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ABSTRACT

This paper describes the operation of an augmented recursive transition network parser and
demonstrates the natural way in which perceptual strategies, based on the results of psycho-
linguistic experimentation, car. be represented in the transition network grammatical notation.
Several illustrative networks are giver, and it is argued that such grammars are empirically
Jjustified and conceptually productive models of the psychological processes of sentence
comprehension.

1. Iniroduction

During the past year a major research effort has been conducted to explore
and refine the propertics of an augmented recursive iransition network
parser [1] and to develop a large-scale English grammar for the system.!
Although our primary goal has been te construct a powerful and practical
natura! language processor for artificial intelligence and information retrieval
applications,? we have zlso investigated the correspondence between the
sentence processing characteristics of the parser and those of human speakers,
as revealed by psychological experimentation, observation, and intuition.
We have found that the grammatical formalism of the transition network is a
convenient and natural notational system for fabricating psycholcgical
models of syntactic analysis. in the present paper we describe some of the
psychologically appealing properties of the parser and illustraie how psycho-
linguistic experimental results can be mapped into simple transition network

1 The transition network parser was desigred by William Woods, It is programroed in
BBN-LISP and is currently running under the TENEX monitor system on a FDP-10
computer at Bolt Beranek and Newman, Incorporated, Cambridge, Massachusetts.

2 The parser is presently being used as the natural-language front end of a system for
accessing geological data on the Apollo lunar sainples.
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models. We suggest that building and testing such models can lead to a
better understanding of linguistic performance.

It should be clear from the outset that we are not proposing a transition
network model as a complete and sufficient representation of all aspects of
language behavior. Rather, transition network models aim only at simulating
the syntactic analysis component of performance: given an input string
written in <tandard orthography, they attempt to discover the syntactic
relationships holding between constituents. We ignore the myriad problems of
phonetic decoding and segmentation and semantic aad cognitive interpreta-
tion, as well as all the psycholinguistic and motivational complexities of
speech production. It is in this limited sense that we rfzr to transition network
grammars as sentence comprehension or perceptual models. Of cou.se, we
expect that more complete formalizations of language behavior will incorpo-
rate such independently developed syntactic analysis models.

In Section 2 of this paper we sketch the linguistic and psycholinguistic
background of our research. Section 3 describes the organization and opera-
tion of the transition network parser and depicts the grammatical notation,
and Section 4 shows the representation in this notation of perceptual
strategies induced from psycholinguistic data. In Section 5 we discuss the
fruitfulness of this modeling approach, indicating some conceptual issues that
are clarified and some empirical predictions that arise from transition net-
work formulations.

2. Transformational Grammar and Psycholinguistics

The process by which a native speaker comprehends and produces meaning-
ful sentences in his language is extremely complex and, with our present
body of psycholinguistic theory ard data, is understcod only slightly. This
shortcoming of psycholinguistics exists despite the fact that advances in
linguistic theory over the last decade have provided a number of crucial
insights into the formal structure of language and linguistic performance.
To place augmented recursive transition network grammars in the context
of previous reseacch, we briefly survey some relevant results cf linguistics and
psycholinguistics.

A transformational grammar for a given language L. formally defines the
notion sentence of L by describing a mechanicai prccedure for snumerating
all and only the well-formed sertences of L. With each sentence it also
associates a structural description which provides a formal account of the
native speaker’s competence, the linguistic knowledge which underlies his
ability to make judgments about the basic grammatical relations (e.g.,
subject, predicate, object) and about such sentential properties as relative
zrammaticality, ambiguity, and synonymy. At present there is no clear
agreement among linguists about the detailed features required for an
Artificial Itelligence 3 (1972), 77-100
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adequate grammar, but certain principles of grammar orgarization are almost
universally accepted: the structural description furnished for a sentence by
the grammar must consist of (at least) two levels of syntactic representation
(P-markers) —a deep structure and a surface structure ~together with a
specification of an ordered sequence of transformations which maps the deep
structure of a sentence into appropriate surface structures.

Transformational theorists maintain that their formal model is not
intended to give an accurate account of the psychological processes involved
when a human beiug uses language, either speaking or comprehending.
Any correlations observed between actual behavior characteristics and
transformational grammars are accidental, signifying merely the fact that
psychological and linguistic data are both obtained from the same class of
native speakers (but Chomsky [2] weakens this assertion somewhat when he
argues thai acquisition data might have a bearing on the evaluation metric
selected for grammars). Linguists have been very careful to distinguish the
speake:’s competence, which transformational grammars attempt to model,
from his performance, the manrer in which he utilizes his knowledge in
processing sentences [2, 3, 4]. Thus a transformational grammar might be
allowed to generate sentences which are virtually impossible for a speaker
to deal with. Most current grammars will generate (5a), assigning it the
same suoject — verb — object relations as are apparent in (5b):

(5) a. The man the girl the cat the dog bit scratched loved ate ice cream.
b. The dog bit the cat that scratched the girl who loved the man who
ate ice cream.

Very few native speakers would intuit that (5a) is grammatical, yet to prevent
its generation, either the grammar must be greatly complicated or other
santen« :s which native speakers do accept must be marked ungrammatical.
Linguists resolve this dil:2mma and preserve the simplicity and generality of
their grammars by claiming that native English speakers do have the basic
knowledge to process (5a), which is therefore grammatical; speakers have
trouble with it because their perceptual mechanisms do not provide the
memory space and/or ccmputational routines required to process it. A traus-
formational grammar is a formal specification of th> speaker’s competence
and has nothing to say about psychological functioning.

Despite these disclaimers, psycholinguists have been intrigued by trans-
formational theory because it provides the most intricate and compelling
explication to date of a large number of basic linguistic intuitions. Many
experiments have been conducted to test the hypothesis that transformational
operations will have direct, observable reflexes in psychological processing;
Fodor and Garrett [S} and Bever [6] present useful reviews of this literature.
A major concern of these studies has been to determine whether the perceptual

Artificial Intelligence 3 (1972), 77-100
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complexity of sentences (the difficulty of comprehending and responding to
them) is directly correlated with derivational complexity (e.g., the number of
transformations required tc generate them). Fodor and Garrett [5] examine
this “‘derivational theory of complexity” in detail and conclude that the
available psycholinguistic data do not offer much suppor: for it and that the
connection, if there is one, between transformational grammar and percep-
tion is not at all direct.

Although psycholinguists have virtually abandoned their attempts to
find perceptual reflexes of specific grammatical featurss, several studies
have been successful in corroborating the psychological reality of the deep
structure-surface structure distinction. MacKay and Bever [7] found that
subjects respond differently to deep structure and surface structure ambi-
guities, Wanner [8] showed that the number of deep structure S-nodes
underlying a sentence has a direct influence on the ease of prompted recall
from long-terrn memory; and Bever [6] has reinterpreted the results of the
click experiments [9] as demonstrating that deep structure S-nodes affect the
surface segmentation of a stimulus sentence. These experiments suggest that
an adequate model of sentence comprehension must incorporate some
mechanism for recovering a deep structure-like representation of a given
stimulus word string. This representation should explicitly denote at least
such basic grarnmatical relationships as actor, verb, and object. More exten-
sive empirical work should indicate whether deep structure must be even
more abstract than this.

There are several other requirements for adequacy that we may impose on
potentiai medels of sentence comprehension, based on some common
observatiors about our sentence processing abilities:

(a) A perceptual model must process strings in essentially temporal or linear
order, for this is the order in which sentences are encountered in con-
versation and reading. ‘

(b) It must process strings and provide appropriate analyses in an amount
of time proportional to that required by human speakers. For example,
since perceptual difficulty does not rapidly increase as the length of the
sentence increases, the amount of time required by the model should be
at most a slowly increasing function of sentence length.

(c) The model should discover anomalies and ambiguities where real speakers
discover them, and for ambiguous sentences the model should return
analyses in the same order as speakers do.

Whereas ther¢ are many well-known recognition procedures for program-
ming languages and other relatively simple artificial languages, only a few
algorithms have been proposed which aim at “transformational” recogrition,
that is, which attempt to develop appropriate deep structures from natural
language surface strings. Some of these algorithms [10, 11, 12] incorporate
Artificial Intelligence 3 (1972), 77-100
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more or less directly a linguistically motivated transformational grammar; in
light of the empirical shoricomings of the derivational theory of complexity,
it is not surprising that these proposals are inadequate perceptual models.
A deep structure recovery strategy suggested by Kuno [13] operates inde-
pendently of a transformational grammar and offers more psychological
relevance, but it too has formal limitations [14]. A procedure and gram-
matical notation recently described by Kaplan [15], based on an algerithm by
Kay [16,, appear to meei many of the formal and practical requirements for
decp stiucture recovery, but at present not enough is known about its operat-
ing, characteristics to assess its adequacy as a formalism for perceptual
models®. Augmented recursive transition network grammars, to which we
now turn, <an satisfy (a)-(c), have other desirable psychological and formal
properties, and have the additional advantage of being practical and efficient.

3. The Augmented Recursive Transition Network

The idea of a transition network parsing procedure for natural language was
originaily suggested by Thorne et al. [17] and was subsequently refined in an
implementation by Bobrow and Fraser [18]. Woods [1] has also presented a
transition network parsing system which is more general than either the
Thorne et al. or Bobrow-Fraser systems. The discussion below is based on
the Woods versior. Since a dectailed description is already available we
presenit here only a brief outline of the grammatica! formalism and then
focus on the manner ir which this formalism can be used to express perceptual
and linguistic regularities.

At the heart of the augmented recursive transition network is a familiar
finite-state grammar [19] consisting of a finite set of nodes (states) connected
by labeled directed arcs. An arc represents an allowable transition from the
state at its tail to the state at its head, the lzbel indicating the input symbo
which must be found in order for the transition to occur. An input string is
accepted by the grammar if there is a path of transitions which corresponds
to the sequence of symbols in the string and which leads from a specified
initial state to one of a set of specified final states. Finite state grammars are
attractive from the perceptual point of view because they process strings in
left to right order, but they have well-known inadequacies as models for
natural languages {2C}. For example, they kave no machinery for expressmg
statements about hierarchical structure.

This particular weakness can be eliminated by adding a recursive control
mechanism to the basic strategy, as follows: all states are given names which
are then allowed as labels on arcs in addition to the normal input-symbol

3 Recent research has indicatzd thet the Kay algorithm can be conceived of as a general-

ization of the transition network parser described here. We are currently exploring the
psycholinguistic impiications of the additional features available with the Kay parser.

Artificial Intelligence 3 (1972), 77-100
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labels. When an arc with a state-name is encountered, the name of the state
at the head of the arc is pushed (saved on the top of a push-down store),
and analysis of the remainder of the input string continucs at the state
named on the arc. When a final state is reached in this new part of the
grammar, a pop occurs (control is returned to the state removed from the top
of the push-down store). A sentence is said to be accepted when a finai state,
the end of the string, and an empwy push-down store are all reached at the
same time. Note that with this elaboration of the basic finite-state mechanism,
we have produced a formalism that can easily describe context-free languages
as well as regular languages with unbounded coordinate structures. The
structural description provided for a sentence by this procedure is simply
the history of transitions, pushes, and pops required to get through the
string.

However, the finite-state transition network with recursion cannot describe
cross-serial dependencies, so it is still inadequate for natural languages [21].
The necessary additional power is obtained by permitting a sequence of
actions and a condition to be specified on each arc. The actions provide a
facility for explicitly building and naming tree structures. The names, called
registers, function much like symbolic variables in programming languages:
they can be used in later actions, perhaps on subsequent arcs, to refer to
their associated structures. A register is said to contain the structure it names,
and the actions determine additions and changes to the contents of registers
in terms of the current input symbol, the previous contents of registers, and
the results of lower-level computations (pushes). This means that as con-
stituents of a senience are identified, they can be held in registers until they
are combined into larger constituents in other registers. In this way a deep
structural description can be fashioned in registers essentially independently
of the analysis path through the transition network.

Conditions furnish more sensitive controls on the admissibility of transi-
tions. A condition is a Boolean combination of predicates involving the
current input symbol and register contents. An arc cannot be taken if its
condition evaluates to false (symbolized by NIL), even though the current
input symool satisfies the arc label. This means first, that more elaborate
restrictions can be imposed on the current symbol than those conveyed by
the arc label, and second, that information about previous states and
structures can be passed along in the network to determine future transitions.
This makes it possible for similar sections of separate analysis paths to be
merged for awhile and then separated again—a powerfol technique for
eliminating redundancies and simplifying grammars. The condition predicates
and the arc actions can be arbitrary functions in LISP notation, although we
have developed a small set of primitive operaticns, described below and in
[1], which seems adequate for most situations. In these primitive actions and
Artificial Intelligence 3 (1972), 77-400
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predicates, atomic arguments denote registers; parenthetic expressions are
forms to be evaluated.

In order to be able to refer to the current input symbol in conditions or
actions, a special register, named *, has been provided. More properly, this
register always contains the constituent that enabled the transition; usually
this is the input symbol, but for actions on a push arc (which are usually
executed after the return from the lower level), * contains the structural
description of the phrase idertified in the lower computation, This phrase
is determined when a special type of arc, a pop arc, is taken from a fina?
state at the lower level (final states are distinguished by the existence of
pop arcs). ‘

PUSH NP/

I5H CAT v POP (SBUILD
@ PUSH 1R/ (7 N - vp/v (D)
1 ) 5
4

CAY DET CAT N POP (NPBUILD)
3 7 8

.&E Condition Actions
1 T (SETR SUBJ *)
2 (AND (GETF TNS) (SETR TNS (GETF TNS})
(SVAGR SUBi (SETR V *)
{GETF PNCCDE)))

3 {TRANS V) (SETR OBJ )
4 (INTRANS V)

5 T

é 1 {SETR DETY *)
7 T {SETR N *#}

8 1

FiG. 1. A simple transition network grammar.

The recursive transition network, with all of these additions, is
called an augmented recursive transition network; it is easy to show that it
has the generative power of a Turing machine. To demonstrate more
concretely how the transition network works, we give a simple example.
Fig. 1 shows a transition network grammar that will recover deep structures
for simple transitive and intransitive sentences, such as (6) and (7):

(6) The man kicked the ball.
(7) The ball fell.
Avrtificial Intelligence 3 (1972), 77-100
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The top of the figure shows the organization of paths in the network. States
are represented by circles with the state name inside. The state-names are
purely mnemonic, serving to indicate the constituent being analyzed (to the
left of the slash) and how much of that constituent has been identified so far.
Each arc specifies what will allow the transition and has a number denoting
the condition and actions in the table below. We mentioned above three
kinds of arcs: ordinary input symbol arcs, push arcs, and pop arcs. To
distinguish these arcs from each other and from other arc types, ¢ach arc
has an explicit type-indicator. Thus, PUSH NP/ specifies that arc 1 is a
push arc and that control is 1o pass to state NP/. POP (SBUILD) indicates
that arc 5 is a pop arc, and the structure to be popped (that is, placed in *
at the next higher level) is the value of the function SBUILD. Fig. 1
includes two new types: a CAT arc (arc 2) does not require a specific input
symbol, but requires that the word be marked in the dictionary as befonging
to the specified lexical catzgory. A JUMP arc (arc 4) is a very special arc that
allows a transition in the grammar with possible actions, but without advancing
the input string — it is useful for bypassing optional grammar elements.

Let us trace the analysis of sentence (6) using this grammar (Fig. 2 shows
the trace as it is orinted out by the program). The starting state is, by.conven-
tion, the state labeled S/. The only arc leaving S/ is a push for a noun-phrase,
so without advancing the input string, we switch to NP/. Sinze the, the current
input symbol, is in the category DET and since the condition for arc 6 is
trivially true, we can take arc 6, executing the action (SETR DET *). SETR is
a primitive action that places the structure specified by its second argument
(in this case, the current input word, denoted by *) in the register named
by its first argument (DET). Thus after following arc 6, the register DET
contains the, and we continue processing at state NP/DET, looking at the
word man. We are permitted to take arc 7, saving man in the register N, and
arrive at the final state NP/N. We take the POP arc, which defines the phrase
to be returned. NPBUILD is a function that puts the components of the NP,
contained in the registers DET and N, into the structure (NP (DET the)
(N man)), which is a labeled bracketing corresponding to the tree (8):

®
/ /NP\\

4
DE1 N

the man

This structure is returned in the register * on arc 1, where the action (SETR
SUBJ *) places it in the register SUBJ. We move on to the state S/SUBJ,
looking at the word kick.

Artificial Intelligence 3 (1972), 77-100
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Sentence: The man kicked the ball.
STRING =: (THE MAN KICKED THE BALL)
ENTERING STATE S/
ABOUT TO PUSH _
ENTERING STATE NP/a
TAKING CAT DET ARC
STRING = (MAN KICKED THE BALL)
ENTERING STATE NP/DET
TAKING CAT N ARC
STRING = (KICKED THE BALL)
ENTERING STATE NP/N -
ABOUT TO POP -
ENTERING STATE S/SUBJ
TAKING CAT V ARC
STRING = (THE BALL) .
ENTERING STATE VPV
STORING ALTARC ALTERNATIVE 1b
ABOUT TO PUSH
ENTERING STATE NP/
TAKING CAT DET ARC
STRING = (BALL)
ENTERING STATE NP/DET
TAKING CAT N ARC
STRING = NIL
ENTERING STATE NP/N
ABOUT TO POP
EMNTERING STATE S/VP
ABCUT TO POP
SUCCESS
10 ARCS ATTEMPTED
195 CONSESe
1.886 SECOND34d
PARSINGS:¢
S NP DET THE
N MAN
AUX TNS PAST
VP V KICK
NP DET THE
N BALL

a The indentations correspond te the depth of recursion.

b The alternative analysis path starting with arc 4 is saved.
¢ Number of memory words used.

4 Processing time required.

¢ The recovered deep structure.

FiG. 2. Trace of an analysis.
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Kick satisfies the label on arc 2, so the condition is evaluated, checking
the inflectional features in the dictionary entry for kick. The predicate
(GETF TNS) verifies that the verb is a tensed form (as opposed to a parti-
ciple), and SVAGR asceriains that the person-number code of the verb
agrees with the noun-phrase stored in the register SUBJ. Since the condition
is true, the transition is permitted and the actions are execuied, setting the
register TNS to the value of the feature TNS (in this case it would be PAST)
and saving the verb in V. At state VP/V, we have a choice of two arcs. Arc 3
is a push for an object noun-phrase, which we can take since (TRANS V)
is true, that is, since the verb in V (kick} is marked transitive in the dictionary.
We execute the push, identify the noun-phrase the bail, and save it in the
register OBJ. At S/VP we pop the value of SBUILD, a function which vses
the contents of the registers SUBJ, TNS, V, and OBJ to build the tree (9).
Notice that at this point we have exhausted the input string, achieved a
final state, and emptied the push-down stack. Thus the sentence (6) is accepted
by the grammar, and its deep structure is the structure returned by the final
POP.

©) 3
~ l \\
NP AUX VP
/N / N\
DET N TNS A NP

AN
| I AN
the man PAST kick DIIET I‘lJ
the ball

Sentence (7) is processed in the same way, except that arc 4 is taken instead
of arc 3, since fali is marked intransitive. Hence, the resulting structure does
not have the object NP node.

For these two examples and, indeed, for all sentences in the language of
this grammar, the structure returned by the final POP directly reflects the
history of the analysis - the surface structure — but this need not be the case.

As a second illustration, we extend the grammar to deal with passive
sentences, such as (10):

(10) The ball was kicked by the man.

We must add one new state, S/BY, a new arc to state VP/V and two new
arcs to state S/VP. In addition, we must change the conditions on arcs 4 and 5.
Fig. 3 shows the new grammar, with new arcs in boldface and with only
new and changed conditions and actions. For sentence (10) the new grammar
works as follows: t/e ball is recognized as a noun-phrase and placed in SUBJ.
Was passes the condition on arc 2, so PAST is stored in TNS and be is
Artificial Intelligence 3 (1972), 77-100
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placed in V (as part of the category cnecking operation, the inflected form
was is replaced in * by its root). At this point in the sentence, we do not know
if be is a passive marker or a main verb as in (11).

(11) The ball was a sphere.

We make the assumption that it is a main verb, with the understanding that
later information might cause us to change our minds and possibly rearrange
the structure we have built. At state VP/V we find that we have indeed made
a mistake. We first attempt the arc 9 transition. We are looking at kicked, the
past participle of a passivizable verb, and be is in V, so we can make the
transition: the contents of SUBJ (the ball) are moved to OBJ and SUBJ is
emptied (a register containing NIL is considered void). Then kick replaces
be in V, and we re-enter state VP/V, looking at the word by.

r)mg v

PUSH NP/ 5/ CAT V
i \Juej 2

77\ CAT DET _ /mp/\ CAT N /7 ~\ POP (NPBUILD)

A Condition Actions
4 {OR {INTRANS V)
JFULLE OBJ))
5 {FULLR SUBJ)
9 {AND (GETF PASTPART) (5T’ ©OBJ 5UBJ)
(PASSIVE * ) {SETR SUBJ NIL)
{WRD BE V)) (SETR ¥V *)
10 (NULLR 5UBJ)
1 T (SETR SUBJ*)
12 {NULLR SUBJ) (SETR SUSJ

{QUOTE (NP (PRO SOMEONE};}))

Fi5. 3. Arcs required for passives.

By is not a verb, so arc 9 is disallowed. Kick is transitive, so we try pushin;
for a noun-phrase, but since by is not a determiner, the push is unsuccessful.
Arc 4 has been modified so that it can be taken if the verb is transitive but
the object register has already been fiiled (the predicate FULLR is true just
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irs case the indicated register is nonempty), and we can therefore JUMP to
S/VP.

At S/VP we cannot take arc 5 because we have no subject, so we try arc 10,
a WRD arc. This arc type corresponds to the original finite-state grammar
arc-label, a symbol which must literally match an input word. Arc 10 specifies
WRD BY and matches the current word, so the transition is allowed (NULLR
is true when FULLR is NIL). At this point in the sentence, the only way we
could not have a subject is if we had followed the passive loop. We therefore
look for the deep subject of the sentence in a by-phrase: we take arc 11, put
the man in SUBJ, and return to S/VP, from which we pop. The resulting
structure is identical to (9) - we have undone the passive transformatjon.
If the agent phrase had been omitted in (10), we would have taken arc 12
instead of the path through S/BY. Arc 12 is a JUMP that inserts the pronoun
someone in SUBJ just in case there is no other way to get a subject.

These simple examples have illustrated the notation and underlying
organization of the augmented recursive transition network. They have alsc
demonstrated that transition network grammars can perform such trans-
formational operations as movement, deietion, and insertion in a straight-
forward manner. We are now ready to examine the way in which transition
network grammars can model performaace data.

4, The Formalization of Perceptual Sirategies

Bever [6] has surveyed the results of many psycholinguistic experiments and
has infe:red from the data that human beings use a small number of perceptual
strategies in processing sentences. Some of these are corollaries of more general
cognitive strategies and have observable reflexes in other ar=as of perception,
while others are peculiar to language performance. As a set, these strategies
account in part for the relative perceptual complexity of senterices and for
some of the patterns of observed perceptual errors. In this section, we show how
these strategies can be naturally represented in transition network grammars.

The dependent variable in a majority of psycholinguistic studies has been
the difficulty subjects expericace in processing sentences, as indicated for
example by response latencies, recall errors, and the impact of various
disturbances on comprehensibility. Thus the ultimate validation of transition
network models will depend to a large extent on the correlation between
experimentally observed complexity and complexity as measured in the
transition network. There are several ways of defining a complexity metric on
the network. We couid count the total number of transitions taken in
analyzing a sentence, the total number of structure-building actions executed
or even the total number of tree-nodes built by these actions. We could also
use the amount of memory space or computing time required for a sentence
in a particular implementation of the transition network parser (e.g., the
Artificial Intelligence 3 (1972), 77-100
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number of conses (memory cells) or seconds indicated in Fig. 2). Of course,
most intuitive measures of complexity are highly intercorrelated and lead
to the scme predictions, so our choice can be somewhat arbitrary. We will
say that the complexity of a sentence is directly proportional to the number af
transitions made or attempted during the course of its analysis.

With this definition the complexnty of a sentence depends crucially on the
order in which the network is searched fur a successful path, although its
acceptability by the grammar is independent of the search-order. Unless
special mechanisms are invoked, the arcs leaving a state-circle are tried in
clockwise order, starting ivom the top. Thus in Fig. 3, arc § is attempted before
arcs 10 and 12. If au attempted arc turns out to be permitted, then the
remaining, untried arcs leaving the state are held in abeyance cn a list of
alternatives, and the legal transition is made. If the path taken is subsequently
blocked, alternatives are removed from the frout of this list and tried until
another legal path is found. As a result of this depth-first search, an ambiuous
sentence will initially provide only one analysis; the other analyses are ob-
tained by simulating blocked paths after successes.

4.1. The Relations Between Clauses

Since sentences are frequently composed of more than cne clause, the native
speaker must have a strategy for deciding how the component clauses of a
sentence are related to each other (e.g., which is the main clause, which are
relative clauses, and which are subordinate). Bever prepounds that “the first
N..V..(N) clause...is the main clause, unless the verb is marked as
subordinate” [6, Strategy B, p. 294], and points out that a sentence is per-
ceptually more complicated whenever the first verb is not the main verb,
even if it is marked as subordinate.* According to this hypothesis, sentences
with preposed suboidinate clauses (12b) are relatively more difficult than
their normally ordered countarparts (12a)-

(12)a. The dcg bit the cat because the food was gone.
J. Because the food was gone, the dog bit the cat. [= Bever’s (24a-b).]

4 Relative pronouns as well as subordinating conjunctions are considered markers of
subordinate clauses, so that Bever’s strategy B would predict that relative ciauses on subject
noun-ohrases should add more to perceptual complexity than the same clauses in post-
verbal, object position. If this is true, relative clauses should not be identified by a push
within a noun-phrase (s2e Fig. 4), for this predicts the same degree of complexity for all
relative clauses, no matter where they appear in relation to the main verb. We are currently
exploriny the possibility of analyzing relatives on subjects at the S/ level, by a system of
arcs emanating from state S/SUBJ. This approach complicates the grammar to some extent,
but it appears that it can account for the difficulty with subject relatives as well as the tre-
mendous complexity of center-embedded sentences. It would also explain the observation
by Blumenthal [26] that subijects tend to perceive center-embedded constructions as simple
structures of conjoined nouns and conjoined verbs. We will report on the details of this
approach in the near future.

Artificial Intelligence 3 (1972), 77-100
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And in cases where the first apparent verb is not the main verb but is not
marked as subordinate, this strategy can lead to serious perceptual errors.
Bever reports ihat subjects had much more difficulty understanding sentences
like (13a), where there is an illusory main verb and sentence (italicized), than

(13b), even though both sentences, being center-embedded, are exceedingly
difficult:

(13) a. The ed:tor authors the newspaper hired liked laughed.
b. The editor the authors the newspaper hired liked laughed.
[=Bever’s (27a-b).]

-

PUSH SUBORD/
CAT v y

2
e PUSH NP/ @ POP (SBUILD)
1

‘ PUSH SUBORD/
13 :

T \CAT DET _ N\ CATN POP (NPBUILD)
/ 5 ~\ DET 7 8
JUMP PUSH R/
17 15
PUSH R/NIL
1
Arc Condition Aztions
13 (NULIR SUBORD) (SETR SUBORD *)
" (NULIR SUBORD) (SETR SUBORD )
15 (CAT RELPRO) (SENDR WH (NFBUILD))
' (ADDR REL *)
16 T (SENDR WH (NPBUILD))
(ADDR REL =}
17 T

FiG. 4. A strategy for clausal relationships.

The modifications to our transition network shown in Fig. 4 can account
for these facts. We have added two.arcs at the S/ level to look for subordinate
clauses: a simple transition sequence (not shown) analyzes and builds the
appropriate structure for them. Also, we have expanded states NP/ to allow
null determiners, and NP/N to look for relative clauses. With this grammar,
four more arcs, 1, 6, 17, and 7, musi be attempted for (12b) than for (12a).
For (12b), first arc 1 is tried, causing a push toc NP/ where arcs 6, 17, and 7 are
Artificial Intelligence 3 (1972), 77-100
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tried and fail. We back up to state S/ and take arc 13, eventually ending up
with the appropriate structure {the complete sequence of attempted arcs is
1, 6,17, 7, 13, SUBORD/ arcs (not shown), 1, 6,7, 8,2,9, 3, 6,7, 8, 14, 5).
Note that we must still attempt arc 14, even though we know the condition will
fail, because it is ordered before the pop arc, arc 5. For (12a), our first try at
arc | takes us straight through to arc 14, where we pick up the subordinate
clause, consider arc 14 again, and then pop ai arc 5 (sequem.e =1,6,7,8,2,
9,3,6,7, 8. 14, SUBORD/ arcs, 14, 5).

The difference between (13a) and (13b) is equally well ac"ounted for Arc
15 looks for a relative clause on the noun-phrase, given that there is a relative
pronoun following the noun. The arc has two new actions, SENDR and
ADDR. Registers are subject to the control of the push-down recursion
mechanism, so that when a push is executed, the registers’ contents at the
upper level are saved on the stack along with the actions to be executed
upon return, and at entry to the lower-level, the registers are all empty.
Upon popping, the upper level registers are restored. SENDR is a very
special action: it can only appear on a PUSH arc, and it is the only action
executed before pushing. It causes structures computed at the upper level
to be placed in registers at the lower level. Thus the action (SENDR WH
(NPBUILD)) causes the noun-phrase so far identified to be placed in the
WH register at state R/, the beginning of the relative clause network (not
shown). Based cn the internal structure of the relative clause, the R/ network
decides whether the relativized noun-phrase in WH is to be interpreted as the
subject or object, analyzes the clause using parts of the S/ and NP/ networks,
and returns the appropriate structure. (ADDR REL *) causes this structure
to be ADDed on the Right of the previous cortents of REL, so that a
sequence of relative clauses can be processed by looping through arc 15.

In (13a~b), however, there is no relative pronoun, so we cannot take arc 15.
For both sentences, a successful analysis requires that we push to state
R/NIL (arc 16), the section of the relative clause grammar designed to
analyze relatives with missing relative pronouns. But before we get to arc 16,
we pop via arc 8 to state S/SUBJ. In (13a), the input word at this point is
authors, a possible verb, so we can take arc 2 to state VP/V. We continue on
unti! we try to pop at arc 5 without having consumed the input string (the
current word is hired), and by the time we have backed up all the way to the
appropriate arc 16, we have attempted seventeen arcs erroneously (sequence
=1,67,8,29,3,6,7,8, 14,5, 10, 12, 15, 16, blocked R/NIL arcs, 17. 7,
4, 15, 16, R/NIL arcs, 8, 2,9, 3, 6, 17, 7, 4, 14, 5). For (13b), since the is not
a verb, we are blocked at state S/SUBIJ, and we arrive at arc 16 having only
attempted three wrong arcs (sequence = 1, 6, 7, &, 2, 15, 16, R/NIL arcs, 8,
2,9,3,6,17,7, 4, 14, 5). Inside the relative clause grammar, the noun phrase
authors in (13a) requires an extra transition at arc 17, so th» net difference
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between the two sentences is fifteen arcs, not counting the blocked R/NIL
arcs in (13a), a difference clearly in line with empirical perceptual complexity.

We have thus expanded our simple grammar to accept and provide deep
structures for a variety of constructions. Our grammar has the same formal
power to describe these structures as a transformational grammar, but we
have been able to arrange the analysis path so that complexity in our model
corresponds to perceptual complexity, as stated by Bever's strategy B. We
have taken advantage of the fact that, unlike the ordering of transformations,
the order of arcs can be freely changed, radically altering the amount of
computaticn required for particuiar sentences, without affecting the class of
acceptable sentences.

4.2. Functional Labels

A major task in sentence comprehension is the determination of the functional
relationships of constituents within a single clause, of deciding who the sub-
ject is, what the action is, etc. Bever suggests a simple strategy for assigning
functional labels based on the left-to-right surface order of constituents:
“Any Noun-Verb-Noun (MVN) sequence with a potential internal [deep
structure] unit in the surface structure corresponds to ‘actor-action-object’”’
[6, Strategy D, p.298]. Bever cites several perceptual siudies involving
sentences for which this strategy is misleading, and in all cases, these sentences
were more difficult to respond to than control sentences for which strategy D
was appropriate.

There is very good evidence that passive sentences are more difficult to
process than corresponding aciives, in the absence of strong semantic
constraints. Given strategy D, this follows from the fact that the surface
order of passives is object-action-actor. Similarly, progressives (14a) have
been found to be significantly easier to comprehend than superficially identical
participial constr:i-tions (14b) [22].

(14) a. They are fixing benches.
b. They are sleeping monkeys.

According to strategy D, sleeping is initially accepted as the main verb, until
the spurious direct object monkeys is encountered; at this point the labels
must be switched around.

Bever explains these processing difficulties in terms of the amount of
relabeling that is required, given that strategy D can lead to errors. This
translates into the proposition that relative complexity is measurzd by the
degree to which constituents are shifted in registers, since assigning a con-
stituent to a register is the transition network analog of functional labeling.
Indeed, Fig. 3 shows that SUBJ is reset twice more for passives than for
actives, while in Fig. 5 participial sentences require one exira register assign-
Artificial Intelligence 3 (1972), 77-100
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ment (NMODS). However, we have defined complexity in terms of the number
of arcs attempted, and we now show that this measure can also account for
the experimental results.

Fig. 3 contains the arcs necessary for passive sentences. Simple active (6)
and passive (10) sentences are treated identically until state VP/V is reached.
Arc 9 is attempted for both of them and is taken for the passive, returning to
VP/V. 9 is attempted again but fails, and then twelve additional arcs are
tried before the successful finai pop is executed. Since cnly six additional
arcs are attempted for the active, the difference in favor ¢“ the relative
complexity of the passive is six. (The difference is seven for the more compli-
cated grammar in Fig. 5.)

pust WP/ 57\

Y T\
\‘s PUSH SUSORD/
12

_&r_:_: LCondition Actions.
18 {AMD (GETF PRESPART) (SETR V =)

(WRD BE V)) (ADDR TNS {QUOTE PROGRESS))
19 {GETF PRESPARTY (ADDR NMODS *)

FiG. 5. Progressive and prenominal participle arcs.

Fig. 5 gives the necessary modifications for the progressive and participial
constructions. Arc 18 can be taken only if the current word is a present
participle and the previously identified main verb is be. The actions put the
new verb in V and mark TNS as progressive. Arc 19 simply adds an identified
participle to NMODS, where the function NPBUILD wiil find it. The analysis
of (14a) is simple: at state VP/V, the current word will be fixing and be will
be in V, so that arc 18 can be taken. Since fix is transitive, benches will be
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identified as the direct object, and the pop at arc 5 will be successful. (14b)
involves considerably more effort. At VP/V, arc 18 will also be taken but
arc 3 is ruled out with sleep in V. Before returning to arc 3 with de in V,
arcs 4, 14, 5, 10, and 12 will be tried, and additional arcs will be attempted in
deriving the correct participial analysis {we assume that be is marked transi-
tive).

Thus the functional-relabeling and the attempted—transmons explanations
account equally well for the experimental observations. At present we have
no firm empirical basis for choosing one¢ ccmplexity measure over the other;
we must find crucial sentences where the measures make opposing predictions
and let the data decide for us. So far, we have been unable to discover such
sentences.

4.3. Prenominal Adjective Ordering

Another problem concerns the segmentation of superficial sequences of words
into structural uniis. Where does a noun-phrase begin, for example, and where
does it end? That these are not trivial questions is illustrated by (15a-b),
where the role of marks is unclear until the whole sentence has been processed.

(15) a. The plastic pencil marks easily.
b. The plastic pencil marks were ugly. [= Bever’s (66a-b).]

Of course, no matter what perceptual strategy is involved in making these
decisions, the transition network will continue trying alternative paths until
it arrives at the correct segmentation, but an appropriate strategy would
make the analysis more efficient. Bever suggests that in recognizing the end
of a noun-phrase, native speakers use a strategy which also accounts for the
anomalies in such pairs as (without contrastive stress):

(16) a. The red plastic box . ..
b. *The plastic red box .
c. The large red box .. ..
d. *The red iarge box. ..
[= Bever’s (€7a~d).]

He cites the theories of Martin [23] and Vendler [24] which essentially claim
that the more “nounlike” an adjective is,5 the closer to the noun it must be

* Intuitively, an adjective is more “nounlike™ the more syntactic or semantic properties it
shares with nouns. Thus large is ranked below red and red below plastic because of the
relative :umber of noun frames they can fit in, as in (a—d):

(a) i like red.

(b) *I like large.

(¢) The toothbrush is made of plastic.

(d) *The toothbrush is made of red.

Martin [23] suggests that “definiteness” or *“‘absolute.iess” is the key semantic property
involved in nounlike-ness.
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placed. Thus the ancmalies in (16) are accounted for if we assume that
plastic is more nounlike than red and red is more nounlike than Jarge.
Although the notion nounlike is not made very precise, Bever gives heuristic
arguments that these assumptions are correct. He then posiulates that the
end of a noun phrase is signalled by 2 word which is less nounlike than
preceding words [6, Strategy E, p. 323]. Since lerge is less nounhke than red,
the initial noun phrase in (l6d) must be the red.

PUSH SUBORD,/
14

POP {INPBUILD)

NP/N ——

PUSH R/
15
PUSH R/NIL
15
ﬁ Condition Actions
23 {GE (NLIKE N) {(ADODR NMODS N)
(INLIKE *)) {SETR N *)

FiG. 6. Prenominal adiectives,

This constraint is difficuit to express in traditional transformational
formalisms but is quite directly representable in the transition network.
It not only makes the transition network more congruent with performance
data but also helps to rule out the anomalies in (16). Assuming that nounlike
is well-defined and that all potential nouns (including adjectives) are in
category N and have their nounlike-ness marked in the lexicon, the new arc
shown in Fig. 6 is the .1ecessary addition to the network. Arc 20 is attempted
before the pop from NP/N. If the nounlike-ness of the current word is grecter
than or equal ro that of the word in N, then the word in N is not the head of
the noun-Lhrase. We add this word to the list of modifiers in NMODS, and
place the current word in M, as a new candidate for head noun. We continue
looping until ve find a word that is less nounlike than the head, marking
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the end of the noun-phrase. This pro.2dure will accept (i6a,c) but reject
(16b,d) except in coastructions along the lines of (17). In (17) the adjectives
are accepted only because they can be analyzed in separate noun-phrases:

(17) I like the plastic red boxes are made of.

5. The Justification of Transition Network Models :
In the preceding sections we illustrated the simple way in which transition
network grammars can express some of Bever’s perceptual strategies. The
transition network analyzes strings in essentially linear order, and the
grammatical notation is flexible enough so that grammars can be devised to
fit wide ranges of performance facts. However, to justify the effort needed to
simulate experimental data with network models, we must show that the
resulting grammars offer substantial advantages compared to informal
verbal interpretaiions, such as Bever’s. In this section we argue that these
grammars are both conceptually and empiricaily prcductive: they lead to
new theoretical questions, and they suggest new lines of experimentation,
predicting specific outcomes. To the extent that the predictions of a particular
grammar are confirmed, that grammar is validated as a model of the psycho-
logical processes involved in sentence comprehension.

The grammar shown in Fig. 6, while only a small fragment of a complete
English grammar, will suffice to exemplify the empirical implications of
transition network models. It has been designed to account for the data
underlying the perceptual strategies discussed above, but it also encomnasses
independent findings. The grammar mirrors the perceptual strategies jusi so
long as a depth-first search procedure is used to discover successful analys:s
paths. This search order implies that for truly ambiguous sentences, one
interpretation will be recovered before the other; if required, the second
interpretation can be recovered by simulating a failure and continving the
analysis. This is in line with the results of MacKay and Bever [7] and Foss
et al. [25): MacKay and Bever found subjects to be aware that they arrived
at one in:erpretation of an ambiguous sentence first and couid even report
what the first interpretation was. Foss et al. discovered that subjects tend to
interpret ambiguous sentences in only one way; if the first interpretation is
incompatible with the experimental context, they can usually go on to find
another interpretation, although additional time is required. The search
strategy underlying the Fig. 6 grammar accounts for these results even
though the experiments are not implicated in the perceptual stratcgies the
grammar was designed to represent.

For ambiguous sentences within its scope, the grammar clearly predicts
which interpretation should predominate. Other things being equal, the first
interpretation will have essentially the same analysis as the less complex of
two unambiguous sentences with the same surface structure. Thus in a
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replication of the Foss et al. experiment, the first analysis of (18a) should be
the progressive, resembling (14a), while the participial deep structure (14b)
should come cut second. Subjects should first arrive at the conclusion in
(18b), rather than (i8c):

(18) a. They are frightening monkeys.
b. The monkeys are scared.
c. The monkeys are scary.

The Fig. 6 grammar similarly prciicts the outcome for another class of
ambiguous sentences, where a word can be analyzed either as the head of
the subject noun-phrase, utilizing the prenominal adjective arc, or as the
intransitive main verb (19-20). With the nounlike-ness markings which
permit the ambiguity,5 the

(19) The Irish water boils,
(a) just like any other water.
(b) but the sores still hurt.
(20) The French bottle smells,
(a) since it contained vinegar.
(b) but they bottle soft-drinks too.

grammar predicts that the interpretations correspunding to the (a) continua-
tions will appear first. Thus again our simple grammar has concrete empirical
implications. *

It should bz noted tkat the ambiguities in (19-20) involve a conflict between
two of Bever’s perceptual strategies. The (a) interpretations follow from the
prenominal adjective strategy while the (b) intcrpretations are consistent
with the functional labeling strategy, with water and bottle considered as the
first verbs. Bever presents his strategies in isolation from omne another,
without specifying their interrelationships, but the transition network
forralism requires the integration of all strategies into a single system.
Potential strategy conflicts are highlighted, usually in the form of questions
about the relative ordering of two or more arcs leaving a state, and the
altérnative grammar formulations otten lead to the discovery of crucial
cases that can be studied experimentally. Thus for example, the prenominal
adjective and the functional labeling strategies could have oeen expressed in
ancther graramar with the opposite precedence relation, so that the (b)

¢ Examples which are ambiguous orthographically, such as (12-20), are more difficult to
discover and se=m more strained than acoustically ambiguous ones:
(@) (i) TLe sun’s rays meet.
(ii) The sons raise meat.
(b) (i) The producer’s show flops,
(ii) The producers show flops.
I am indebted 10 John Ross and Michael Maratsos for these examples.
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interpretations in (19-20) would be judged less complex than the (a) ones.
The choice between the Fig. 6 grammar and this alternative model depends
on the outcome of the ambiguity experiment described above.

Besides empirical consequences, questions of strategy interaction have
important conceptuai ramifications. Bever remarks that perceptual strategies
express ‘‘generalizations which are not necessarily always true” [6, p. 294,
footnote 2}, that each isolated strategy will be misleading in some cases.
The strategies thus serve as heuristic guidelines to the listener and do not
directly reflect his abstract appreciation of the structure of his language.
A transition network model, on the other hand, incorporates a set of
strategies and clarifies their interactions; the set as an integrated whole is
valid if it fails only for sentences which are truly unacceptable. Thus a transi-
tion network model is intended to make assertions about the listerer’s
linguistic knowledge, whereas a set of isolated perceptucl strategies is not.

Transition network models raise other conceptual issues: we have already
mentioned the question of selecting an appropriate complexity metric for the
network, which is related to the problem of determining a small set of
primitive, psychologically relevant actions and predicates. The network
formalism also provides a new vocabulary for discussing tie processes of
language acquisition. We can imagine that as a child’s linguistic abilities
develop, a transition network model of nis perceptual performance will evolve
in stages of increasing elaboration, much as the grammar in Fig. 6 grew out
of Fig. 1. New predicates and actions will appear, new arcs and states will be
added, the order of arcs will be adjusted, and old and new arcs will interact
to handle new syntactic constructions. It should be possible tc demonstrate
small, systematic deformations between the grammars representing the various
levels of acquisition, and the sequence of grammars shouid have strong
imglications for models of adult performance. Finally, it is conceivable that
detailed investigations of transition network acquisition grammars will lead
to an algorithm that simulates the languige acquisition process, that takes
the kinds of data available to children at the different stages and devises
appropriate perceptual models.

6. Conclusion

The uugmented recursive transition network we have described is a natural
medium for expressing and explaining a wide variety of facts about the
psychological processes of sentence comprehension. We have shown how
several perceptual strategies can be represented, und in the last section we
explored some of the empirical and conceptual implications of these
formalizations. These considerations illustrate the usefulness of transition
network grammars as research tools and support their validity as perceptual
models. :
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Of course, there are several important issues we have not touched on:
the role and representation of semantic information in sentence compre-
hension, the differences between the processes of sentence perception and
production, and the correspondences between transition network grammars
and conventional transformational rules. We are currently investigating these
problems. We are coupling the transition network parser to a semantic net-
work so that nonsyntactic features and context can guide the course of
sentence analysis and lead to appropriate semantic interpretations, We are
also studying the formal and practical difficulties in using the transition
retwork notation for writing generative grammars; we hope o find a simple
algorithm for mapping adequate perceptual models into equivalent produc-
tion grammars. And finally, we are constructing two large transition network
graminars, one based primarily on pe-formance data and the other intended
to capture generalizations about linguistic competence as transformational
grammars express them. We expect these grammars to converge, giving a
single grammar and one notation for modeling both competence and perfor-
mance. Reports on these investigatiors are in preparation.
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