
Chapter 5

Dynamic Stability

These notes provide a brief background for the response of linear systems, with applica-
tion to the equations of motion for a flight vehicle. The description is meant to provide
the basic background in linear algebra for understanding modern tools for analyzing the
response of linear systems, and provide examples of their application to flight vehicle
dynamics. Examples for both longitudinal and lateral/directional motions are provided,
and simple, lower-order approximations to the various modes are used to elucidate the
roles of relevant aerodynamic properties of the vehicle.

5.1 Mathematical Background

5.1.1 An Introductory Example

The most interesting aircraft motions consist of oscillatory modes, the basic features of which can
be understood by considering the simple system, sketched in Fig. 5.1, consisting of a spring, mass,
and damper.
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x

Figure 5.1: Schematic of spring-mass-damper system.
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The dynamics of this system are described by the second-order ordinary differential equation

m
d2x

dt2
+ c

dx

dt
+ kx = F (t) (5.1)

where m is the mass of the system, c is the damping parameter, and k is the spring constant of
the restoring force. We generally are interested in both the free response of the system to an initial
perturbation (with F (t) = 0), and the forced response to time-varying F (t). The free response is
relevant to the question of stability – i.e., the response to an infinitesimal perturbation from an
equilibrium state of the system, while the forced response is relevant to control response.

The free response is the solution to the homogeneous equation, which can be written

d2x

dt2
+
( c

m

) dx

dt
+

(

k

m

)

x = 0 (5.2)

Solutions of this equation are generally of the form

x = Aeλt (5.3)

where A is a constant determined by the initial perturbation. Substitution of Eq. (5.3) into the
differential equation yields the characteristic equation

λ2 +
( c

m

)

λ+

(

k

m

)

= 0 (5.4)

which has roots

λ = − c

2m
±
√

( c

2m

)2

−
(

k

m

)

(5.5)

The nature of the response depends on whether the second term in the above expression is real or
imaginary, and therefore depends on the relative magnitudes of the damping parameter c and the
spring constant k. We can re-write the characteristic equation in terms of a variable defined by the
ratio of the two terms in the square root

(

c
2m

)2

(

k
m

) =
c2

4mk
≡ ζ2 (5.6)

and a variable explicitly depending on the spring constant k, which we will choose (for reasons that
will become obvious later) to be

k

m
≡ ω2

n (5.7)

In terms of these new variables, the original Eq. (5.2) can be written as

d2x

dt2
+ 2ζωn

dx

dt
+ ω2

nx = 0 (5.8)

The corresponding characteristic equation takes the form

λ2 + 2ζωnλ+ ω2
n = 0 (5.9)

and its roots can now be written in the suggestive forms

λ =











−ζωn ± ωn

√

ζ2 − 1 for ζ > 1

−ζωn for ζ = 1

−ζωn ± iωn

√

1 − ζ2 for ζ < 1

(5.10)
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Overdamped System

For cases in which ζ > 1, the characteristic equation has two (distinct) real roots, and the solution
takes the form

x = a1e
λ1t + a2e

λ2t (5.11)

where

λ1 = −ωn

(

ζ +
√

ζ2 − 1
)

λ2 = −ωn

(

ζ −
√

ζ2 − 1
) (5.12)

The constants a1 and a2 are determined from the initial conditions

x(0) = a1 + a2

ẋ(0) = a1λ1 + a2λ2

(5.13)

or, in matrix form,
(

1 1
λ1 λ2

)(

a1

a2

)

=

(

x(0)
ẋ(0)

)

(5.14)

Since the determinant of the coefficient matrix in these equations is equal to λ2 −λ1, the coefficient
matrix is non-singular so long as the characteristic values λ1 and λ2 are distinct – which is guaranteed
by Eqs. (5.12) when ζ > 1. Thus, for the overdamped system (ζ > 1), the solution is completely
determined by the initial values of x and ẋ, and consists of a linear combination of two decaying
exponentials.

The reciprocal of the undamped natural frequency ωn forms a natural time scale for this problem,
so if we introduce the dimensionless time

t̂ = ωnt (5.15)

then Eq. (5.8) can be written

d2x

dt̂2
+ 2ζ

dx

dt̂
+ x = 0 (5.16)

which is seen to depend only on the damping ratio ζ. Figure 5.2 shows the response of overdamped
systems for various values of the damping ratio as functions of the dimensionless time t̂.

Critically Damped System

When the damping ratio ζ = 1, the system is said to be critically damped , and there is only a single
characteristic value

λ1 = λ2 = −ωn (5.17)

Thus, only one of the two initial conditions can, in general, be satisfied by a solution of the form eλt.
However, in this special case it is easily verified that teλt = te−ωnt is also a solution of Eq. (5.8), so
the general form of the solution for the critically damped case can be written as

x = (a1 + a2t) e
−ωnt (5.18)

The constants a1 and a2 are again determined from the initial conditions

x(0) = a1

ẋ(0) = a1λ1 + a2

(5.19)
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Figure 5.2: Overdamped response of spring-mass-damper system. (a) Displacement perturbation:
x(0) = 1.0; ẋ(0) = 0. (b) Velocity perturbation: ẋ(0) = 1.0; x(0) = 0.

or, in matrix form,
(

1 0
λ1 1

)(

a1

a2

)

=

(

x(0)
ẋ(0)

)

(5.20)

Since the determinant of the coefficient matrix in these equations is always equal to unity, the
coefficient matrix is non-singular. Thus, for the critically damped system (ζ = 1), the solution is
again completely determined by the initial values of x and ẋ, and consists of a linear combination
of a decaying exponential and a term proportional to te−ωnt. For any positive value of ωn the
exponential decays more rapidly than any positive power of t, so the solution again decays, nearly

exponentially.

Figures 5.2 and 5.3 include the limiting case of critically damped response for Eq. (5.16).

Underdamped System

When the damping ratio ζ < 1, the system is said to be underdamped , and the roots of the charac-
teristic equation consist of the complex conjugate pair

λ1 = ωn

(

−ζ + i
√

1 − ζ2
)

λ2 = ωn

(

−ζ − i
√

1 − ζ2
) (5.21)

Thus, the general form of the solution can be written

x = e−ζωnt
[

a1 cos
(

ωn

√

1 − ζ2t
)

+ a2 sin
(

ωn

√

1 − ζ2t
)]

(5.22)

The constants a1 and a2 are again determined from the initial conditions

x(0) = a1

ẋ(0) = −ζωna1 + ωn

√

1 − ζ2a2

(5.23)

or, in matrix form,
(

1 0

−ζωn ωn

√

1 − ζ2

)(

a1

a2

)

=

(

x(0)
ẋ(0)

)

(5.24)
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Figure 5.3: Underdamped response of spring-mass-damper system. (a) Displacement perturbation:
x(0) = 1.0; ẋ(0) = 0. (b) Velocity perturbation: ẋ(0) = 1.0; x(0) = 0.

Since the determinant of the coefficient matrix in these equations is equal to ωn

√

1 − ζ2, the system
is non-singular when ζ < 1, and the solution is completely determined by the initial values of x and
ẋ. Figure 5.3 shows the response of the underdamped system Eq. (5.16) for various values of the
damping ratio, again as a function of the dimensionless time t̂.

As is seen from Eq. (5.22), the solution consists of an exponentially decaying sinusoidal motion.
This motion is characterized by its period and the rate at which the oscillations are damped. The
period is given by

T =
2π

ωn

√

1 − ζ2
(5.25)

and the time to damp to 1/n times the initial amplitude is given by1

t1/n =
lnn

ωnζ
(5.26)

For these oscillatory motions, the damping frequently is characterized by the number of cycles to
damp to 1/n times the initial amplitude, which is given by

N1/n =
t1/n

T
=

lnn

2π

√

1 − ζ2

ζ
(5.27)

Note that this latter quantity is independent of the undamped natural frequency; i.e., it depends
only on the damping ratio ζ.

5.1.2 Systems of First-order Equations

Although the equation describing the spring-mass-damper system of the previous section was solved
in its original form, as a single second-order ordinary differential equation, it is useful for later

1The most commonly used values of n are 2 and 10, corresponding to the times to damp to 1/2 the initial amplitude
and 1/10 the initial amplitude, respectively.
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generalization to re-write it as a system of coupled first-order differential equations by defining

x1 = x

x2 =
dx

dt

(5.28)

Equation (5.8) can then be written as

d

dt

(

x1

x2

)

=

(

0 1
−ω2

n −2ζωn

)(

x1

x2

)

+

(

0
1
m

)

F (t) (5.29)

which has the general form
ẋ = Ax + Bη (5.30)

where x = (x1, x2)
T , the dot represents a time derivative, and η(t) = F (t) will be identified as the

control input.

The free response is then governed by the system of equations

ẋ = Ax (5.31)

and substitution of the general form
x = xie

λit (5.32)

into Eqs. (5.31) requires
(A − λiI)xi = 0 (5.33)

Thus, the free response of the system in seen to be completely determined by the eigenstructure (i.e.,
the eigenvalues and eigenvectors) of the plant matrix A. The vector xi is seen to be the eigenvector
associated with the eigenvalue λi of the matrix A and, when the eigenvalues are unique, the general
solution can be expressed as a linear combination of the form

x =

2
∑

i=1

aixie
λit (5.34)

where the constants ai are determined by the initial conditions. The modal matrix Q of A is defined
as the matrix whose columns are the eigenvectors of A

Q =
(

x1 x2

)

(5.35)

so the initial values of the vector x are given by

x(0) =

2
∑

i=1

aixi = Qa (5.36)

where the elements of the vector
a = {a1, a2}T

correspond to the coefficients in the modal expansion of the solution in the form of Eq. (5.34). When
the eigenvalues are complex, they must appear in complex conjugate pairs, and the corresponding
eigenvectors also are complex conjugates, so the solution corresponding to a complex conjugate pair
of eigenvalues again corresponds to an exponentially damped harmonic oscillation.

While the above analysis corresponds to the second-order system treated previously, the advantage of
viewing is as a system of first-order equations is that, once we have shifted our viewpoint the analysis
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carries through for a system of any order. In particular, the simplest complete linear analyses of either
longitudinal or lateral/directional dynamics will lead to fourth-order systems – i.e., to systems of
four coupled first-order differential equations. In practice, most of the required operations involving
eigenvalues and eigenvectors can be accomplished easily using numerical software packages, such as
Matlab

5.2 Longitudinal Motions

In this section, we develop the small-disturbance equations for longitudinal motions in standard
state-variable form. Recall that the linearized equations describing small longitudinal perturbations
from a longitudinal equilibrium state can be written

[

d

dt
−Xu

]

u+ g0 cosΘ0θ −Xww = Xδe
δe +XδT

δT

−Zuu+

[

(1 − Zẇ)
d

dt
− Zw

]

w − [u0 + Zq] q + g0 sin Θ0θ = Zδe
δe + ZδT

δT

−Muu−
[

Mẇ
d

dt
+Mw

]

w +

[

d

dt
−Mq

]

q = Mδe
δe +MδT

δT

(5.37)

If we introduce the longitudinal state variable vector

x = [u w q θ]
T

(5.38)

and the longitudinal control vector
η = [δe δT ]T (5.39)

these equations are equivalent to the system of first-order equations

Inẋ = Anx + Bnη (5.40)

where ẋ represents the time derivative of the state vector x, and the matrices appearing in this
equation are

An =









Xu Xw 0 −g0 cosΘ0

Zu Zw u0 + Zq −g0 sin Θ0

Mu Mw Mq 0
0 0 1 0









In =









1 0 0 0
0 1 − Zẇ 0 0
0 −Mẇ 1 0
0 0 0 1









, Bn =









Xδe
XδT

Zδe
ZδT

Mδe
MδT

0 0









(5.41)

It is not difficult to show that the inverse of In is

I−1
n =









1 0 0 0
0 1

1−Zẇ
0 0

0 Mẇ

1−Zẇ
1 0

0 0 0 1









(5.42)

so premultiplying Eq. (5.40) by I−1
n gives the standard form

ẋ = Ax + Bη (5.43)
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where

A =











Xu Xw 0 −g0 cosΘ0
Zu

1−Zẇ

Zw

1−Zẇ

u0+Zq

1−Zẇ

−g0 sin Θ0

1−Zẇ

Mu + MẇZu

1−Zẇ
Mw + MẇZw

1−Zẇ
Mq +

(u0+Zq)Mẇ

1−Zẇ

−Mẇg0 sin Θ0

1−Zẇ

0 0 1 0











B =











Xδe
XδT

Zδe

1−Zẇ

ZδT

1−Zẇ

Mδe
+

MẇZδe

1−Zẇ
MδT

+
MẇZδT

1−Zẇ

0 0











(5.44)

Note that

Zẇ =
QSc̄

2mu2
0

CZα̇ = − 1

2µ
CLα̇ (5.45)

and

Zq =
QSc̄

2mu0
CZq = −u0

2µ
CLq (5.46)

Since the aircraft mass parameter µ is typically large (on the order of 100), it is common to neglect
Zẇ with respect to unity and to neglect Zq relative to u0, in which case the matrices A and B can
be approximated as

A =









Xu Xw 0 −g0 cosΘ0

Zu Zw u0 −g0 sin Θ0

Mu +MẇZu Mw +MẇZw Mq + u0Mẇ −Mẇg0 sin Θ0

0 0 1 0









B =









Xδe
XδT

Zδe
ZδT

Mδe
+MẇZδe

MδT
+MẇZδT

0 0









(5.47)

This is the approximate form of the linearized equations for longitudinal motions as they appear in
many texts (see, e.g., Eqs. (4.53) and (4.54) in [3]2).

The various dimensional stability derivatives appearing in Eqs. (5.44) and (5.47) are related to their
dimensionless aerodynamic coefficient counterparts in Table 5.1; these data were also presented in
Table 4.1 in the previous chapter.

5.2.1 Modes of Typical Aircraft

The natural response of most aircraft to longitudinal perturbations typically consists of two under-
damped oscillatory modes having rather different time scales. One of the modes has a relatively
short period and is usually quite heavily damped; this is called the short period mode. The other
mode has a much longer period and is rather lightly damped; this is called the phugoid mode.

We illustrate this response using the stability derivatives for the Boeing 747 aircraft at its Mach 0.25
power approach configuration at standard sea-level conditions. The aircraft properties and flight

2The equations in [3] also assume level flight, or Θ0 = 0.
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Variable X Z M

u Xu = QS
mu0

[2CX0 + CXu] Zu = QS
mu0

[2CZ0 + CZu] Mu = QSc̄
Iyu0

Cmu

w Xw = QS
mu0

CXα Zw = QS
mu0

CZα Mw = QSc̄
Iyu0

Cmα

ẇ Xẇ = 0 Zẇ = QSc̄
2mu2

0

CZα̇ Mẇ = QSc̄2

2Iyu2
0

Cmα̇

q Xq = 0 Zq = QSc̄
2mu0

CZq Mq = QSc̄2

2Iyu0
Cmq

Table 5.1: Relation of dimensional stability derivatives for longitudinal motions to dimensionless
derivatives of aerodynamic coefficients. The dimensionless coefficients on which these are based are
described in Chapter 4.

condition are given by [2]

V = 279.1 ft/sec, ρ = 0.002377 slug/ft
3

S = 5, 500. ft2, c̄ = 27.3 ft (5.48)

W = 564, 032. lb, Iy = 32.3 × 106 slug-ft2

and the relevant aerodynamic coefficients are

CL = 1.108, CD = 0.102, Θ0 = 0

CLα = 5.70, CLα̇ = 6.7, CLq = 5.4, CLM = 0

CDα = 0.66, (5.49)

Cmα = −1.26, Cmα̇ = −3.2, Cmq = −20.8, CmM = 0

(5.50)

These values correspond to the following dimensional stability derivatives

Xu = −0.0212, Xw = 0.0466

Zu = −0.2306, Zw = −0.6038, Zẇ = −0.0341, Zq = −7.674 (5.51)

Mu = 0.0, Mw = −0.0019, Mẇ = −0.0002, Mq = −0.4381

and the plant matrix is

A =









−0.0212 0.0466 0.000 −32.174
−0.2229 −0.5839 262.472 0.0
0.0001 −0.0018 −0.5015 0.0

0.0 0.0 1.0 0.0









(5.52)

The characteristic equation is given by

|A − λI| = λ4 + 1.1066λ3 + 0.7994λ2 + 0.0225λ+ 0.0139 = 0 (5.53)

and its roots are

λsp = −0.5515± ı 0.6880

λph = −0.00178± ı 0.1339
(5.54)
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Figure 5.4: Response of Boeing 747 aircraft to longitudinal perturbations. (a) Short period response;
(b) Phugoid response.

where, as suggested by the subscripts, the first pair of roots corresponds to the short period mode,
and the second pair corresponds to the phugoid mode. The damping ratios of the two modes are
thus given by

ζsp =

√

√

√

√

1

1 +
(

η
ξ

)2

sp

=

√

1

1 +
(

0.6880
0.5515

)2 = 0.6255

ζph =

√

√

√

√

1

1 +
(

η
ξ

)2

ph

=

√

1

1 +
(

0.1339
0.00178

)2 = 0.0133

(5.55)

where ξ and η are the real and imaginary parts of the respective roots, and the undamped natural
frequencies of the two modes are

ωnsp
=

−ξsp
ζsp

=
0.5515

0.6255
= 0.882 sec−1

ωnph
=

−ξph

ζph
=

0.00178

0.0133
= 0.134 sec−1

(5.56)

The periods of the two modes are given by

Tsp =
2π

ωnsp

√

1 − ζ2
sp

= 9.13 sec (5.57)

and

Tph =
2π

ωnph

√

1 − ζ2
ph

= 46.9 sec (5.58)

respectively.

Figure 5.4 illustrates the short period and phugoid responses for the Boeing 747 under these condi-
tions. These show the time histories of the state variables following an initial perturbation that is
chosen to excite only the (a) short period mode or the (b) phugoid mode, respectively.
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It should be noted that the dimensionless velocity perturbations u/u0 and α = w/u0 are plotted
in these figures, in order to allow comparisons with the other state variables. The plant matrix
can be modified to reflect this choice of state variables as follows. The elements of the first two
columns of the original plant matrix should be multiplied by u0, then the entire plant matrix should
be premultiplied by the diagonal matrix having elements diag(1/u0, 1/u0, 1, 1). The combination of
these two steps is equivalent to dividing the elements in the upper right two-by-two block of the
plant matrix A by u0, and multiplying the elements in the lower left two-by-two block by u0. The
resulting scaled plant matrix is then given by

A =









−0.0212 0.0466 0.000 −0.1153
−0.2229 −0.5839 0.9404 0.0
0.0150 −0.5031 −0.5015 0.0

0.0 0.0 1.0 0.0









(5.59)

Note that, after this re-scaling, the magnitudes of the elements in the upper-right and lower-left two
by two blocks of the plant matrix are more nearly the same order as the other terms (than they
were in the original form).

It is seen in the figures that the short period mode is, indeed, rather heavily damped, while the
phugoid mode is very lightly damped. In spite of the light damping of the phugoid, it generally does
not cause problems for the pilot because its time scale is long enough that minor control inputs can
compensate for the excitation of this mode by disturbances.

The relative magnitudes and phases of the perturbations in state variables for the two modes can
be seen from the phasor diagrams for the various modes. These are plots in the complex plane of
the components of the mode eigenvector corresponding to each of the state variables. The phasor
plots for the short period and phugoid modes for this example are shown in Fig. 5.5. It is seen that
the airspeed variation in the short period mode is, indeed, negligibly small, and the pitch angle θ
lags the pitch rate q by substantially more than 90 degrees (due to the relatively large damping).
The phugoid is seen to consist primarily of perturbations in airspeed and pitch angle. Although it is
difficult to see on the scale of Fig. 5.5 (b), the pitch angle θ lags the pitch rate q by almost exactly
90 degrees for the phugoid (since the motion is so lightly damped it is nearly harmonic).

An arbitrary initial perturbation will generally excite both the short period and phugoid modes.
This is illustrated in Fig. 5.6, which plots the time histories of the state variables following an initial
perturbation in angle of attack. Figure 5.6 (a) shows the early stages of the response (on a time

Re

q

Im

w/u0

θ

q

w/u0 Re

Im

u/u0

θ

(a) Short period (b) Phugoid

Figure 5.5: Phasor diagrams for longitudinal modes of the Boeing 747 aircraft in powered approach
at M = 0.25. Perturbation in normalized speed u/u0 is too small to be seen in short period mode.
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Figure 5.6: Response of Boeing 747 aircraft to unit perturbation in angle of attack. (a) Time scale
chosen to emphasize short period response; (b) Time scale chosen to emphasize phugoid response.

scale appropriate for the short period mode), while Fig. 5.6 (b) shows the response on a time scale
appropriate for describing the phugoid mode.

The pitch- and angle-of-attack-damping are important for damping the short period mode, while
its frequency is determined primarily by the pitch stiffness. The period of the phugoid mode is
nearly independent of vehicle parameters, and is very nearly inversely proportional to airspeed. The
damping ratio for the phugoid is approximately proportional to the ratio CD/CL, which is small
for efficient aircraft. These properties can be seen from the approximate analyses of the two modes
presented in the following two sections.

5.2.2 Approximation to Short Period Mode

The short period mode typically occurs so quickly that it proceeds at essentially constant vehicle
speed. A useful approximation for the mode can thus be developed by setting u = 0 and solving

(1 − Zẇ) ẇ = Zww + (u0 + Zq) q

−Mẇẇ + q̇ = Mww +Mqq
(5.60)

which can be written in state-space form as

d

dt

(

w
q

)

=

(

Zw

1−Zẇ

u0+Zq

1−Zẇ

Mw + MẇZw

1−Zẇ
Mq +Mẇ

u0+Zq

1−Zẇ

)

(

w
q

)

(5.61)

Since
Zq

u0
=

QSc̄

2mu2
0

CZq = −ηVHat

µ
(5.62)

where µ, the aircraft relative mass parameter, is usually large (on the order of one hundred), it is
consistent with the level of our approximation to neglect Zq relative to u0. Also, we note that

Zẇ =
QSc̄

2mu2
0

CZα̇ = −ηVHat

µ

dǫ

dα
(5.63)
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is generally also very small. Thus, Eqs. (5.61) can be further approximated as

d

dt

(

w
q

)

=

(

Zw u0

Mw +MẇZw Mq +Mẇu0

)(

w
q

)

(5.64)

The characteristic equation for the simplified plant matrix of Eq. (5.64) is

λ2 − (Zw +Mq + u0Mẇ)λ+ ZwMq − u0Mw = 0 (5.65)

or, if the derivatives with respect to w are expressed as derivatives with respect to α,

λ2 −
(

Mq +Mα̇ +
Zα

u0

)

λ−Mα +
ZαMq

u0
= 0 (5.66)

The undamped natural frequency and damping ratio for this motion are thus

ωn =

√

−Mα +
ZαMq

u0

ζ = −
Mq +Mα̇ + Zα

u0

2ωn

(5.67)

Thus, it is seen that the undamped natural frequency of the mode is determined primarily by the
pitch stiffness Mα, and the damping ratio is determined largely by the pitch- and angle-of-attack-
damping.

For the example considered in the preceding sections of the Boeing 747 in powered approach we find

ωn =

√

0.54 +
(−168.5)(−.4381)

279.1
sec−1 = 0.897 sec−1

ζ = −−.4381− .056 + (−168.5)
279.1

2(0.897)
= 0.612

(5.68)

When these numbers are compared to ωn = 0.882 sec−1 and ζ = 0.6255 from the more complete
analysis (of the full fourth-order system), we see that the approximate analysis over predicts the
undamped natural frequency by only about 1 per cent, and under predicts the damping ratio by
less than 2 per cent. As will be seen in the next subsection when we consider approximating the
phugoid mode, it generally is easier to approximate the large roots than the small ones, especially
when the latter are lightly damped.

5.2.3 Approximation to Phugoid Mode

Since the phugoid mode typically proceeds at nearly constant angle of attack, and the motion is so
slow that the pitch rate q is very small, we can approximate the behavior of the mode by writing
only the X- and Z-force equations

u̇ = Xuu+Xww − g0 cosΘ0θ

(1 − Zẇ) ẇ = Zuu+ Zww + (u0 + Zq) q − g0 sin Θ0θ
(5.69)

which, upon setting w = ẇ = 0, can be written in the form

d

dt

(

u
θ

)

=

(

Xu −g0 cosΘ0

− Zu

u0+Zq

g0 sin Θ0

u0+Zq

)

(

u
θ

)

(5.70)
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Since, as has been seen in Eq. (5.62), Zq is typically very small relative to the speed u0, it is consistent
with our neglect of q̇ and w also to neglect Zq relative to u0. Also, we will consider only the case of
level flight for the initial equilibrium, so Θ0 = 0, and Eq. (5.70) becomes

d

dt

(

u
θ

)

=

(

Xu −g0
−Zu

u0
0

)(

u
θ

)

(5.71)

The characteristic equation for the simplified plant matrix of Eq. (5.71) is

λ2 −Xuλ− g0
u0
Zu = 0 (5.72)

The undamped natural frequency and damping ratio for this motion are thus

ωn =

√

− g0
u0
Zu

ζ =
−Xu

2ωn

(5.73)

It is useful to express these results in terms of dimensionless aerodynamic coefficients. Recall that

Zu = − QS

mu0
[2CL0 + MCLM] (5.74)

and, for the case of a constant-thrust propulsive system,

Xu = − QS

mu0
[2CD0 + MCDM] (5.75)

so, if we further neglect compressibility effects, we have

ωn =
√

2
g0
u0

ζ =
1√
2

CD0

CL0

(5.76)

Thus, according to this approximation, the undamped natural frequency of the phugoid is a function
only of the flight velocity, and the damping ratio is proportional to the drag-to-lift ratio. Since the
latter quantity is small for an efficient flight vehicle, this explains why the phugoid typically is very
lightly damped.

For the example of the Boeing 747 in powered approach we find

ωn =
√

2
32.174 ft/sec

2

279.1 ft/sec
= 0.163 sec−1

ζ =
1√
2

0.102

1.108
= 0.0651

(5.77)

When these numbers are compared to ωn = 0.134 sec−1 and ζ = 0.0133 from the more complete
analysis (of the full fourth-order system), we see that the approximate analysis over predicts the
undamped natural frequency by about 20 per cent, and over predicts the damping ratio by a factor of
almost 5. Nevertheless, this simplified analysis gives insight into the important parameters governing
the mode.
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5.2.4 Summary of Longitudinal Modes

We have seen that the response of a typical aircraft to longitudinal perturbations consists of two
oscillatory modes:

1. A short period mode that usually is heavily damped, whose period is determined largely by
the vehicle pitch stiffness Cmα, and which is damped primarily by pitch- and angle-of-attack-
damping, Cmq and Cmα̇, respectively; and

2. A lightly damped, low frequency, phugoid mode whose period is nearly independent of vehicle
parameters and inversely proportional to the flight velocity, and for which the damping ratio
is proportional approximately to the ratio CD/CL, which is small for efficient vehicles.

We here illustrate the variation in response for a typical vehicle as a function of the vehicle static
margin – which determines the pitch stiffness. The behavior of the roots of the characteristic equation
of the complete fourth-order plant matrix is shown in Fig. 5.7 as a function of the pitch stiffness for
our Boeing 747 example. The plot shows the locations of the roots as the static margin is reduced
from an initial value of 0.22. As the c.g. is moved aft, both the phugoid and short period roots
move toward the real axis. The short period mode becomes critically damped at a static margin
of approximately 0.0158, and the phugoid becomes critically damped at a value of approximately
0.0021. One of the phugoid roots then moves toward the right-hand plane, and becomes neutrally
stable at a static margin of 0.0. The other phugoid root moves to the left and, at a static margin of
approximately -.0145, joins one of the short-period roots to create another oscillatory mode, which
is called the third oscillatory mode.

5.3 Lateral/Directional Motions

In this section, we develop the small-disturbance equations for lateral/directional motions in stan-
dard state-variable form. Recall that the linearized equations describing small lateral/directional
perturbations from a longitudinal equilibrium state can be written

[

d

dt
− Yv

]

v − Ypp+ [u0 − Yr] r − g0 cosΘ0φ = Yδr
δr

−Lvv +

[

d

dt
− Lp

]

p−
[

Ixz

Ix

d

dt
+ Lr

]

r = Lδr
δr + Lδa

δa

−Nvv −
[

Ixz

Iz

d

dt
+Np

]

p+

[

d

dt
−Nr

]

r = Nδr
δr +Nδa

δa

(5.78)

If we introduce the lateral/directional state variable vector

x = [v p φ r]T (5.79)

and the lateral/directional control vector

η = [δr δa]
T

(5.80)

these equations are equivalent to the system of first-order equations

Inẋ = Anx + Bnη (5.81)
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Figure 5.7: Locus of roots of longitudinal plant matrix for Boeing 747 in level flight at M = 0.25 as
standard seal level conditions as functions of c.g. location for values of static margin ranging from
0.22 to -.05. As the static margin is reduced, the roots of both oscillatory modes coalesce on the
real axis; one of the phugoid roots moves to the right and becomes unstable, while the other moves
to the left and joins with one of the short period roots to form a third oscillatory mode.

where ẋ represents the time derivative of the state vector x, and the matrices appearing in this
equation are

An =









Yv Yp g0 cosΘ0 Yr − u0

Lv Lp 0 Lr

0 1 0 0
Nv Np 0 Nr









In =









1 0 0 0
0 1 0 −ix
0 0 1 0
0 −iz 0 1









, Bn =









Yδr
0

Lδr
Lδa

0 0
Nδr

Nδa









(5.82)

where

ix ≡ Ixz

Ix
, iz ≡ Ixz

Iz
(5.83)

It is not difficult to show that the inverse of In is

I−1
n =









1 0 0 0
0 1

1−ixiz
0 ix

1−ixiz

0 0 1 0
0 iz

1−ixiz
0 1

1−ixiz









(5.84)

so premultiplying Eq. (5.81) by I−1
n gives the standard form

ẋ = Ax + Bη
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Variable Y L N

v Yv = QS
mu0

Cyβ Lv = QSb
Ixu0

Clβ Nv = QSb
Izu0

Cnβ

p Yp = QSb
2mu0

Cyp Lp = QSb2

2Ixu0
Clp Np = QSb2

2Izu0
Cnp

r Yr = QSb
2mu0

Cyr Lr = QSb2

2Ixu0
Clr Nr = QSb2

2Izu0
Cnr

Table 5.2: Relation of dimensional stability derivatives for lateral/directional motions to dimension-
less derivatives of aerodynamic coefficients.

where

A =









Yv Yp g0 cosΘ0 Yr − u0
Lv+ixNv

1−ixiz

Lp+ixNp

1−ixiz
0 Lr+ixNr

1−ixiz

0 1 0 0
Nv+izLv

1−ixiz

Np+izLp

1−ixiz
0 Nr+izLr

1−ixiz









B =









Yδr
0

Lδr +ixNδr

1−ixiz

Lδa+ixNδa

1−ixiz

0 0
Nδr +izLδr

1−ixiz

Nδa+izLδa

1−ixiz









(5.85)

For most flight vehicles and situations, the ratios ix and iz are quite small. Neglecting these quantities
with respect to unity allows us to write the A and B matrices for lateral directional motions as

A =









Yv Yp g0 cosΘ0 Yr − u0

Lv Lp 0 Lr

0 1 0 0
Nv Np 0 Nr









B =









Yδr
0

Lδr
Lδa

0 0
Nδr

Nδa









(5.86)

This is the approximate form of the linearized equations for lateral/directional motions as they
appear in many texts (see, e.g., Eqs. (5.33) in [3]).

The various dimensional stability derivatives appearing in Eqs. (5.85) and (5.86) are related to their
dimensionless aerodynamic coefficient counterparts in Table 5.2; these data were also presented in
Table 4.2 in the previous chapter.

5.3.1 Modes of Typical Aircraft

The natural response of most aircraft to lateral/directional perturbations typically consists of one
damped oscillatory mode and two exponential modes, one of which is usually very heavily damped.
The oscillatory mode has a relatively short period and can be relatively lightly damped, especially
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for swept-wing aircraft; this is called the Dutch Roll mode, as the response consists of a combined
rolling, sideslipping, yawing motion reminiscent of a (Dutch) speed-skater. One of the exponential
modes is very heavily damped, and represents the response of the aircraft primarily in roll; it is
called the rolling mode. The second exponential mode, called the spiral mode, can be either stable
or unstable, but usually has a long enough time constant that it presents no difficulty for piloted
vehicles, even when it is unstable.3

We illustrate this response again using the stability derivatives for the Boeing 747 aircraft at its Mach
0.25 powered approach configuration at standard sea-level conditions. This is the same vehicle and
trim condition used to illustrate typical longitudinal behavior, and the basic aircraft properties and
flight condition are given in Eq. (5.48). In addition, for the lateral/directional response we need the
following vehicle parameters

W = 564, 032. lbf, b = 195.7 ft

Ix = 14.3 × 106 slug ft2, Iz = 45.3 × 106 slug ft2, Ixz = −2.23× 106 slug ft2 (5.87)

and the aerodynamic derivatives

Cyβ = −.96 Cyp = 0.0 Cyr = 0.0

Clβ = −.221 Clp = −.45 Clr = 0.101 (5.88)

Cnβ = 0.15 Cnp = −.121 Cnr = −.30

These values correspond to the following dimensional stability derivatives

Yv = −0.0999, Yp = 0.0, Yr = 0.0

Lv = −0.0055, Lp = −1.0994, Lr = 0.2468 (5.89)

Nv = 0.0012, Np = −.0933, Nr = −.2314

and the dimensionless product of inertia factors are

ix = −.1559, iz = −.0492 (5.90)

Using these values, the plant matrix is found to be

A =









−0.0999 0.0000 32.174 −279.10
−0.0057 −1.0932 0.0 0.2850

0.0 1.0 0.0 0.0
0.0015 −.0395 0.0 −.2454









(5.91)

The characteristic equation is given by

|A − λI| = λ4 + 1.4385λ3 + 0.8222λ2 + 0.7232λ+ 0.0319 = 0 (5.92)

and its roots are

λDR = −.08066± ı 0.7433

λroll = −1.2308

λspiral = −.04641

(5.93)

3This is true at least when flying under visual flight rules and a horizontal reference is clearly visible. Under
instrument flight rules pilots must learn to trust the artificial horizon indicator to avoid entering an unstable spiral.
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where, as suggested by the subscripts, the first pair of roots corresponds to the Dutch Roll mode,
and the real roots corresponds to the rolling and spiral modes, respectively.

The damping ratio of the Dutch Roll mode is thus given by

ζDR =

√

√

√

√

1

1 +
(

η
ξ

)2

DR

=

√

1

1 +
(

0.7433
0.08066

)2 = 0.1079 (5.94)

and the undamped natural frequency of the mode is

ωnDR
=

−ξDR

ζDR
=

0.08066

0.1079
= 0.7477 sec−1 (5.95)

The period of the Dutch Roll mode is then given by

TDR =
2π

ωn

√

1 − ζ2
=

2π

0.7477
√

1 − 0.10792
= 8.45 sec (5.96)

and the number of cycles to damp to half amplitude is

N1/2
DR

=
ln 2

2π

√

1 − ζ2

ζ
=

ln 2

2π

√
1 − 0.10792

0.1079
= 1.016 (5.97)

Thus, the period of the Dutch Roll mode is seen to be on the same order as that of the longitudinal
short period mode, but is much more lightly damped.

The times to damp to half amplitude for the rolling and spiral modes are seen to be

t1/2roll
=

ln 2

−ξroll
=

ln 2

1.2308
= 0.563 sec (5.98)

and

t1/2
spiral

=
ln 2

−ξspiral
=

ln 2

0.04641
= 14.93 sec (5.99)

respectively.

The responses characteristic of these three modes are illustrated in Fig. 5.8. The figure shows the
time histories of the state variables following initial perturbations that are designed to excite only
a single mode. For each of the three subfigures the initial perturbation has unit amplitude for the
largest component and is parallel to the corresponding eigenvector in the state space.

Here the first state variable is again plotted in dimensionless form as β = v/u0. The plant matrix
can be modified to reflect this change in state variable as follows. The first column of the original
plant matrix is first multiplied by u0, then the entire plant matrix is pre-multiplied by the diagonal
matrix having elements diag(1/u0, 1, 1, 1). This is equivalent to dividing all but the first element in
the first row by u0, and multiplying all but the first element in the first column by u0. The first
element in the first column remains unchanged. With this re-scaling the plant matrix becomes

A =









−0.0999 0.0000 0.1153 −1.0000
−1.6038 −1.0932 0.0 0.2850

0.0 1.0 0.0 0.0
0.4089 −.0395 0.0 −.2454









(5.100)
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Figure 5.8: Response of Boeing 747 aircraft to unit perturbation in eigenvectors corresponding to
the three lateral/directional modes of the vehicle. (a) Rolling mode; (b) Spiral mode; and (c) Dutch
Roll mode.
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Figure 5.9: Response of Boeing 747 aircraft to unit perturbation in roll rate. Powered approach at
M = 0.25 under standard sea-level conditions.

Note that, after this re-scaling, the magnitudes of the elements in the first row and first column of
the plant matrix are more nearly the same order as the other terms (than they were in the original
form).

It is seen that the rolling mode consists of almost pure rolling motion (with a very small amount
of sideslip). The spiral mode consists of mostly coordinated roll and yaw. And for the the Dutch
Roll mode, all the state variables participate, so the motion is characterized by coordinated rolling,
sideslipping, and yawing motions.

An arbitrary initial perturbation will generally excite all three modes. This is illustrated in Fig. 5.9
which plots the time histories of the state variables following an initial perturbation in roll rate. The
roll rate is seen to be quickly damped, leaving a slowly decaying spiral mode (appearing primarily
in the roll angle), with the oscillatory Dutch Roll mode superimposed.

The phasor plots for the rolling and spiral modes are relatively uninteresting, since these correspond
to real roots. The eigenvector amplitudes, however, show that the rolling mode is dominated by
perturbations in bank angle φ and roll rate p, with a very small amount of sideslip and negligible
yaw rate. The spiral mode is dominated by changes in bank angle. Since the motion is so slow,
the roll rate is quite small, and the yaw rate is almost 2.5 times the roll rate, so we would expect
significant changes in heading, as well as bank angle. The phasor diagram for the Dutch Roll mode
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is shown in Fig. 5.10. Note that all four state variables participate with significant amplitudes in
the Dutch Roll, and that the bank angle φ lags the roll rate p by almost exactly 90 degrees, as the
motion is very lightly damped. Active control, usually to supply additional yaw damping, is often
required on swept-wing transports to bring the damping of this mode to within acceptable limits.

5.3.2 Approximation to Rolling Mode

It has been seen that the rolling mode typically corresponds to almost pure roll. Thus, it is reasonable
to neglect all equations except the rolling moment equation, and all perturbations except p. We
thus approximate the rolling mode by the single first-order equation

ṗ =
Lp + ixNp

1 − ixiz
p (5.101)

for which the characteristic value is

λ =
Lp + ixNp

1 − ixiz
(5.102)

Since the product of inertia coefficients ix and iz usually are small, the rolling mode is seen to be
dominated by roll damping Lp, which is almost always large and negative.

For our example of the Boeing 747 in powered approach at M = 0.25, using the values from
Eqs. (5.89) and (5.90), the approximate formula gives

λ =
−1.0994 + (−.1559)(−.0933)

1 − (−.1559)(−.0492)
sec−1 = −1.093 sec−1 (5.103)

which is a bit more than 10 per cent less than the value of -1.2308 from the analysis for the full
fourth-order system.

5.3.3 Approximation to Spiral Mode

The spiral mode consists of a slow rolling/yawing motion for which the sideslip is relatively small.
The roll rate is quite small compared to the yaw rate, so a reasonable approximation is to set

dp

dt
= 0 =

Lv + ixNv

1 − ixiz
v +

Lr + ixNr

1 − ixiz
r (5.104)

φ

β

Im

Re
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r

Figure 5.10: Phasor diagram for Dutch Roll mode of the Boeing 747 aircraft in powered approach
at M = 0.25.
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whence

v ≈ −Lr + ixNr

Lv + ixNv
r (5.105)

Since ix and iz are generally very small, this can be approximated as

v ≈ −Lr

Lv
r (5.106)

The yaw equation
dr

dt
=
Nv + izLv

1 − ixiz
v +

Nr + izLr

1 − ixiz
r (5.107)

upon substitution of Eq. (5.106) and neglect of the product of inertia terms can then be written

dr

dt
=

(

Nr −
LrNv

Lv

)

r (5.108)

so the root of the characteristic equation for the spiral mode is

λ = Nr −
LrNv

Lv
(5.109)

Thus, it is seen that, according to this approximation, the spiral mode is stabilized by yaw damping
Nr. Also, since stable dihedral effect corresponds to negative Lv and weathercock stability Nv and
roll due to yaw rate Lr are always positive, the second term in Eq. (5.109) is destabilizing; thus
increasing weathercock destabilizes the spiral mode while increasing dihedral effect stabilizes it.4

For our example of the Boeing 747 in powered approach at M = 0.25, using the values from
Eqs. (5.89) and (5.90), the approximate formula gives

λ = −.2314− 0.2468

−.0055
(0.0012) = −.178 (5.110)

which is almost four times the value of -.0464 from the analysis of the full fourth-order system. This
is consistent with the usual difficulty in approximating small roots, but Eq. (5.109) still gives useful
qualitative information about the effects of weathercock and dihedral stability on the spiral mode.

5.3.4 Approximation to Dutch Roll Mode

The Dutch Roll mode is particularly difficult to approximate because it usually involves significant
perturbations in all four state variables. The most useful approximations require neglecting either
the roll component or simplifying the sideslip component by assuming the vehicle c.g. travels in a
straight line. This latter approximation means that ψ = −β, or

r = − v̇

u0
(5.111)

The roll and yaw moment equations (neglecting the product of inertia terms ix and iz) can then be
written as

d

dt

(

p
r

)

=

(

Lv Lp Lr

Nv Np Nr

)





v
p
r



 (5.112)

4Even if the spiral mode is unstable, its time constant usually is long enough that the pilot has no trouble countering
it. Unpiloted aircraft, however, must have a stable spiral mode, which accounts for the excessive dihedral usually
found on free-flight model aircraft.
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Introduction of Eq. (5.111) completes this equation system in the form

d

dt





v
p
r



 =





0 0 −u0

Lv Lp Lr

Nv Np Nr









v
p
r



 (5.113)

The characteristic equation for this system is

λ3 − (Lp +Nr)λ
2 + (LpNr + u0Nv − LrNp)λ+ u0 (LvNp − LpNv) = 0 (5.114)

This is still a cubic equation, however, for which there is no general closed-form solution. A useful ap-
proach to cubic equations that have a lightly damped oscillatory mode is Bairstow’s approximation,
which proceeds as follows. If the general cubic

λ3 + a2λ
2 + a1λ+ a0 = 0 (5.115)

has a lightly damped oscillatory mode, its undamped natural frequency can be approximated as

a2λ
2 + a0 ≈ 0 or λ2 ≈ −a0

a2
(5.116)

This can then be used to write the first term of Eq. (5.115) as

−a0

a2
λ+ a2λ

2 + a1λ+ a0 = 0 (5.117)

giving

a2λ
2 +

(

a1 −
a0

a2

)

λ+ a0 = 0 (5.118)

This quadratic equation can be solved in closed form (or at least the terms contributing to the
undamped natural frequency and the damping ratio can be identified directly).

Applying Bairstow’s approximation to Eq. (5.114) yields

λ2 −
[

LpNr + u0Nv − LrNp

Lp +Nr
+
u0 (LvNp − LpNv)

(Lp +Nr)
2

]

λ+
u0 (LpNv − LvNp)

Lp +Nr
= 0 (5.119)

Thus, the undamped natural frequency is given by

ω2
n =

u0 (LpNv − LvNp)

Lp +Nr
(5.120)

Since Np is usually negative, both terms in the numerator have the same sign for stable dihedral.
Thus, increasing either weathercock stability Nv or dihedral effect Lv increases the natural frequency
of the motion.

The damping ratio is seen to be proportional to

2ζωn =
−LpNr − u0Nv + LrNp

Lp +Nr
+
u0 (−LvNp + LpNv)

(Lp +Nr)
2 (5.121)

For most aircraft, the ratio Nr/Lp is small, and expanding Eq. (5.121) in powers of this parameter
and keeping only leading order terms gives

2ζωn ≈ −Nr

(

1 +
u0

L2
p

Nv

)

+
Np

Lp

(

Lr −
u0

Lp
Lv

)

(5.122)
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Yaw damping is thus seen to contribute to positive ζ and be stabilizing, and weathercock stability
Nv augments this effect. Since both Np and Lp usually are negative, however, the dihedral effect Lv

is seen to destabilize the Dutch Roll mode.5

For our example of the Boeing 747 in powered approach at M = 0.25, using the values from
Eqs. (5.89) and (5.90), the approximate formulas give

ωn =

[

(279.1) [(−1.0994)(0.0012)− (−.0055)(−.0933)]

−1.0994− .2314
sec−2

]1/2

= 0.620 sec−1 (5.123)

and

ζ = −
(−1.0994)(−.2314)−(.2468)(−.0933)+(279.1)(0.0012)

−1.0994−.2314 + (279.1) (−.0055)(−.0933)−(−1.0994)(0.0012)
(−1.0994−.2314)2

2(0.620)

= 0.138

(5.124)

The approximation for the undamped natural frequency is only about 15 per cent less than the
exact value of 0.748, but the exact damping ratio of 0.1079 is over predicted by almost 30 per cent.
Nevertheless, the approximate Eq. (5.122) gives useful qualitative information about the effect of
dihedral and weathercock on the damping of the mode.

5.3.5 Summary of Lateral/Directional Modes

We have seen that the response of a typical aircraft to lateral/directional perturbations consists of
two exponential modes and one oscillatory mode:

1. A rolling mode that usually is heavily damped, whose time to damp to half amplitude is
determined largely by the roll damping Lp;

2. A spiral mode that usually is only lightly damped, or may even be unstable. Dihedral effect is
an important stabilizing influence, while weathercock stability is destabilizing, for this mode;
and

3. A lightly damped oscillatory, intermediate frequency Dutch Roll mode, which consists of a
coordinated yawing, rolling, sideslipping motion. For this mode, dihedral effect is generally
destabilizing, while weathercock stability is stabilizing.

Thus, the effects of weathercock and dihedral stability are reversed for the spiral and Dutch Roll
modes, and compromise is required. We here present root locus plots illustrating this behavior for
the full fourth-order system, corresponding to our example Boeing 747 vehicle in powered approach
at standard sea level conditions at M = 0.25. Figure 5.11 shows the locus of the roots of the plant
matrix as the dihedral effect Clβ is increased from -.041 to -.561. As the dihedral effect is increased
(i.e., made more negative) the spiral and rolling mode roots move to the left, while the complex

5Recall that there are two contributions from the wing to the yaw-due-to-roll derivative Np; profile drag contributes
to positive Np, while induced drag contributes to negative Np. At low values of lift coefficient (i.e., high speeds) the
profile drag contribution can dominate, in which case Np becomes positive. In this case, increased dihedral effect can
improve damping of the Dutch Roll mode. Consistent with this observation is the fact that Dutch Roll tends to be a
more serious problem at low speeds.
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Figure 5.11: Locus of roots of plant matrix for Boeing 747 aircraft in powered approach at M = 0.25
under standard sea-level conditions. Dihedral effect is varied from -.041 to -.561 in steps of -.04, while
all other stability derivatives are held fixed at their nominal values. Rolling and spiral modes become
increasingly stable as dihedral effect is increased; spiral mode becomes stable at approximately
Clβ = −.051. Dutch Roll mode becomes less stable as dihedral effect is increased and becomes
unstable at approximately Clβ = −.532.

pair corresponding to the Dutch Roll mode moves to the right. Consistent with our approximate
analysis, increasing the dihedral effect is seen to increase the natural frequency of the Dutch Roll
mode.

Figure 5.12 shows the locus of the roots of the plant matrix as the weathercock stability coefficient
Cnβ is increased from -.07 to 0.69. As the weathercock stability is increased (i.e., made more
positive) the spiral and rolling mode roots move to the right, while the complex conjugate pair
of roots corresponding to the Dutch Roll mode moves to the left. Again, consistent with our
approximate analysis, increasing the weathercock stability increases the natural frequency of the
Dutch Roll mode.
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Figure 5.12: Locus of roots of plant matrix for Boeing 747 aircraft in powered approach at M = 0.25
under standard sea-level conditions. Weathercock stability is varied from -.07 to 0.69 in steps of
0.04, while all other stability derivatives are held fixed at their nominal values. Rolling and spiral
modes become less stable as weathercock stability is increased; spiral mode becomes unstable at
approximately Cnβ = 0.6567. Dutch roll mode becomes increasingly stable as weathercock stability
is increased, but is unstable for less than about Cnβ = −.032.
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5.4 Stability Characteristics of the Boeing 747

5.4.1 Longitudinal Stability Characteristics

In this section we summarize the longitudinal mass distribution and aerodynamic stability charac-
teristics of a large, jet transport aircraft, the Boeing 747, at selected flight conditions. Data are
summarized from the report by Heffley et al. [2]. Values for aerodynamic coefficients were scaled
directly from plots of these variables, except for the derivatives CLq

and CLα̇
for which no data are

provided. These values were computed from the values of the corresponding dimensional stability
derivatives Zq and Zẇ, which are provided in tabular form, with the sign of Zẇ changed to correct
a seemingly obvious error.

Condition numbers correspond to those in the report; Conditions 5-10 are for a clean aircraft,
Condition 2 corresponds to a powered approach with gear up and 20◦ flaps. Angles of attack are
with respect to the fuselage reference line.

Condition 2 5 7 9 10

h (ft) SL 20,000 20,000 40,000 40,000
M∞ 0.25 0.500 0.800 0.800 0.900

α (degrees) 5.70 6.80 0.0 4.60 2.40
W (lbf) 564,032. 636,636. 636,636. 636,636. 636,636.

Iy (slug-ft
2
) 32.3 × 106 33.1 × 106 33.1 × 106 33.1 × 106 33.1 × 106

CL 1.11 0.680 0.266 0.660 0.521
CD 0.102 0.0393 0.0174 0.0415 0.0415
CLα

5.70 4.67 4.24 4.92 5.57
CDα 0.66 0.366 0.084 0.425 0.527
Cmα

-1.26 -1.146 -.629 -1.033 -1.613
CLα̇

6.7 6.53 5.99 5.91 5.53
Cmα̇

-3.2 -3.35 -5.40 -6.41 -8.82
CLq

5.40 5.13 5.01 6.00 6.94
Cmq

-20.8 -20.7 -20.5 -24.0 -25.1
CLM

0.0 -.0875 0.105 0.205 -.278
CDM

0.0 0.0 0.008 0.0275 0.242
CmM

0.0 0.121 -.116 0.166 -.114
CLδe

0.338 0.356 0.270 0.367 0.300
Cmδe

-1.34 -1.43 -1.06 -1.45 -1.20

Table 5.3: Longitudinal mass properties and aerodynamic stability derivatives for the Boeing 747 at
selected flight conditions.
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5.4.2 Lateral/Directional Stability Characteristics

In this section we summarize the lateral/directional mass distribution and aerodynamic stability
characteristics of a large, jet transport aircraft, the Boeing 747, at selected flight conditions. Data
are summarized from the report by Heffley et al. [2]. Values for aerodynamic coefficients were scaled
directly from plots of these variables.

Condition numbers correspond to those in the report; Conditions 5-10 are for a clean aircraft,
Condition 2 corresponds to a powered approach with gear up and 20◦ flaps. Moments and products
of inertia are with respect to stability axes for the given flight condition. Angles of attack are with
respect to the fuselage reference line.

Condition 2 5 7 9 10

h (ft) SL 20,000 20,000 40,000 40,000
M∞ 0.25 0.500 0.800 0.800 0.900

α (degrees) 5.70 6.80 0.0 4.60 2.40
W (lbf) 564,032. 636,636. 636,636. 636,636. 636,636.

Ix (slug-ft
2
) 14.3 × 106 18.4 × 106 18.2 × 106 18.2 × 106 18.2 × 106

Iz (slug-ft
2
) 45.3 × 106 49.5 × 106 49.7 × 106 49.7 × 106 49.7 × 106

Ixz (slug-ft
2
) −2.23 × 106 −2.76× 106 0.97 × 106 −1.56 × 106 −.35 × 106

Cyβ
-.96 -.90 -.81 -.88 -.92

Clβ -.221 -.193 -.164 -.277 -.095
Cnβ

0.150 0.147 0.179 0.195 0.207
Clp -.45 -.323 -.315 -.334 -.296
Cnp

-.121 -.0687 0.0028 -.0415 0.0230
Clr 0.101 0.212 0.0979 0.300 0.193
Cnr

-.30 -.278 -.265 -.327 -.333
Clδa

0.0461 0.0129 0.0120 0.0137 0.0139
Cnδa

0.0064 0.0015 0.0008 0.0002 -.0027
Cyδr

0.175 0.1448 0.0841 0.1157 0.0620
Clδr

0.007 0.0039 0.0090 0.0070 0.0052
Cnδr

-.109 -.1081 -.0988 -.1256 -.0914

Table 5.4: Lateral/Directional mass properties and aerodynamic stability derivatives for the Boeing
747 at selected flight conditions.
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