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ABSTRACT 
This paper describes the operation of  an augmented r~cursive ¢ransiHon network parser and 
demonstrates the nataral way in which perceptual strategies, based oa the results o f  psycho- 
linguistic experimentation, car be represented in the transition network grammatical notation. 
,Several iL1nstrative networks are giver,, and it is argued that such grammars are empirically 
justified and conceptually productive models o f  the psycho!ogical processes o f  sentence 
comprehension. 

I. Introduction 
During the past year a major research effort has been conducted to explore 
and refine the properti~ of an augmented recursive transition network 
parser [I] and to develop a large-scale English gran~mar for the system, t 
Although our primary goal has been to construct a powerful and practical 
natural language processor for artificial intelligence and information retrieval 
applications, 2 we have also investigated the correspondence between the 
sentence processing characteristics of the parser and those of human speakers, 
as revealed by psychological experimentation, observation, and intuition. 
We have found that the grammatical formalism of the transition network is a 
convenient and natural notational system for fabricating psychological 
models of syntactic analysis. In the present paper we describe some of the 
psychologically appealing properties of the parser and illustrale how psycho- 
linguistic experimental results can be mapped into simple transition network 

1 The transition network parser was desige~ed by William Woods. It is programraed in 
BBN-L1SP and is currently running under the TENEX monitor system on a FDP-10 
computer at Bolt Beranek and Newman, Incorporated, Cambridge, Massachusetts. 

2 The parser is presently being used as the naturaldanguage front end of a system for 
accessing geological data on the Apollo lunar samples. 
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models. We suggest that building and testing such models can lead to a 
better understanding of linguistic performance. 

It should be clear from the outset that we are no: proposing a transition 
network model as a complete and sufficient representation of all aspects of 
language behavior. Rather, transition network models aim only at simulating 
the syntactic analysis component of performance: given an input string 
written in ,,tandard orthography, they attempt to discover the syntactic 
relationships holding between constituents. We ignore the myriad problems of 
phonetic decoding and segmentation and semantic aad cognitive interpreta- 
tion, as well as all the psycholinguistic and motivational complexities of 
speech production. It is in this limited sense that we r~fer to transition network 
grammars as sentence comprehension or perceptual models. Of cou:se, we 
expect that more complete formalizations of language behavior will incorpo- 
rate such independently developed syntactic analysis ~nodeis. 

In Section 2 of this paper we sketch the linguistic and psycholinguistic 
background af our .-esearch. Section 3 describes the organization and opera- 
tion of the transition network parser and depicts the grammatical notation, 
and Section 4 shows the representation in this notation of perceptual 
strategies induced from psycholinguisfic data. In Section 5 we discuss the 
fruitful~ess of this modeling approach, indicating some conceptual issues that 
are clarified and some empirical predictions that arise from transition net- 
work formulations. 

2. Transformational Grammar and Psyeholingnisties 
The process by which a native speaker c~mprehends and produces meaning- 
ful sentences in his language is extremely complex and, with our present 
body of psycholinguistic theory and data, is understeod only slightly. This 
shortcoming of psycholinguistics exists despite the fact that advances in 
linguistic theory over the last decade have provided a number of crucial 
insights into the formal structure of language and linguistic performance. 
To place augmented re=t~rsive transition network grammars in the context 
of previous resea,'ch, we briefly survey some relevant results of linguistics and 
psycholinguistics. 

A transformational grammar for a given language L formally defines the 
notion sentence of  L by describing a mechanical procedure for enumerating 
all and only the well-formed sertences of L. With each sentence it also 
associates a structural description which provides a formal account of the 
native speaker's competence, the linguistic knowledge which underlies his 
ability to make judgments about the basic gramm~ttical relations (e.g., 
~ubject, predicate, object) and about such sentential properties as relative 
~rammaticality, ambiguity, and synonymy. At present there is no clear 
:~greement among linguists about the detailed features required for an 
.4rtificial Intelligence 3 (1972), 77-100 
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adequate grammar, but certain principles ofgrammar orgardzation are almost 
universally accepted: the structural description furnished for a sentence by 
the grammar must consist of (at least) two levels of syntactic representation 
(P-markers)-a deep structure and a surface structure-together with a 
specification of an ordered sequence of transformations which maps the deep 
structure of a sentence into appropriate surface structures. 

Transformational theorists maintain that their formal model is nat 
intended to give an accurate account of the psychological processes involved 
when a human being uses language, either speaking or comprehending. 
Any correlations observed between actual behavior characteristics and 
transformational grammars are accidental, signifying merely the fact that 
psychological and linguistic data are both obtained from the same class of 
native speakers (but Chomsky [2] weakens this assertion somewhat when he 
argues that acquisition data might have a bearing on the evaluation metric 
selected for grammars). Linguists have been very careful to distinguish fl~e 
speake:'s competence, which tran.~formational grammars attempt to model, 
from his performance, the manner in which he utilizes his knowledge in 
processing sentences [2, 3, 4]. Thus a transformational grammar might be 
allowed to generate sentences which are virtually impossible for a speaker 
to deal with. Most current grammars will  generate (Sa), assigning it the 
same st, bject - verb - object relations as are apparent in (Sb): 

(5) a. The man the girl the cat the dog bit scratched loved ate ice cream. 
b. The dog bit the cat that scratched the girl who loved the man who 

ate ice cream. 

Very few native speakers would intuit that (Sa) is grammatical, yet to prevent 
its generation, either the grammar must be greatly complicated or other 
sentent :s which native speakers do accept must be marked ungrammatical. 
Linguists resolve this dil':mma and preserve the siraplicity and generality of 
their ~ammars by claiming the, t native English speakers do have the basic 
knowledge to process (Sa), which is *,herefore grammatical; speakers have 
trouble with it because their perceptual mechanisms do not provide the 
memory space and/or computational routines required to process it. A trans- 
formational grammar is a formal specification of the speaker's competence 
and has nothing to say about psychological functioning. 

Despite these disclaimers, psycholinguists have been intrigued by trans- 
formational theory because it provides the most intricate and compelling 
explication to date of a large number of basic linguistic intuitions. Many 
experiments have been conducted to test the hypothesis tl'~at transformational 
operations will have direct, observable reflexes in psychological processing; 
Fodor and Garrett [5] and Bever [6] present useful reviews of this literature. 
A major concern of these studies has been to determine whether the perceptual 
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complexity of sentences (the difficulty of comprehending and responding to 
them) is directly correlated with derivational complexity (e.g., the number of 
transformations required to generate them). Fodor and Garrett [5] examine 
this "derivational theory of complexity" in detail and conclude that the 
avail~tble psycholinguistic data do not offer much suppo~ for it and that the 
connection, if' there is one, between transformational gr~.mmar and percep- 
tion is not at all direct. 

Although psycholinguists have virtually abandoned :their attempts to 
find perceptual reflexes of specific grammatical features, several studies 
have been successful in corroborating the psychological reality of the deep 
structure-surfilce structure dist.;nction. MacKay and Sever [7] found that 
subjects respond differently to deep structure and surfa~ structure ambi- 
guities, Wanner [8] showed that the number of deep structure S-nodes 
underlying a sentence has a direct influence on the ease of prompted recall 
from long-terra memory; and Bever [6] has reinterpreted the results of the 
click experiments [9] as demonstrating that deep structure S-nodes affect the 
surface segmentation of a stimulus sentence. These experi~nents suggest that 
an adequate model of sentence comprehension must incorporate some 
mechanism for recovering a deep.structure-like representation of a given 
stimulus word string. This representation should explid~iy denote at least 
such basic grarnmatical relationships as actor, verb, and object. More exten- 
sive empirical work should indicate whether deep structure must be even 
more abstract than this. 

There are several other requirements for adequacy that we may impose on 
potential models of sentence comprehension, based on some common 
observatiovs about our sentence processing abilities: 
(a) A perceptual rnodel must process strings in essentially temporal or linear 

order, for this is the order in which sentences are encountered in con- 
versation and reading. 

(b) It must process strings and provide appropriate analy~es in an amount 
of time prolportional to that required by human speake.rs. For example, 
since perceptual difficulty does not rapidly increase as the length of the 
sentence increases, the amount of time required by the model should be 
at most a slowly increasing function of sentence length. 

(c) The model should discover anomalies and ambiguities w'aere real speakers 
discover them, and for ambiguous sentences the model should return 
analyses in the same order as speakers do. 

Whereas there are many well-known recognition procedures for program- 
ming languages and other relatively simple artificial languages, only a few 
algorithms have been proposed which aim at "transformational" recognition, 
that is, which attempt to develop appropriate deep structures from natural 
language surface: strings. Some of these algorithms [10, 11. 12] incorporate 
Artificial Intelligence 3 (1972), 77-100 
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more or less directly a linguistically motivated transformational grammar; in 
light of the empirical shortcomin~ of the derivational theory of complexity, 
it is not surprising that these proposals are inadequate perceptual models. 
A deep structure recovery strate~gy suggested by Kuno [13] operates inde- 
pendently of a transformational grammar and  offers more psychological 
relevance, but it too has formal limitations [14]. A procedure and gram- 
matical notation recently described by Kaplan [15], based on an algorithm by 
Kay [16, appear to meet many of the formal and practical requirements for 
dee p stix~cture recovery, but at present not enough is known about Rs operat- 
ing characteristics to assess its adequacy as a formalism for perceptual 
modelsL Augmented recursive transition network grammars, to which we 
now *,urn, ,-.an satisfy (a)-(c), have other desirable psychological and formal 
pro~rties, and have the additional advantage of being practical and efficient. 

3. The Augmented RecursJve Transition Network 
The idea of a transition network parsing procedure for natural language was 
originally suggested by Thorne et al. [17] and was subsequently :efined in an 
implementation by Bobrow and Fraser [18]. Woods [1] has also presented a 
transition network parsing system which is more general than either the 
Thorne et aL or Bobrow-Fraser systems. The discussion below is based on 
the Woods versiop. Since a detailed description is already available we 
present here only a brief outline of the grammatical formalism and then 
focus on the manner in which this formalism can be used to express perceptual 
and linguistic regularities. 

At the heart of the augmented recursive transition network is a familiar 
finite-state grammar [19] consisting of a finite set of nodes (states) connected 
by labeled directed arcs. An arc represent~ an allowable transition frorr, the 
state at its tail to the state at its head, the label indicating the input symbo 
which must be found in order for the transition to occur. An input string is 
accepted by the grammar if there is a path of transitions which corresponds 
to the sequence of symbols in the string and which leads from a specified 
initi~,! state to one of a set of specified final states. Finite state grammars are 
attractive from the perceptual point of view because they process strings in 
left to right order, but they have well-known inadequacies as models for 
natural languages [20]. For example, they have no machinery for expressing 
statements ~bout hierarchical structure. 

This particular weakness can be eliminated by adding a recursive control 
mechanism to the basic strategy, as follows: all states are given names which 
are then allowed as labels on arcs in addition to the normal input-symbol 

3 Recent research has indicated the, t the Kay algorithm can be conceived of as a generab 
ization of the transition network parser der.,cribed here, We are currently exploring the 
psycholinguistic implications of the additional features available with the Kay parser. 
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labels. When an arc with a state-name is encountered, the name of the state 
at the head of th,e arc is pushed (saved on the top of a push-down store), 
and an~ysis of the remainder of the input  string continues at the state 
named on the arc. When a final state is reached in this new part of the 
grammar, apop occurs (control is returned to the state removed from the top 
of the push-down store). A sentence is said to be accepted when a final state, 
the end of the string, and an empw push-down store are all reached at the 
same time. Note that with this elaboration of the basic finite-state mechanism, 
we have produced a formalism that can easily describe context-free languages 
as well as regular languages with unbounded coordinate structures. The 
structural description provided for a sentence by this procedure is simply 
the history of transitions, pushes, and pops required to get through the 
string. 

However, the finite-state transition network with recursion cannot describe 
cross-serial dependencies, so it is still inadequate for natural languages [21]. 
The necessary adetitional power is obtained by permitting a sequence of 
actions and a condition to be specified on each arc. The actions provide a 
facility for explicitly building and naming tree structures. The names, called 
registers, function much like symbolic variables in programming languages: 
they can be used in later actions, perhaps on subsequent arcs, to refer to 
their associated strnctures. A register is said to contain the structure it names, 
and the actions determine additions and changes to the contents of registers 
in terms of the cun'ent input symbol, the previous contents of registers, and 
the results of lower-level computations (pushes). This means that as con- 
stituents of a sentence are identified, they can be held in registers until they 
are combined into larger constituents in other registers. In this way a deep 
structural description can be fashioned in registers essentially independently 
of the analysis path through the transition network. 

Conditions furnish more sensitive controls on the admissibility of transi- 
tions. A condition is a Boolean combination of predicates involving the 
current input symbol and register contents. An arc cannot be taken if its 
condition evaluates to false (symbolized by NIL), even though the current 
input symool satisfies the arc label. This means first, that more elaborate 
restrictions can be iimposed on the current symbol than those conveyed by 
the arc label, and second, that information about  previous states and 
structures can be pa~;sed along in the network to determine future transitions. 
This makes it possible for similar sections of separate analysis paths to be 
merged for awhile and then separated a g a i n - a  powerfel technique for 
eliminating redundancies and simplifying grammars. The condition predicates 
and the arc actions ~:an be arbitrary functions in LISP notation, although we 
have developed a small set of primitive operations, described below and in 
[ 1], which seems adequate for mcst situations. In these primitiw~ actions and 
Artificial Intelligence 3 (I972), 77-~00 
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predicates, atomic arguments denote registers; parenthetic expressions are 
forms to be evaluated. 

In order to be able to refer to the current input symbol in conditions or 
actions, a special register, named *, has been provided. More properly, this 
register always contains the constituent that enabled the transition; usually 
this is the input symbol, but for actions on a push arc (which are usually 
executed after the return from the lower level), * contains the structural 
description of the phrase identified in the lower computation. This phrase 
is determined when a special type of arc, a pop arc, is taken from a final 
state at the lower level (final states are distinguished by the existence of 
pop arcs). 

PUSH NP/ 

4 

G CAT DE ' l '~J t '~  CAT N ~POP(NPBUILD)  
6 ~ 7 ~ 8 

Ar..~c Condillon Actions 

I T (SETR SUBJ ") 
2 (AND (GETF TNS) (SETR TNS (GETF TNS)) 

(SVAGR SUBJ (SETR V ~) 
(GEIF PNCODE))) 

3 (TRANS V) (SETR OBJ "- ) 

4 (INTRAF~S V) 

5 T 

6 T (SEI"R DET ") 
7 T (SETR N * ) 
8 1[ 

Fro. 1. A simple transition network grammar. 

The recursive transition network, with all of these additions, is 
called an augmented recursive transition network; it is easy to show that it 
has the generative power of a Turing machine. To demonstrate more 
concretely how the transition network works, we give a simple example. 
Fig. 1 shows a transition network grammar that will recover deep structures 
for simple transitive and intransitive sentences, such as (6) and (7): 

(6) The man kicked the ball. 
(7) The ball fell. 
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The top of the figure shows the organization of paths in the network. State~ 
are represented by circles with the state name inside. The state-~mes are 
purely mnemonic, serving to indicate the constituent being analyzed (to the 
left of the slash) and how much of that constituent has been identified so far. 
Each arc specifie~ what will allow the transition anzl has a number denoting 
the condition and actions in the table below. We mentioned above three 
kinds of arcs: ordinary input symbol arcs, push arcs, and pop arcs. To 
distinguish these arcs from each other and from other arc types, each arc 
has an explicit type-indicator. Thus, PUSH NP/ specifies that arc 1 is a 
push arc and that control is to pass to state NIP/. POP (SBUILD) indicates 
that arc 5 is a pop arc, and the structure to be popped (that is, placed in * 
at the next higher level) is the value of the function SBUILD. Fig. 1 
includes two new types: a CAT arc (arc 2) does not require a specific input 
symbol, but requires that the word be marked in the dictionary as belonging 
to the specified lexical category. A JUMP arc (arc 4) is a very special arc that 
allows a transition in the grammar with possible actions, but without advancing 
the input string - it is useful for bypassing optional grammar elements. 

Let us trace the analysis.; of sentence (6) using this grammar (Fig. 2 shows 
the trace as it is printed out by the program). The starting state is, by.conven- 
tion, the state labeled S/. The only arc leaving S/is a push for a noun-phrase, 
so without advancing the input string, we switch to NP/. Sin~:e the, the current 
input symbol, is in the category DE'I" and since the condition for are 6 is 
trivially true, we can take a ~  6, executing the action (SETR DET *). SETR is 
a primitive action that places the structure specified by its second argument 
(in this case, the current input word, denoted by *) in the register named 
by its first argument (DET). Thus after following arc 6, the register DET 
contains the, and we continue processing at state NP/DET, looking at the 
word man. We are permitted to take arc 7, saving man in the register N, and 
arrive at the final state NP/N. We take the POP arc, which defines the phrase 
to be returned. NPBUILD i,~; a function that puts the components of the NP, 
contained in the registers DET and N, into the structure (NP (DET the) 
(N man)), which is a labeled bracketing corresponding to the tree (8): 

(8) / N P ~  

DET N 
I I 

the man 

This structure is returned in the register * on arc !, where the action (SETR 
SUBJ *) places it in the regi,,;ter SUBJ. We move on to the state S/SUB J, 
looking at the word kick. 
Artificial Intelligence 3 (1972), 77-100 
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Sentence: The man kicked the ball. 
STRING =-- (THE MAN KICKED THE BALL) 
ENTERING STATE S/ 
.ABOUT TO PUSH 

ENTERING STATE NPta 
TAKING CAT DET ARC 

STRING = (MAN KICKED THE BALL) 
ENTERING STATE NP/DET 
TAKING CAT N ARC 

STRING ---- (KICKED THE BALL) 
ENTERING STATE NPIN 
ABOUT TO POP 

ENTERING STATE S/SUBJ 
"fAKING CAT V ARC 
STRING = (THE BALL) 
ENTERING STATE VP/V 
STORING ALTARC ALTERNATIVE lb 
ABOUT TO PUSH 

ENTERING STATE NPl 
TAKING CAT DET ARC 

STRING = (BALL) 
ENTERING STATE NP/DET 
TAKING CAT N ARC 

STRING = NIL 
ENTERING STATE NP/N 
ABOUT TO POP 

EICrERING STATE S/VP 
ABOUT TO POP 
SUCCESS 
10 ARCS ATTEMPTED 
195 CONSESe 
1.886 SECONDSd 
PAI~INGS:e 
S NP DET THE 

N MAN 
AUK TNS PAST 
VP V KICK 

NP D E T  T H E  
N BALL 

a The indentations correspond to the depth of recursion. 
b The alternative analysis path starting with arc 4 is saved. 
c Number of memory words used. 
o Processing time required. 
• The recovered deep structure. 

Flo. 2. Trace of an analysis. 
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Kick satisfies the label on arc 2, so the condition is evaluated, checking 
the inflectional features in the dictionary entry for kick. The predicate 
(GETF TNS) verifies that the verb is a tensed form (as opposed to a parti- 
ciple), and SVAGR ascertains that the person-number code of the verb 
agrees with the noun-phrase stored in the register SUBJ. Since the condition 
is true, the transition is permitted and the actions are executed, setting the 
register TNS to the value of the feature TNS (in this ease it would be PAST) 
and saving the verb in V. At state VP[V, we have a choice of two arcs. Are 3 
is a push for an object noun-phrase, which we can take since (TRANS V) 
is true, that is, since the verb in V (kick) is marked transitive in the dictionary. 
We execute the push, identify the noun-phrase the ball, and save it in the 
register OBJ. At S/VP we pop the value of SBUILD, a function which uses 
the contents of the registers SUBJ, TNS, V, and OBJ to build the tree (9). 
Notice that at this point we have exhausted the input string, achieved a 
final state, and emptied the push-down stack. Thus the sentence (6) is accepted 
by the grammar, and its deep structure is the structure returned by the final 
POP. 

(9) S . / / I  
NP AUX VP 

/ \ I /\ 
DET N TNS V NP 

I ,I I ! \  
the man PAST kick DET N 

I b~ll the 
Sentence (7) is processed in the same way, except that arc 4 is taken instead 
of arc 3, since fall is marked intransitive. Hence, the resulting structure does 
not have the object NP node. 

For these two examples and, indeed, for all sentences in the language of  
this grammar, the structure returned by the final POP directly reflects the 
history of the analysis- the surface structure - but this need not be the case. 
As a second illustration, we extend the grammar to deal with passive 
sentences, such as (I0): 

(10) The ball was kicked by the man. 
We must add one new state, S/BY, a new arc to state VP/V and two new 
ares to state S/VP. In addition, we must change the conditions on arcs 4 and 5. 
Fig. 3 shows the new grammar, with new arcs in boldface and with only 
new and changed conditions and actions. For sentence (10) the new grammar 
works as follows: the ball is recognized as a noun-phrase and placed in SUBJ. 
Was passes the condition on arc 2, so PAST is stored in TNS and be is 
Artificial Intelligence 3 (1972), 77-100 
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placed in V (as part of  the category checking operation, the inflected form 
was is replaced in * by its root). At this point in the sentence, we do not know 
if be is a passive marker or a main verb as in (1 !). 

(11) The ball was a sphere. 
We make the assumption that i~ is a main verb, with the understanding that 
later information might cause us to change our minds and possibly rearrange 
the structure we have built. At state VP/V we find that we have indeed made 
a mistake. We first attempt the arc 9 transition. We are looking at kicked, the 
past participle of  a passivizable verb, and be is in V, so we can make the 
transition: the contents of SUBJ (the ball) are moved to OBJ and SUBJ" is 
emptied (a register containing NIL is considered void). Then kick replaces 
be in V, and we re-enter state VP/V, looking at the word by. 

2 

Q c~ v 

JUMP( I ~ [ , , . ~  
-~2 ~ Pus1.1 N~ / ' I ~ /  

® .  o 

Arc Canal|lion Acffons 
o 

4 (OR (~NTPJ~NS V) 
LFULIZ(OBJ)) 

(FULLR SUB J) 

(AND (GETF PASTPARI) (S~Tft OBJ SUBJ) 
(PASSSVE*) (SrTR SUSJ NtL) 
(W~ BE V)) (SET~ V ' )  

I0 (NULLR SUB J) 

I I  T (SET~ SUBJ *) 

12 (NULLR SUB J) (SETR SUBJ 
(QUOTE (NP {PRO SOMEONE)))) 

Fi,~. 3. Arcs required for passives. 

By is not a verb, so arc 9 is disallowed. Kick is transitive, so we try pushing; 
for a noun-phrase, but since by is not a determiner, the push is unsuccessful. 
Arc 4 has been modified so that it can be taken if the verb is transitive but 
the object register has already been filled (the predicate FULLR is true jusL 
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in case the indicated register is nonempty), and we can therefore JUMP to 
S/VP. 

At S/VP we cannot take arc 5 because we have no subject, so we try arc 10, 
a WRD arc. This arc type corresponds to the original finite-state grammar 
arc-label, a symbol which must literally match an input word. Arc 10 specifies 
WRD BY and matches the current word, so the transition is allowed (NULLR 
is trtte when FULLR is NIL). At this point in the sentence, the only way we 
could not have a subject is if we had followed the passive loop. We therefore 
look for the deep subject of the sentence in a by-phrase: we take arc I1, put 
t he  m a n  in SUB/, and return to $/VP, from which we pop. The resulting 
structure is identical to (9 ) -  we have undone the passive transformation. 
If the ageat phrase had been omitted in (10), we would have taken arc 12 
instead of the path through S/BY. Arc 12 is a JUMP that inserts the pronoun 
s o m e o n e  in SUBJ just in case there is no other way to get a subj~t. 

These simple examples have illustrated the notation and underlying 
organization of the augmented recursive transition network. They have also 
demonstrated that transition network grammars can perform such trans- 
formational operations as movement, deletion, and insertion in a straight- 
forward manner. We are now ready to examine the way .in which transition 
network grammars can model performaace data. 

4. The Formalization of Perceptual Strategies 
Bever [6] has surveyed the results of many psycholinguistic experiments and 
has infe:'red from the data that human beings use a small number of perceptual 
strategies in processing sentences. Some of these are corollaries of more general 
cognitive strategies and have observable reflexes in other areas of perception, 
while others are peculiar to language performance. As a set, these strategies 
account in part for the relative perceptual complexity of sentences and for 
some of the patterns of observed perceptual errors. In this section, we show l'~ow 
,:hese strategies can be naturally represented in transition network grammars. 

'The dependent variable in a majority of psycholinguistic studies has been 
the di~culty subjects experience in processing sentences, as indicated for 
example by response latencies, recall errors, and the impact of various 
disturbances on comprehensibility. Thus the ultimate validation or" transition 
network models will depend to a large extent on the correlation between 
experimentally observed complexity and complexity as measured in the 
transition network. There are several ways of defining a complexity metric on 
the network. We could count the total number of transitions taken in 
analyzing a sentence, the total number of structure-building actions executed 
or even the total number of tree-nodes built by these actions. We could also 
use the amount of memory space or computing time required for a sentence 
in a particular implementation of the transition network parser (e.g., the 
Artificial lntdligence 3 (1972), 77-100 
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number of conses (memory cells) or seconds indicated in Fig. 2). Of  course, 
most intuitive measures of complexity are highly inte'~'eDrrelated and lead 
to the s~me predictions, so our ct, oice can be somewhat arbitrary. We will 
say that the complexity of a sentence is ~lirectly proportional to the number of  
transitions made or attempted during the course of its analysis. 

With this definition the complexity of a sentence depends crucia][iy on the 
order in which the network is searched ~ t  a ~uccessfui path, alt]hough its 
acceptability by the grammar is independent of the search-order. Unless 
special mechanisms are invoked, the arcs leaving a state-circle are tried in 
clock.rise order, starting from the top. Thus in Fig. 3, arc 5 is attempted before 
arcs 10 and I2. If  a~i attempted arc turns o,zt to be permitted, then the 
remaining, untried arcs leaving the state are held in abeyance on a list of 
alternatives, and the legal transition is mate.  If  the path taken is subsequently 
blocked, alternatives are removed from the froat of this list anO. tried until 
another legal path is found. As a result of this depth-first search, an ambit, uous 
sentence will initially provide only one at~alysis; the other analyses are ob- 
tained by simulating blocked paths after successes. 

4,1. The Relations Between Clauses 
Since sentences are frequently composed of more than one clause, the native 
speaker must have a strategy for deciding bow the component clauses of  a 
sentence are related to each other (e.g., which is ~he t~ain clause, which are 
relative clauses, and which are subordinate) Beret pr~po,Jnds that "the first 
N . .  V . .  (N) c l ause . . ,  is the main clause, unless the verb is marked as 
subordinate" [6, Strategy B, p. 294], and points out that a sentence is per- 
ceptua!ly more complicated whenever the first verb is not the main verb, 
even if it is marked as subord;nate. 4 According to this hypothesis, sentences 
wit:~ preposed suboidinate clauses (12b) are relatively more difficult than 
their normally ordered counte.rparts (I 2a): 

(12)a. The dog bit the cat because the food was gone. 
J. Because the food was gone, the dog bit the caL [ -  Bever's (24a-b).] 

4 Relative pronouns a.; well as subordinating conjunctions are considered markers of 
subordinate cla~Lse~, so that Beret's strategy B would predict that relative clauses on subject 
noun-,h~ses shouitJ oxld more to perceptual complexity than the same clauses in post- 
verbal, object position, if  this is true, relative clauses should not be identified by a push 
within a noun-phrase (~ee Fig. 4), for th,s predicts the same degree of complexity for all 
relative clauses, no nmtter where they appear ir~ relation to the main verb. We are currently 
explorin~ the possibility of analyzing relatives tsn subjects at the S/level, by a system of 
arcs emanating from state S/SUBJ. This approach complicates the grammar to some extent, 
but it appears that it can account for the di~ct,.lty with subject relatives as well as the tre- 
mendous complexiw of center-embedded sentences. It would also explain the observation 
by Blumenthal [26] that subjects tend to perceive center-embedded constructions as simple 
structures of conjoined no,ms and conjoined verbs. We will report on the details of this 
approach in the near future. 
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And in cases where the first apparent verb is not the main verb but is not 
marked as subordinate, this strategy can lead to serious perceptual errors. 
Bever reports |L, at subjects had much more difficulty understanding sentences 
like {13a), where there is an illusory main verb and sentence (italicized), than 
(I 3b), even though both sentences, being center-embedded, are exceedingly 
difficult: 

(13) a. The editor authors the newspaper hired liked bughed. 
b. The editor the authors the newspaper hired liked laughed. 

[= Beret's (2?a-b).] 
Q FUSH SUBORD/ / . ) , ,  
k /_  Push Ne/ _ ¥  / 

CAT V ~ , ~ , ~ ~ P O P  (SSUILD) 

JUMP/ I ~ 
-i, t . . , / ,us. N e / ~ ~  

I I  

PUSH SUaORD/ 
13 

CAT N 
7 

JUMP 
17 

_ ~ PoP (NP~U~) 

PUS. RmJL 
15 

Asc Cord;t;on 

13 (NULLR SUBORD) 

14 (NULLR SUBORD) 

15 (CAT RELPRO) 

16 T 

17 T 

FIG. 4. A strategy for clausal relationships. 

A:t|ont 

(SETR SUBORD *) 

(SF.~ SU6ORO *) 

(5ENDR WH (NPBUILD)) 
(ADDR REL *) 

(SENDR WH (NPSUlLD)) 
(ADDR REL o) 

The modifications to our transition network shown in Fig. 4 can account 
for these facts. We have added two arcs at the S/level to look for subordinate 
clauses: a simple transition sequence (not shown) analyzes and builds the 
appropriate structure for them. Also, we have expanded states NP/ to  allow 
null determiners, and NP/N to look for relative clauses. With this grammar, 
four more arcs, 1, 6, 17, and 7, must be attempted for (12b) than for (12a). 
For (12b), first arc I is tried, causing a push to NP/where arcs 6, 17, and 7 are 
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tried and fail. We back up to s~ate S / a n d  take arc 13, eventually ending up 
with the appropriate structure (the complete sequence of attempted arcs is 
1, 6, 17, 7, 13, SUBORD/arcs  (not shown), 1, 6, 7, 8, 2, 9, 3, 6, 7, 8. 14, 5). 
Note that we must still attempt arc 14, even though we know the condition will 
fail, because it is ordered before the pop arc, arc 5. For (12a), our first t ry  at 
arc 1 takes us straight through to arc 14, where we pick up the subordinate 
clause, consider arc 14 again, and then pop at arc 5 (sequence = I, 6, 7, 8, 2, 
9, 3, 6, 7, 8, 14, SUBORD/arcs ,  14, 5), 

The difference between (13a) and (13b) is equally well accounted for. Arc 
15 looks for a relative clause on the noun,phrase, given that there is a relative 
pronoun following the noun. The a t :  has two new actions, SENDR and 
ADDRo Registers are subject to the control of  the push-down recursion 
mechanism, so that when a push is executed, the registers' contents at the 
upper level are saved on the stack along with the actions to be executed 
upon return, and at entry to the lower-level, ti~e registers are all empty, 
Upon popping, the upper level registers are restored. SENDR is a very 
special action: it can only appear on a PUSH arc, and it is the only action 
executed before pushing. It causes structures computed a t  the upper level 
to be placed in registers at the lower level. Thus the action (SENDR WH 
(NPBUILD)) causes the noun-phrase so far identified to be placed in the 
WH register at state R/, the beginning of the relative clause network (not 
shown). Based on the internal structure of the relative clause, the R/network 
decides whether the relativized noun-phrase in WH is to be interpreted as the 
subject or object, analyzes the clause using parts of the S /and  NP/networks,  
and returns the appropriate structure. (ADDR REL *) causes this s~ructure 
to be ADDed on the Right of the previous co~tents of REL, so that a 
sequence of relative clauses can be processed by looping through arc 15. 

In (13a-b), however, there is no relative pronoun,, so we cannot take arc 15. 
For both sentences, a successful analysis requires that we push to state 
R/NIL (arc 16), the section of the relative clause grammar designed to 
analyze relatives with missing relative pronouns. But before we get to arc 16, 
we pop via arc 8 to state S/SUBJ. In (13a), the input word at this point is 
authors, a possible verb, so v,e can take arc 2 to state VP/V. We continue on 
until we try to pop at arc 5 without having consumed the input string (the 
current word is hired), and by the time we have backed up all the way to the 
appropriate arc 16, we have attempted seventeen arcs erroneously (sequence 
= 1, 6, 7, 8, 2, 9, 3, 6, 7, 8, 14, 5, 10, 12, 15, 16, blocked R/NIL arcs, 17, 7, 
4, 15, 16, R/NIL arcs, 8, 2, 9, 3, 6, 17, 7, 4, 14, 5). For (13b), since the is not 
a verb, we are blocked at state S/SUBJ, and we ar~ive at arc 16 having only 
attempted three wrong arcs (sequence = 1, 6, 7~ 8, 2, 15, 16, R/NIL arcs, 8, 
2, 9, 3, 6, 17, 7, 4, 14, ~:). Inside the relative clause grammar, the noun phrase 
authors in (! 3a) requires an extra transition at arc t7, so th;  net difference 

Artificial Intellioence 3 (1972), 77-109 



92 RONALD M. KAPLAN 

between the two sentences is fifteen arcs, not counting the blocked R/NIL 
arcs in (13a), a difference clearly in line with empirical perceptual complexity. 

We have thus expanded our simple grammar to accept and provide deep 
structures for a variety of copstructions. Our grammar has the same formal 
power to describe these structures as a transformational grammar, but we 
have been able to arrange the analysis path so that complexity in our model 
corresponds to perceptual complexity, as stated by lkver's strategy B. We 
have taken advantage of the fact that, unlike the ordering of transformations, 
the order of arcs can be freely changed, radically altering the amount of 
computation required for parth:uiar sentences, without affecting the class of 
acceptable sentences. 

4.2. Functional Labels 
A major task in sentence comprehension is the determination of the functional 
relationships of constituents within a single clause, of deciding who the sub- 
ject is, what the action is, etc. Bever suggests a simple strategy for assigning 
functional labels based on the left-to-right surface order of constituents: 
"Any Noun-Verb-Noun (NVN) sequence with a potential internal [deep 
structure] unit in the surface structure corresponds to 'actor-action-object'" 
[6, Strategy D, p. 298]. Bever cites several perceptual studies involving 
sentences for which this strategy is misleading, and in all cases, these sentences 
were more difficult to respond to than control sentences for which strategy D 
was appropriate. 

There is very good evidence that passive sentences are more difficult to 
process than corresponding actives, in the absence of strong ~en-~antic 
constraints. Given strategy D, this follows from the fact that the surface 
order of passives is object-action-actor. Similarly, progressives (14a) have 
been found to be significantly easier to comprehend than superficially identical 
participial constr~=~ions (14b) [22]. 

(14) a. They are fixing benche~. 
b. They are sleeping monkeys. 

According to strategy D, sleeping is initially accepted as the main verb, until 
the spurious direct object monkeys is encountered; at this point the labels 
must be switched around. 

Bever explains these processing difficulties in terms of the amount of 
relabeling that is requirect, given that strategy D can lead to errors. This 
translates into the proposition that relative complexity is measured by the 
degree to which constituents are shifted in registers, since assigning a con- 
stituent to a register is the transition network analog of functional labeling. 
Indeed, Fig. 3 shows t.hat SUB3 is reset twice more for passives than for 
actives, while in Fig. 5 participial sentences require one extra register assign- 
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ment (NMODS). However, we have defined complexity in terms of the number 
of arcs attempted, and we now show that this measure can also account for 
the experimental results. 

Fig. 3 contains the arcs necessary for passive sentences. Simple active (6) 
and passive (10) sentences are treated identically until state VP/V is reached. 
Arc 9 is attempted for both of them and is taken for the passive, returning to 
VP/V. 9 is attempted again but fails, and then twelve additional arcs are 
tried before the successful final pop is executed. Since only six additional 
arcs are attempted for the active, the difference in favor oc the relative 
complexity of the passive is six. (The diEerence is seven for the more compli- 
cated grammar in Fig. 5.) 

Arc 
-  

16 

19 

tmditiorl 

(AND (GETF PpXSPARl) 
(WRD BE V)) 

(GETF PRESPARTJ 

Aci iOm  
- .  

(SETI  V*)  
(ADDR TN’S (QUOTE F’ROG#SSJ) 

(ADDR NMODS *J 

FKL 5. Progressive and prenominal participle arcs. 

Fig. 5 gives the necessary modifications for the progressive and participial 
constructions. Arc 18 can be taken only if the current word is a present 
participle and the previously identified main verb is be. The actions put the 
new verb in V and mark TNS as progressive. Arc 19 simply adds an identified 
participle to NMODS, where the function NPJWILD will find it. The analysis 
of (14a) is simple: at state VP/V, the current word will befixi~~ and be will 
he in V, so that arc 18 can be taken. Since& is transitive, benches will be 
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identified as the direct object, and the pop at arc 5 will be successful. (14b) 
involves considerably more effort. At VP/V, arc 18 will also be taken but 
arc 3 is ruled out with sleep in V. Before returning to arc 3 with be in V, 
arcs 4, 14, 5, 10, and 12 will be tried, and additional arcs will be attempted in 
deriving the correct participial analysis (we assume that be is marked transi- 
tive). 

Thus the functional-relabeling and the attempted-transitions explanations 
account equally well for the experimental observations. At present we have 
no firm empirical basis for choosing one ccmplexity measure over the other; 
we must find crucial sentences where the measures make opposing predictions 
and let the data decide for us. So far, we have been unable to discover such 
sentences. 

4.3. Prenominal Adjective Ordering 
Another problem concerns the segmentation of superficial sequences of words 
into structural units. Where does a noun-phrase herin, for example, and where 
does it end? That these are not trivial questions is illustrated by (15a-b), 
where the role of marks is unclear until the whole sentence has been processed. 

(15) a. The plastic pencil marks easily. 
b. The plastic pencil marks were ugly. ~ -  Bever's (66a-b).] 

O f  course, no matter what perceptual strategy is involved in making these 
decisions, the transition network w~H continue trying alternative paths until 
it arrives at the correct segmentation, but an appropriate strategy would 
make the analysis more efficient. Bever suggests that in recognizing the end 
of a noun-phrase, native speakers use a strategy which also accounts for the 
anomalies in such pairs as (without contrastive stress): 

(16) a. The red plastic b o x . . .  
b. *The plastic red b o x . . .  
c. The large red b o x ° . .  
d. *The red large b o x . . .  

[ = Bever's (67a-d).] 
He cites the theories of Martin [23] and Vendler [24] which essentially claim 
that the more "nounlike" an adjective is, s the closer to the noun it must be 

5 Intuitively, an adjective is more "nounlike'" the more syntactic or semantic properties it 
shares with nouns. Thus large is ranked below red and red below plastic because of the 
relative aumber of noun frames they can fit in, as in (a-d): 

(a) i like red. 
(b) *I like large. 
(c) The toothbrush is made of plastic. 
(d) *The toothbrush is made of red. 

Martin [23] suggests that "'definiteness" or "absoluteness" is the key semantic property 
involved in nounlike-ness. 
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placed. Thus the an,~malies in (16) are accounted for if we assume that 
plastic is more nounlike than red and red is more nounlike than large. 
Although the notion nounlike "~s not made very precise, Bever gives heuristic 
arguments that these assumptions are correct. He then postalates that the 
end of a noun phrase is signalled by a word which is less nounlike than 
preceding words [6, Strategy E, p. 323]. Since ierge is less nounlike than red, 
the initial noun phrase in (I 6d) must be the rea. 

CAT V / "~  CAT V PUSH SUBORD/ 

__ ~ ~L t_ . /Pus ,  N~I __t / "  
POP (SBUILO) 

~ 1  " ~ , ~  2 ~ W R D B Y  
\ "~P~;HSUBORO/ ...... / I " \  " ~ 1 °  

CAT Nf"~ 12 ~ PUS 

- \ T \ \   PusH 
"'/7 ~ C A T  V t ~ N~') 15 

19 ' ~  PUSH R/NIL 
16 

Arc Cond;t;©n A~t;on; 

2-3 (GE (NLIKE N) (ADOR NMOD$ N) 
(NHKE *)) (SETR N *) 

FIG. 6. Prenominal adjectives. 

This constraint is difficult to express in traditional transformational 
formalisms but is quite directly representable in the transition network. 
It not only makes the transition network more congruent with performance 
data but also helps to rule out the anomalies in (16). Assuming that nounlike 
is well-defined and that all potential nouns (including adjectives) are in 
category N and have their nounlike-ness marked in the lexicon, the new arc 
shown in Fig. 6 is the ,lecessary addition to the network. Arc 20 is attempted 
before the pop from NP/N. If the nounlike-ness of the current word is gre,~ter 
than or equal to that of the word in N, then the word in N is not the head of 
the noun-Fhra~. We add this word to the list of modifiers in NMODS, and 
place the curre:lt word in H, as a new candidate for head noun. We continue 
looping until ~1e find a word that is less nounlike than the head, marking 
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the end of the noun-phrase. This procedure will accept (16a,c) but reject 
(16b,d) except in coastructions along the lines of 07). In (17) the adjectives 
are accepted only because, they can be analyzed in separate noun-phrases: 

(17) I like the plas',ic red boxes are made of. 

5. The Justification of T ~ | t i o n  Network Models 
In the preceding sections we illustrated the simple way in which transition 
network grammars can express some of Bever's perceptual strategies. The 
transition network analyzes strings in essentially finear order, and the 
grammatical notation is flexible enough so that grammars can be devised to 
fit wide ranges of performance facts, tlowever, to justify the effort needed to 
simulate experimental data with network models, we must show that the 
resulting grammars offer substantial advantages compared to informal 
verbal interpretations, such as Bever's. In this section we argue that these 
grammars are both conceptually and empiricaily productive: they lead to 
new theoretical questions, and they suggest new lines of experimentation, 
predicting specific outcomes. To the extent that the predictions of a particular 
grammar are confirmed, that grammar is validated as a model of the psycho- 
logical processes involved in sentence comprehension. 

The grammar shown in Fig. 6.. while only a small fragment of a complete 
English grammar, will suffice to exemplify the empirical implications of 
transition network models. It has been designed to account for the data 
underlying the perceptual strategies discussed above, but it also encomnasses 
independent findings. The grammar mirrors the perceptual strategies just so 
long as a depth-first search procedure is used to discover successful analys;s 
paths. This search order implies that for truly ambiguous sentences, one 
interpretation wi!! be recovered before the other; if required, the second 
interpretation can be recovered by simulating a failure and contin:~ing the 
analysis. This is in line with the results of MacKay and Bever [7] and Foss 
et aL [25]: MacKay and Beret found subjects to be aware that they arrived 
at o~e interpretation of an ambiguous sentence first and could even report 
what the first interpretation was. Foss et al. discovered that subjects tend to 
interpret ambiguous sentences in only one way; if the first interpretation is 
incompatible with the experimental context, they can usually go on 1o find 
another interpretation, although additional time is required. The search 
strategy underlying the Fig. 6 grammar accounts for these results even 
though the experiments are not implicated in the perceptual strategies the 
grammar was designed to represent. 

For ambiguous sentences within its scope, the grammar clearly predicts 
which interpretation should predominate. Other things being equal, the first 
interpretation will have essentially the same analysis as the less complex of 
two unambiguous sentences with the same surface structure. Thus in a 
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replication of ~he Foss et al. experiment, the first an'alysis of (18a) should be 
the progressive, resembling (14a), while the participial deep structure (14b) 
should come cut second. Subjects should first arrive at the conclusion in 
(18b), rather than (iSc): 

(! 8) a. They are frightening monkeys. 
b. The monkeys are scared. 
c. The monkeys are scary. 

The Fig. 6 grammar similarly prc,::cts ~he outcome for another class of 
ambiguous sentences, where a word can be analyzed either as the head of 
the subject noun-phrase, utilizing the prenominal adjective arc, or as the 
intransitive main verb (19-20). With the nounlike-ness markings which 
permit the ambiguity, 6 the 

(i9) The Irish water boils, 
(a) just like any other water. 
{b) but the sores still hurt. 

(20) The French bottle smells, 
(a) since it contained vinegar. 
(b) but they bottle soft-drinks too. 

grammar predicts that the interpretations corresponding to the," (a) continua- 
tions will appear first. Thus again our simple grammar has concrete empirical 
implications. 

It should be noted that the ambiguities in (19-20) involve a conflict between 
two of Bever's perceptual strategies. The (a) interpretations follow from the 
prenominal adjective strategy while the (b) interpretations are consistent 
with the functional labeling strategy, with water and bottle considered as the 
first verbs. Bever presents his strategies in isolation from one another, 
without specifying their interreJationships, bt:t the transition network 
forraalism requires the integration of all strategies into a s~ngle system. 
Potential stretegy conflicts are highlighted~ usually in the form of questions 
about the rels.tive ordering of two or more arcs leaving a state, and the 
alternative grammar formulations often lead to the discovery of crucial 
cases that can be studied experimentally. Thus for example, the prenominal 
adjective and the functional labeling strategies could ha,/e oeen expressed in 
another grar~mar with the opposite pr¢~cedence relation, so that the (b) 

6 Examples which are ambiguous orthographically, such as (19-20), are more difficult to 
discover and seem more-strained than acoustically ambiguou: ones: 

(a) (i) Tl:e sun's rays meet. 
(ii) The sons raise meat. 

(b) (i) The producer's show flops. 
(ii) The producer~ show flops. 

I am indebted Io John Ross and Michael Maratsos for these examples. 
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interpretations in (19-20) would be judged less complex than the (a) ones. 
The choice between the Fig. 6 grammar and this alternative model depends 
on the outcome of the ambiguity experiment described above. 

Besides empirical consequences, questions of strategy interaction have 
important conceptual ramifications. Bever remarks that perceptual strategies 
express "generalizations which are not necessarily always true" [6, p. 294, 
footnote 2], that each isolated strategy will be misleading in some cases. 
The strategies thus serve as heuristic guidelines to the listener and do not 
directly reflect his abstract appreciation of the structure of his language. 
A transition network model, on the other hand, incorporates a set of 
strategies and clarifies their interactions; the set as an integrated whole is 
valid if it fails only for sentences which are truly unacceptable. Thus a transi- 
tion network model is intended to make assertions about the lister, er's 
linguistic knowledge, whereas a set of isolated perceptm'l strategies is not. 

Transition network models raise other conceptual issues: w~ have already 
mentioned the question of selecting an appropriate complexity metric for the 
network, which is related to the problem of determinin$ a small set of 
primitive, psychologically relevant actions and predicates. The network 
formalism also provides a new vocabulary for discussing the processes of 
language acquisition. We can imagine that as a child's linguistic abilities 
develop, a transition network model of his perceptual performance will evolve 
in stages of increasing elaboration, much as the grammar in Fig. 6 grew out 
of Fig. 1. New predicates and actions will appear, new arcs and states will be 
added, the order of arcs will be adjusted, and old and new arcs will interact 
to handle new syntactic constructions. It should be possible to demonstrate 
small, systematic deformations between the grammars representing the various 
levels of acquisition, and the sequence of grammars shouid have strong 
implications for models of adult performance. Finally, it is conceivable that 
detailed investigations of transition network acquisition grammars will lead 
to an algorithm that simulates the language acquisition process, that takes 
the kinds of data available to children at the different stages and devises 
appropriate perceptual models. 

6. Conclusion 
The :mgmented recursive transition network we have described is a natural 
medium for expressing and explaining a wide variety of facts about the 
psychological processes of sentence comprehension. We have shown how 
several perceptual strategies can be represented, ~,nd ;n the last section we 
explored some of the empirical and conceptual implications of these 
formalizations. These considerations illustrate the usefulness of transition 
network grammars as research tools and support their validity as perceptual 
models. 
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Of course, there are several important issues we have not touched on: 
the role and representation of semantic information in sentence compre- 
hension, the differences between the processes of sentence perception and 
production~ and the correspondences between transition network grammars 
and conventional transformational rules. We are currently investigating these 
problems. We are coupling the transition network parser to a semantic net- 
work so that nonsyntactic features and context can guide the course of  
sentence analysis and lead to appropriate semantic interpretations. We are 
also studying the formal and practical difficultie3 in using the transition 
network notation for writing generative grammars; ~ve hope ~o find a simple 
algorithm for mapping adequate perceptual models into equivalent produc- 
tion grammars. And finally, we are constructing two large transition network 
gramtnazs, ,one based primarily on performance data and the other intended 
to capture generalizations about linguistic competence as transformational 
grammars express them. We expect these grammars to converge, giving a 
single grammar and one notation for modeling both competence and perfor- 
mance. Reports on these investigatior.s are in preparation. 
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