and force gradients impose limits on the acceptable range of travel of
the vehicle center of gravity. These include (for most vehicles):

• Rearward limits:

1. The vehicle must be statically stable; i.e., the c.g. must be ahead of the basic and control
free neutral points.

2. The sensitivity of vehicle velocity to control position must not be too small; i.e., the c.g.
must be sufficiently far ahead of the basic neutral point.

3. The sensitivity of vehicle normal acceleration to control force must not be too small; i.e.,
the c.g. must be sufficiently far ahead of the control free neutral point.

• Forward limits:
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1. The vehicle must be trimmable at CLmax; i.e., the c.g. must not be so far forward that
there is insufficient elevator power to trim the vehicle at maximum lift coefficient.

2. The sensitivity of vehicle normal acceleration to control force must not be too high; i.e.,
the c.g. must not be so far forward that excessive control force is required to perform
maneuvers for which the vehicle is intended.
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