Language and Cognitive Processes, Vol. 1, No. 3, pp. 197-225 (1986)
© 1986 VNU Science Press.

Grammars, parsers, and memory limitations

S. G. PULMAN
University of Cambridge Computer Laboratory, Corn Exchange Street, Cambridge, UK

Received June 1985; accepted in revised form January 1986

Abstract—Linguistic competence cannot be adequately characterized by grammatical devices of finite
state power. Nevertheless, there are reasons to suspect that the human parsing device cannot adequately
deal with languages that fall outside this class. This paper discusses these issues, arguing that restrictions
on available parsing memory, and on our ability to operate properly when parsing recursive construc-
tions, mean that there is an interesting sense in which human parsing resources must be characterized as
finite state. This means that certain constructions regarded as grammatical according to a (richer than
finite state) competence grammar, are not parsable, or are parsed in a way which is not in exact
correspondence to their description by this grammar. This raises the further question of how these
constructions can nevertheless be understood appropriately, given the assumption that semantic
interpretation relies on syntactic structure. The paper goes on to describe an implemented computer
program which embodies the claims made here about the nature of human parsing. It produces semantic
interpretations (logical forms) incrementally on a left to right pass through a sentence. It uses only finite
state resources while parsing a context-free (or richer) type of grammar. Although using the information
provided by a competence grammar it does not build any explicit syntactic representations. Its
behaviour when parsing recursive constructions is claimed to closely approximate our own.

1. BACKGROUND

In an early statement of the requirements of an adequate linguistic theory,
Chomsky (1964, p. 120, see also 1959, p. 126) argued that such a theory should
make available for a language L(7) with grammar G(i):

. . . a function g such that g(i,n) is the description of a finite automation that takes . . .
sentences . . . (of L(7)) . . . as input and gives structural descriptions assigned to those
sentences by G(i) . . . where n is a parameter determining the capacity of the automaton.

This is a requirement that linguistic theory should provide some abstract account
of how a grammar might be put to use in the production or comprehension of
sentences, a demand which, if met, would take us ‘one step closer to the actual use
of language’ (1961, p. 121)—a step towards a model of performance.

The requirement that the device specified by g(i, n) be a finite automaton (finite
state machine) of some sort arises from the simple observation that human memory
and computational resources, while prodigous, must be finite. It is this fact that
implies that, at some level, speaker-hearers can be modelled by a finite automaton,
even though they may have internalized a (finitely stated) device capable of
generating a language beyond the recognitional capacities of any finite automaton,
and even though there may be nothing in their cognitive makeup with the literal
internal architecture of a finite automaton:

We have observed that such elementary formal properties of natural language as
recursive nesting of dependencies made it impossible for them to be generated by finite
automata, even though these properties do not exclude them from the class of context-
free . . . languages. From these observations we must conclude that the competence of the

native speaker cannot be characterized by a finite automaton . . . Nevertheless, the
performance of the speaker or hearer must be representable by a finite automaton of
some sort. The speaker-hearer has only a finite memory, a part of which he uses to store
the rules of his grammar (a set of rules for a device with unbounded memory) and a part
of which he uses for computation in actually producing a sentence or ‘perceiving’ its
structure and understanding it. (Chomsky, 1963, p. 390.)

Expressed in this way, the claim that the parsing abilities of speaker—hearers can
be modelled in finite-state terms is fairly trivial: the performance of any cognitive
ability by any mortal organism with finite powers is likewise guaranteed to be finite
state in character. For example, suppose it turns out that human linguistic
competence is characterised by some device of Turing machine power. A finite
automaton augmented with two push-down stores is capable of parsing all the
sentences generated by such a device (if they are capable of being parsed at all).
The overall finite state character of such a combination is guaranteed if the depth of
the stacks is restricted to some finite limit, say 100 million entries. Clearly, for all
practical purposes, the claim that such a device is finite state is, while true, of no
interest. Call this the ‘trivial’ version of the finite state claim.

A more interesting version of the finite state claim runs as follows. A strict finite
state device for parsing or recognition has no memory available to it for storing the
results of intermediate computations. Any device which does have such a memory,
but where the size of the memory is fixed, is equivalent to some strict finite state
device as far as the language generated is concerned. Unless otherwise qualified,
when we refer to a ‘finite state device’ in what follows, it will be to a device of the
latter type (and one, moreover, with a fairly small amount of fixed memory) rather
than to the strict version.

The relevant property of finite state devices in this sense for our concerns is that
the load on memory for such a device need not vary according to the length of the
sentence being parsed. This is in contrast to richer devices, for example, an
automaton enriched with an unlimited stack and thus capable of parsing a context-
free language: if we regard the maximum depth of the stack as a measure of
memory load, then characteristically for such devices this depth will vary according
to the length of the sentence, longer sentences requiring, in general, a bigger stack
to be parsed successfully. The interesting version of the finite state hypothesis
maintains that this pattern of memory allocation is not an accurate characterization
of the human parsing mechanism, and that the finite state description of a small and
relatively fixed amount of memory independent of the length of the sentence more
closely approximates what actually happens.

The ‘interesting’ finite state hypothesis is not a novel one. It seems clear that
Chomsky had this in mind in framing the requirements we began with, rather than
the trivial version (see Miller and Chomsky, 1963). More recently, Langendoen
(1975), and Langendoen and Langsam (1984) have advanced the ‘Efficient Finite
State Parsing Hypothesis’ that:

. . . natural languages are designed so that representations of the structural descriptions

of acceptable expressions of the language can be assigned to them by finite state parsers.
(Langendoen and Langsam, 1984.)

(which seems, incidentally, an odd way round to describe things). Other models
have attempted to explain apparent properties of the human parsing system via
memory limitations of one sort or another: Fodor er al., (1974), Kimball (1973),

——

Frazier and Fodor (1978), and Church (1980), among others. In some cases the
constraints or strategies proposed have the effect of ensuring the ﬁmte-sfgte-ness
(in the interesting sense) of the overall system (Church is particularly explicit about
this). . .
However, none of these authors have attempted to make such clalm_s compatible
with other requirements on a theory of parsing. At least two requirements are
particularly relevant: (i) a theory of parsing shoul'd show“how the process.of
semantic interpretation interacts with syntactic analysis; fmd (u).a tlu‘ao?y of parsing
should show how the kind of online contextual resolution of linguistic amb1guity
documented by, for example, Marslen-Wilson (1975), Tylf:r anq Mars]en—Wﬂsqn
(1977) and Marslen-Wilson and Tyler (1980), is at least possible within the syntactic
rk proposed.
fralr:llc:}?at ?ollgws, we will explore the various issues raised b},: the finite staFe
parsing hypothesis and its interactions with these other two requirements, and' in
later sections present a description of an implemented parse.r~511‘tcrprett‘:r which
resolves many of these questions and which seems to be a good unpal candidate for
the finite automaton described by Chomsky’s function g(i,n) in the quotat{on
which began this section. Section 2 discusses the formal background concerning
finite state and context free languages. Section 3 hypothesi‘ses 'that we are unable_ to
parse any recursive constructions at all, entailing th?t parsing is finite state. Section
4 argues against some alternative approaches. Sgctlon 5 describes and }llustrates a
computer program which implements the analysis propQSed here.. Section 6 shows
how the parser behaves appropriately when faced with left, right, and centre
embeddings, and Section 7 summarizes and concludes.

2. CENTRE EMBEDDING, FINITE-STATE- AND CONTEXT-FREE-NESS .
One of the earliest and most enduring of the observation:v; in1 the generative
grammar literature concerns the difficulty of centre embedding.” Under normal
circumstances centre embedded structures of a degree more than two are extremely
difficult to process, and even those of degree two are noticeably awkward.

(1a) The woman the man loved died ‘

(b*) The woman the man the girl met loved_ died :

(c**) The woman the man the girl the dog bit met loved dled_ :

Clearly other factors are also involved: Schlcsmger (19§8, cited in Fodor et al.,
1974) showed that where pragmatic information is a_vallable to help match' up
subjects to their appropriate verb, processing is easier. Neverthel‘ess, multiple
centre embedding is never as easy as comparable d.e‘grees of right and left
embedding, and these intuitive judgements of acceptability are suppor?ed by the
experimental findings of Miller and Isard (1964) whlc}'l showed that dlfﬁc_ulty of
recall increases with depth of centre embedding, not with depth. of embedding per
se. Furthermore, non-recursive nesting, while it can get more difficult than left or
right embedding, is still easier than recursive nesting:)

(2) [1f [John sent [the book that you borrowed] back to the library], then . . ‘.]

Given that what distinguishes finite-state languages from context-ﬁ:ee. and richer
languages is precisely that the former are unab]e.t.o allow fo.r unlimited centre
embedding, whereas the latter are, the unacceptablhty. of multiple centre embe.d-
dings in natural languages seems to fit nicely with the finite state parsing hypothesis.
Furthermore, in (1959) Chomsky proved a theorem which showed that for a
context-free grammar which only allows a small (finite) amount of centre embed-

200 S. G. Pulman

ding, it is possible to construct a finite-state transducer mapping from terminal
strings of the language generated by the grammar to structural descriptions of the
sentence. (A transducer is an abstract device mapping one language into another:
here the first language is the language of the grammar, and the second a language in
which its structural descriptions are couched.) The limit applies to centre embed-
dings only, and any amount of right or left embedding is allowed. Given the
observation about the difficulty of centre embedding beyond a depth of three or
four (say ten to be on the safe side), it seems to follow straightforwardly that with a
theory of competence of context-free (or not much greater) power we are
guaranteed to be able to construct a plausible parsing algorithm which is finite state
in character.

Unfortunately, things turn out to be not quite so simple. Langendoen (1975)
showed that the transducers in question do not yield quite the right amount of
information to qualify them as full parsers for the context-free languages in
question, even where centre embeddings are not concerned. In particular, in order
to handle unlimited right and left embeddings correctly, the transducer itself needs
further augmentation of a type which again enriches it to greater than finite state
power.

Intuitively, this is easy to demonstrate: the formal characteristic of centre
embedding which makes it non-finite-state is that it produces a sequence of
constituents ‘aaa . .." which must be matched up one to one by some other
sequence of constituents ‘. . . bbb’. The simplest example of such a language is a”
b" (n = 1): some number of a’s followed by the same number of b’s. Right and left
embeddings do not have this property, as far as the strings of terminal items
generated is concerned, and so can be recognized by a strict finite state device.

However, when we consider not just the recognition of left and right embed-
dings, but transductions into their structural descriptions, this picture changes. At
the very least, presumably, a structural description must be equivalent to a tree, or
labelled bracketing indicating the constituent structure of the string of words that is
input to the transducer. We can characterize this transduction abstractly, then, as a
mapping from strings of words to strings of labelled left and right brackets.
However, in this (putatively finite state) bracket language left and right labelled
brackets are distinct symbols: ‘[a’ and ‘a]’ have to be explicitly paired up if these
symbols are to have the intuitive interpretation we want them to have. Any form of
recursion, then—Ieft, right, or centre embedding—will produce in this bracket
language ‘sentences’ of the form °. . . [a. [a. .[a. .a). .a). .a). .’ where this sent-
ence is well formed only if the left brackets pair up with the right brackets correctly,
But this shows that the bracket language has in fact the non-finite-state character of
the @", b" language considered earlier, and as a matter of definition we cannot have
a finite state transduction into or out of a non-finite-state language. Thus even
though a language considered as a set of strings might be finite state, an adequate
characterisation of the constituent structures of those strings may well require non-
finite-state resources. :

Clearly this conclusion presents us with something of a problem. We are
assuming that human parsing resources are finite state, but that competence is of
context-free or richer power. These two facts comport well with the difficulty of

centre embeddings, but are in apparent conflict with the fact that left and right
embeddings of arbitrary depth present no problems in comprehension. Multiple
possessive determiners:

Memory limitations 201

(3) [[[[John’s] friend’s] mother’s] dog]. . .
right embedded relative clauses: .
g(4) [This is [the hand that signed [the treaty that stopped [the war that killed so
many young men]]]] :
multiple layers of sentential complements: .
(5)pJohr}1’ said [that he thought [that Bill would have believed [that Mary was
guilty]]]

PP modifications of NPs: :
(6) ... a room [with [[a view [from the window]] [over [the river [near the

meadows]]]]] . ' : 1
and such like constructions display no apparent difficulty in processing, althoug
they all involve recursion.

3. NORECURSION AT ALL |
In their original discussion of centre embedding, Miller and I'sard suggested that th_c
unacceptability of multiple centre embeddings can be. explained on the }_1ypothe'sm
that the language processing mechanism is organised in such a way that it contains
subroutines corresponding to particular constructions or types of construction.
These subroutines are called in the course of parsing a sentence whenc_ver an
instance of that construction is encountered. Suppose that such a subroutine has

been called. Furthermore

. . . suppose that, while the subroutine is being executed, a seu'md sucl? construction is
encountered, so that the subroutine is required to call itself. If this recursive feature were
not available, confusion would result; the temporary memory for the point of re-ent{y
into the main routine might be erased, for example, so that when it resume':d. the main
routine would have to treat subsequent words as if they began a new constituent of the

sentence. (Miller and Isard, 1964, p. 300.)

This proposal is repeated and endorsed in Chomsky (1965_ , p- 14): I shall refcl: to
it as the ‘no recursion’, hypothesis, on the understanding that no recursion
whatsoever is the ‘ideal’ case and that in practice recursion to a depth of two or
several more might be possible with appropriate aids or con_textual he?lp.

If the no recursion hypothesis can be sustained it provides us with one way gf
resolving our paradox. We simply claim that althon_zgh t!'lere may be good lmgqlstlc
reasons to analyse certain constructions as recursive, in pxtacuce,_they are either
unparseable (centre embeddings) or parsed in some way Wh.lch avo_lds _the d_lfﬁculty
imposed by recursion. Thus the claim that the human parsing d?vwe is ﬁ.mte state
can be preserved simultaneously with the apparcntl_y unrecpncnlable claim that a
correct description of competence involves grammatical devices of at least contex-

er. .
fm’I'eh];::or::wam: several further difficulties to be overcome if this account is to be made
wholly plausible.? To begin with, if left and right embeddjn_gs cannot be (wholly)
parsed in the normal way, we have no explanation of how it is possible _for_then_a to
be understood correctly. In common with virtually all current work in linguistic
theory, we assume that there is an intimate connection between syntacfu:, structure
and semantic interpretation, in particular that the process of arriving at an
interpretation for a sentence on the basis of the interpretations of its parts is one
that is guided by the syntactic structure of the sentence: thgt se,mannm is—to
borrow a term from the theory of compiler design—'syntax-driven’. Thus even if

we can argue successfully that multiple left and right recursions are only partially
parsed in some way that would allow them to escape the difficulty of recursion, we
would then have to provide some other account of how it was that, despite only
getting a partial syntactic structure, they nevertheless seem to be capable of
receiving a complete semantic interpretation. More will be said about this later.

Furthermore, there is something of a traditional lore in recent syntactic and
parsing theory to the effect that human memory, or at least that part of it which is
used in online syntactic processing, is organized in the form of a last-in, first-out
push-down store device, or stack. This is suggested as a possibility by, among
others, Woods (1973), Bach (1977), Fodor (1978), and is explicitly advocated by
Ritchie (1980), and Maling and Zaenen (1982). The theories of sentence compre-
hension put forward by Ades and Steedman (1982), Steedman (1983) and Briscoe
(1984) within the framework of extended categorial grammar likewise involve a
stack as a crucial element of the parsing mechanism, albeit not in quite the same
way as those envisaged by the other authors. _

Clearly if these theories are well motivated it will become difficult to advance the
no recursion hypothesis in any other than an ad hoc way, for a push-down store is
the natural way to implement a device which is capable of recursive calls. Notice,
incidentally, that although you cannot have recursion without something equivalent
to a push-down store, the reverse is not true. It might be the case that no recursive
applications of rules were ever permitted but that multiple nesting of different
constructions was. In this case, it might be possible to argue for a push-down store
organisation of memory independently of facts about recursion.

The major evidence for the push down store claim has been the set of
phenomena associated with what has become known as the ‘nested dependency
constraint’ (Fodor, 1978; Steedman, 1983). In transformational accounts, many
constructions are described in terms of a movement rule displacing various
constituents. The moved constituent is known as a ‘filler’, the position it moved
from as a ‘gap’. The nested dependency constraint prohibits associations of fillers

with gaps (whether this association is regarded as syntactic or semantic) of the
form:

(7) F1IF2G1G2
if it is possible instead to associate them on the pattern:

(8) F1IF2G2Gl1
thus the interpretation of

(9) Which boxes are these packets easy to put__in __
follows the pattern of (8) rather than (7). Dependencies must nest rather than
intersect or cross.

While these observations are suggestive, they are not compelling. Firstly, as
Fodor (1978, p. 446) points out, we really need evidence from other areas of
processing, for otherwise the hypothesis merely restates the data. There appears to
be no such evidence from experimental studies (cf. Johnson-Laird, 1983, p. 332,
who reaches similar conclusions). Secondly, there is the fact that the nested
dependency constraint is not an absolute prohibition: many languages allow
intersecting dependencies of various types: Norwegian and Danish (Maling and
Zaenen, 1982); Turkish and Japanese (Kuno er al., 1980, cited in Maling and
Zaenen); Dutch (Bresnan er al., 1982, Steedman 1983); and French (Steedman
1983). Even in English there are some examples apparently allowing intersecting
syntactic dependencies which present no obvious difficulty:

10 [Which customer(1)] did you send the pictures_2 to _1 [that you developed
2 .
Of coflzct:rtdh?gal]t (if it is a fact) that, syntactically at lca_st, nested dependenc:;:s
are the rule rather than the exception requires an explanation, but th_e fact lthat the
exceptions seem to present no difficulty whatsoever means that this exp ana.t:jon
cannot be in terms of a push-down store, and thus that this pl}cnt_)me_non provides
no evidence in support of the claim that Su;h a mode or organisation is an intrinsic
f the human parsing mechanism. T
Or’?'gze;iagcﬁg:n hypothesis.p whengundetstood as above, 'fipplies mdﬁcg’ex_a.tly to
multiple dependencies whether they are nested or 1r‘1tcrsecn'ng._The restnctloilh is,
recall, not on recursive calls of a routine, simply tl‘lat if a routine is cal(le'd more : a:1
‘n’ times then all but the information associated with _the Fnost recent ‘n’ calls is t(;ls .
This will cover two kinds of case at least: (i) a routine is called(1) by son";e (:1 er
routine, calls(2) itself and call(2) is intended to be comp}eted before cag(lg, a_;lit (ltlc),
a routine is called(1) by some other routin;e,t'calls(i)(21;<.se=.lf and has the facility
while in the course of completing call(2). .
‘]:Eloontllfl::: ﬂgiv: calls; only the first corresponds to the usual um.le1:standm§1i of
recursion, in fact, but our restriction will apply to bc?th. anq wou_]d sm.ctly pre.b;:
that on both types of pattern, the results of the first invocation will be inaccessible
d (where n = 0). .
tolt:ct:?:(:;nt(ext it is sign)iﬁcant to note that not only, as predicted, are centrcf
embeddings of a degree more than two unacceptable, but that the sa?net }‘15 truci:‘ gr
crossing or intersecting dependencies in those lgnguages_ that pen:iut ‘en:).f S
example, in Icelandic and Norwegian even three intersecting qepen :ﬁmes S
same type are not permitted; at most two filler-gap de_pe:ndepcles .are Ofwtﬁ L S
if a third crossing dependency is present it must Vbe distinguished: one o 237e .g p
must then be filled by a resumptive pronoun (Maling and Zaenen 1982, p. 237):
(11) F1F2F3PRO1G2G3
(12*) F1IF2F3G1G2G3
In Dutch, it is possible to find scque‘r;;e‘s; ;)f the form
..« NPINP2NP3... . V1
wigliszicpcndencies as indicated. However, when more than two or t_.:lﬁee naéi
involved, native speakers find the same difficulty as Engh;;h speakers cll)o v:;l c: i
embeddings. Thus the recursion limitation applies equivalently to both typ
CO%S;;U fcatrl:‘txtll:lat the intersecting dependencies are possible at all demonslt(rates thg;
the human parsing mechanism is not lim?teo.:l to a p.ush-'down stac s t);]:;ethat
organization, and the fact that the recursion limit applies in this cas; too s ow'mint
it cannot be regarded as a limit on stack depth. If the nested depen encg;jl co::; o
is real, then it seems most likely to reflect a feature of competence rat e; g
the parsing mechanism: the preference for nested rather than non;nestctéﬁsi?:of
dencies, for example, may well reflect the fact that the former are charac - o
context-free devices, whereas the correct treatment of the lattz?r’ lzequ:;*es_:e e
type of grammatical mechanism. If the humap language acquisition hewbserved
these richer mechanisms as less natural, more dlfﬁ(:l_llt to acquire, tt}en t fe o e
preferences would receive some kind of cxplanat{on as a reflection of prefe
types of grammar rather than of the mode of operation of the parser.

204 S. G. Pulman

4. CENTRE EMBEDDINGS ARE GRAMMATICAL

Before turning to a description of the parser itself, let us try to dispose of the ‘brute
force’ option. This is the position that since in practice, no more than, say, ten
centre embeddings, and perhaps fifty right or left embeddings are ever likely to be
encountered in a single sentence, we could construct a finite state parser adequate
for all the examples we are ever likely to come across in real life.

This response in unsatisfactory for two reasons: firstly, it does not allow us to
distinguish between centre embedding and other types of embedding in any
principled way: the greater difficulty of centre embedding has no explanation,
merely a description in terms of a different arbitrary limitation. Secondly, if the
response were taken to be literally advocating a parser with the internal archi-
tecture of a finite automaton, there is the objection that the way such a device is
naturally conceived of as functioning is by constructing new states and transitions
for each new instance of a recursion (for otherwise left brackets could not be
correctly matched with right brackets). But this would fail to capture the fact that
the 45th recursion of the structure involving 50 right embedded relative clauses, is
the 45th instance of the same construction, not the 45th in a series of 50 different
constructions. This would be the claim implicit in such a treatment, since each time,
new states and transitions would be involved. (This is not the only way that the
construction of such an automaton could be approached, of course, and counters or
equivalent devices might circumvent this objection: the first one still stands,
however.) !

A less version of this position is advocated by Reich (1969), who regards it as a
fact about competence rather than performance that centre embeddings of a depth
of three or more are not readily parsable. However, he regards the parseability of
right and left embeddings as evidence that they are not recursive in structure, but
iterative (a view for which there is some support from intonational evidence) and
thus that syntactic competence can be entirely described by a grammar not
exceeding finite state weak or strong generative capacity (1969, p. 271) but able to
generate indefinitely many right and left ‘embeddings’ by means of iteration.

Reich’s proposal claims that multiple centre embeddings are straightforwardly
ungrammatical rather than unparsable. But this latter claim does not seem to
square very comfortably with the observation that increased computational re-
sources (time, or pencil and paper) or some period of deliberate practice can
increase performance on these structures quite significantly. On the other hand, no
amount of practice or artificial aids can make a clearly ungrammatical sentence like
‘on mat cat the sat the’ become grammatical. Furthermore, such a view has no
explanation for deeper centre embeddings when they do occur: De Roeck et al.
(1982) provide many examples of centre embeddings up to six deep in written
German and English texts, and likewise argue that this supports the claim that
these structures are grammatical but unparsable, rather than ungrammatical.

A more elaborate version of Reich’s position is taken by Krauwer and Des
Tombe (1981). They define a finite state transducer with a limited memory which
enables it to parse unlimited right and left embeddings with no loss of grammatical
information (given certain assumptions that they make explicit), but a limited
number of centre embeddings, and a limited number of mixed right and left
embeddings. However, like Reich, Krauwer and Des Tombe explicitly regard the
transducer itself as a satisfactory representation of competence rather than as the
description of a parsing procedure operating with limited nerfarmance recnnrrac an

Memory limitations 205

a richer competence grammar. Thus their account falls prey to the same kind of
objection as those advanced above against Reich’s proposal. . .

Another related proposal would be to postulate a further.c_lem.ent in our syntactic
competence operating with the specific purpose of mitigating the effects of
recursion in the grammar. This is the position taken by Langeljndoen (19_75)_, who
formulates a set of ‘readjustment rules’ operating at a late stage in the derivation of
a sentence (in a transformational grammar, between syntax and .phont.)logy). to
convert recursive structures into ‘flat’ ones capable of being parsed in an iterative,
finite state, manner. ‘

In Langendoen and Langsam (1984) a different approach is t.akcn: they define an
algorithm to produce from a context-free grammar a finite s.tate, transducer
producing partial structural descriptions in the form of ‘afﬁxfed strings’: roughly, a
version of the ‘bracket language’ described informally earlier. These transduc;;-,rs
are virtually identical to the model advanced in Krauwer and Des Tombe (1981).

In both of these approaches taken by Langendoen, the status of thf: various
formal devices offered so as to make parsing finite state is difficult to interpret.
Readjustment rules seem to be definitely an element of competence: the Afﬁ:fed
String transducer is presented as an abstract forma! dev;ce for preprocessing
grammars into finite-state parsable form, and its relationship to human syntactic
parsing is not specified. [Elsewhere, (Langendoc‘n and Postal 1984) Langendoen
appears to reject the idea that grammatical devices are coherently assessable as
psychological theories.] . . e

However, it seems to me that there are fairly strong methodological objections to
the claim that readjustment rules, if warranted, should be regarded as an elf:mer.n
of competence, or that — if it is legitimate to interpret the later Propos:_ﬂs in this
way — human linguistic ability includes some devicg w!lose task is spemﬁcally to
preprocess a competence grammar into a form in which it parsable by a finite state
device. [These objections also apply to the claims made in Pulman (1983), where
metarules, within a Generalized Phrase Structure Grammar framework '(Gazdar,

1982) were proposed to capture the effect of Lan.gendoen’s treatment. This was the
wrong way to look at the phenomenon.] For while data rf:le_vant_ to competence or
performance do not come labelled as such in nature, it is fairly clear that. the
recursive nature of the constructions involved is established by the most straight-
forward tests of distribution and constituent structure analysis. Thus they have a
strong prima facie case to be facts about competence, on any normal oo‘nstrual. To
quote Harris (1954, p. 36) these structures really exist in the l:'mgl'xage as ml_zch as
any scientific structure really obtains in the data which it describes apd thus is a1§o
a real property of the grammar describing those structures. The §1mplest reahs'st
assumption following from this is that these structures also really exist in speaker’s
minds: this is only to maintain that we believe our thcory to be true _(C_homsky,
1980). But we also want to maintain that the no recursion hypothesis is a true
principle of human linguistic performance,* and a description of another.asp_cct of
speakers’ ability (or disability). So if, as we hope to show later, the combination of
these two properties is enough to account for all th.e da.tz{ accounted for by
readjustment rules, then on straightforward grounds of simplicity alone the fqrmer
account is to be preferred. By keeping a simple account of competence and a s:mPIc
principle of performance, we let them interact to account for what would otherwise
be data demanding a fairly complex treatment. .

There is another imnortant drawback of all these approaches which becomes

apparent \!vhen. we consider the assumption mentioned earlier, that semantic
interpretation is ‘syntax-driven’ — i.e. that a syntactic analysis' of a sentence
prov:de§ 'the necessary level of structure to be the input to the rules which operate
compositionally to derive the meaning of a sentence from the meanings of its
component v-:ords and phrases. For it is by no means obvious that the syntactic
structures delivered by a readjustment rule approach, or a finite state description of
competence, are s.uch as to be able to coherently support a compositional semantics
of the sort that this assumption demands. If the point of parsing a sentence is so as
to be able to a_rrive at its interpretation, as is the unavoidable assumption, this
makes the motivation for these devices as an element of either competcnc’:e or
performance very peculiar; what is the point of massaging something into an easil

parseable form if the resulting parse trees cannot be interpreted properly? ¢

5. WHAT SHOULD A THEORY OF PARSING ACCOUNT FOR?

Other than thosc' we have already discussed, what kind of demands can we place on
a the9ry qf parsing, or equivalently, on a characterization of the function g(i,n)
described in t‘he passage from Chomsky? At this stage, it seems, there are onl, a
few constraining demands that can realistically be placed on th’e speciﬁcationyof
suc.h a theory. It is plausible to claim that it should have the following properties:

: (i) It should provide all the syntactic structures associated with a grammat‘ical
input sentence by the grammar in question, (subject to any restrictions on this
1mposed. by the parser itself). While it is clear that many syntactically possible but
pragmatically abs_urd readings of a sentence are never consciously processed by a
speak'er—hearer,':t does not seem to be the business of a syntactic (or semant);c)
algorithm to decide which of the possibilities present are appropriate in a particular
.context.' Since there may be occasions on which structures which are pragmaticall
implausible on any normal assumptions may nevertheless be appropriate, we musst(
assume that the parsing algorithm is capable of delivering all possible cand’idates at
least, at the leve! of abstraction at which we are viewing the parsing process 'I:his
means_that we will not allow our description of the parser to be constrained t;y the
necessity .of accounting for observations about preferred readings, garden paths
and suchlike. Although it is an undoubted fact that these phenomc,na whiclfhavé
been the source of many proposals to be found in the literature about t'hc nature of
l'{umgn.pamng, demonstrate something important about the nature of human
Im_gulstlc. comgrehension, it is by no means clear that the a priori assumption of
writers like Kimball (1973, 1975), Frazier and Fodor (1978), Marcus (1980)
Church (1980), Ford (1982), Shieber (1983), Schubert (1984), (and many othersj
that all. these phenomena are, syntactic is correct. Many of the intuitive judgements
on which th?,se proposals are founded are extremely variable and sensitive to
dlfferent choices of lexical material and changes of contextual assumptions, a fact
which has been experimentally verified (Milne, 1982: Crain and Steedman ’1985)
But a robust syntactic preference should not be affected by non-syntactic prc;pertics;
of a sentence to this extent, and it seems more likely that these phenomena
represent the interaction of contextual or discourse effects on comprehension
(including tl'_nose of the so-called null context), as argued by Crain and Steedman
(see also Briscoe, 1984; Pulman (forthcoming); and Altmann, 1985). If this is the
case, the!'l the claims by Marcus and, more recently, Berwick and Weinberg (1984)
that parsing is deterministic do not follow (at least, not from these considerations)
even if it may be the case that the overall process of comprehension is detcrministi(;

(Briscoe, 1984): and it certainly does not follow that it is the parser itself that
determines these various preferences. In fact, once the possibility is acknowledged
that such phenomena are non-syntactic, most of the arguments in favour of
particular closure strategies, attachment preferences, and so on, need to be treated
with a great deal of caution if construed as relevant to the characterization of the
parsing mechanism per se. The position taken here is agnostic (but pessimistic)
concerning the existence of such strategies. If they exist, they can be superimposed
on the basic model proposed here without difficulty; if not, then the model is well
equipped to deal with non-syntactic guidance of a parse.

(ii) It should operate from left to right processing each word at a time as fully as
possible. Although it is probably true that in many circumstances hearers delay
decisions or make anticipatory guesses about the input they are about to receive,
these are, we must assume, heuristic strategies which can reasonably be regarded as
overlaying the basic parsing procedure, employed in response to various non-
linguistic factors. For at any point in a sentence a hearer can tell both what sort of
sentence is permitted so far by the rules of his grammar at that point, and what sort
is precluded, and also can tell — the complementary ability — what syntactic
possibilities are still left open for the remainder of the sentence. This is evidenced
by the fact that at any given point in a senterce a hearer can not only recognize
ungrammatically (he does not have to wait until the end of the sentence) but can
also supply possible and impossible sentence completions, guess at missing words,
etc. All of this suggests that the parsing algorithm proceeds one word at a time,
processing as fully as possible at each step, in the ideal case. (For experimental
evidence bearing on this question, and the preceding point, see Marslen-Wilson
and Tyler, 1980.)

(iii) Tt should make explicit how semantic interpretation is integrated with
syntactic analysis in a way consistent with the observations in (i) and (ii), and with
the assumption that a compositional semantics is driven by syntax. This is a
deceptively modest requirement: it is not generally appreciated how difficult it is to
reconcile this assumption with the preceding ones. Consider, for example, the
natural way to write a computer program combining syntactic and semantic analysis
in a syntax-driven way. Such a system might first parse a sentence, annotating
nodes in the resulting tree with an indication of the syntactic rules used. This
annotated tree would then be passed to an interpretation routine which applied the
appropriate semantic operation to the topmost node (guided by the syntactic
information found there, in particular a pointer to the semantic information
necessary), calling itself recursively on each subtree to build up the complete
interpretation. (Systems operating in more or less this manner are described in
Rosenschein and Shieber, 1982; Gawron et al., 1982; and Schubert and Pelletier,
1982.)

Two characteristics of such procedures are in conflict with the ‘incremental
interpretation’ requirements: firstly, only complete constituents are capable of
being interpreted, and secondly, interpretation cannot even begin until the end of
the constituent is reached. A third characteristic is also troublesome, if we want to
interpret such systems as psychological models (in however abstract a sense), for
they require the computation of an explicit syntactic structure to precede the
process of semantic interpretation. Little psycholinguistic evidence can be adduced,
it seems, for the accuracy of such a picture of human parsing, and, as is well known,
there is in fact precious little evidence that any purely syntactic level of represen-

208 S. G. Pulman

tation is computed during comprehension at all, despite the obviously central role
of syntactic information to the process.

Thus there were several interconnected aims in developing the (fully
implemented®) parser-interpreter about to be described. The main aim was of
course to build a formal model of parsing along the lines suggested by Chomsky’s
function g(i,n), which embodied the claims made in earlier sections about the
nature of parsing, and which was also faithful to the requirements of (i) to (iii).
Another aim was to build a parser which satisfied a straightforward version of the
‘competence hypothesis’ (Chomsky, 1965, p. 9; Bresnan and Kaplan 1982, p. xvii).
This program incorporates in a fairly literal form the assumption that grammars
have some status, independently of parsers, as mental objects. That is to say, it was
assumed that what linguists say about natural language in the form of a grammar
(including semantic interpretation rules) is available to the parser-interpreter as
some kind of data structure having roughly the form that the linguist’s pencil and
paper description would suggest, recursion and all.

A further aim was also to demonstrate a serious commitment to the ‘incremental
interpretation’ requirements on a plausible model by getting the parser to build up
explicit representations of the meaning of a sentence piece by piece during the
course of a parse. Again, this is a harder requirement than is generally realized,
given the considerations discussed above, and while most proposals acknowledge
its desirability in principle, there are few concrete suggestions as to how it might be
done. To my knowledge, the only other work which takes this commitment
seriously at the appropriate level of formal detail is that of Ades and Steedman
(1982). [Although they are working within an extended categorial grammar
framework, and thus their assumptions about the nature of grammatical description
and its relationship to parsing are very different, there are some interesting
similarities between the structures built up during parsing in both models. In
Pulman (forthcoming), I discuss in some detail the similarities and differences
between these two approaches.]

For purposes of illustration, I will assume that the underlying grammatical theory
involved is some form of Phrase Structure Grammar, where semantic interpreta
tion comnsists of translation, on a rule by rule basis, into a simple form of higher-
order logic, derived from the system of Montague’s PTQ (Montague, 1973).
Neither of these assumptions is crucial: the parsing procedure can be adapted to
certain types of transformational grammar, and the associated process of semantic
interpretation requires only that the semantic theory can be driven by syntactic
structures, and that there is some way of doing function application and com-
position, or their equivalents. It is unlikely that this rules out any candidates at all.

The procedure is best thought of as a type of shift-reduce algorithm (Aho and
Ullman, 1972), though with the ability to deal with incomplete constituents. This
facet means that in its mode of operation it is similar to the general family of ‘left
corner’ parsers discussed and illustrated to Johnson-Laird (1983). In the current
implementation it operates non-deterministically, finding all possible parses of a
sentence with respect to a particular grammar, subject to the limitations on
recursion. This is not a realistic feature of the model: if I understood how such a
function could be implemented, the main loop of the parser would include a call to
a routine which whenever two or more possible parses were encountered, decided
between them on the basis of contextual and, presumably, encyclopedic inform-
ation. Then all but one parse would be discarded or downgraded, and only the most

Memory limitations 209

referred one pursued. _ vy
’ The driving mechanism of the parser-interpreter maintains anwz_\tgt:nd:ag;
ions’ i icular state of a parse. Within
‘configurations’, each representing a particu :
cionﬁ:uration complete and incomplete constituents are built 013 what‘, somewhat
misleadingly, (though honouring tradition), is referred to as a stack’. H&vav:vgé
it is it is not a stack: at any time, more
lthough it is referred to as a stack, it is not ¢ :
:upmog'i1 item is accessible, and on occasions it is possible to access the bot.tom 1;13:1
items too. The fact that in general this list behaves like a stgck is a reflection o ;;
grammatical operations presupposed, as discussedl earlier: different types o
grammatical operation would produce different behawpur. —
A configuration is a pair consisting of a representation of tlfue state o t ehs an—;(
ition 1 i ing. The stack is a list of ‘entries’, each en
and the current position in the input string. . ies’, ea /
representing a wholly or partially recognized const:t.ucnt, along w%th rllts lptefri:ea
tation in terms of a translation into a logical expression. An entry is thus in fa
triple: gt g
category, needed, interpretati : ‘ ‘
coisistiﬁgryof a category label, indicating what type of constituent is tbv.emg
recognized, a ‘needed’ list of constituents which must be founc; bcf%;i t;]: r::;%:rrtgsr
i , i i ilt for the constituent so far.
is complete, and the interpretation bui : uent ' sta
off in tli)w initial state, given a sentence, with an empty mmzl conrilieg:r:;;n fﬁ:::a&:;gt
i ds by trying to produce
to the first word of the input, and procee 1 P
i i i il ei alternatives are left, and the parse
ne the basic operations, until either no more [
lli:.ls %ailcd, or one or more complete parses are produced at the end of the input \
mﬁire are four basic operations which produce a fnchw c:)nilicgur:Fizrlisf;gI; ::1 :&;
i i ds on the state of the stack, whic
one. Which one is performed depen . : st At il
‘mai i hanism. If there is a choice betw
checked by the ‘main loop’ of the mec e
i i igi hen both are performed, producing

ations, both being eligible to apply, t _ 1, p .

zg\?\f configurations, possibly leading to two dlffe;cnt parses. (This is the point at
i i i te.

h the routine described above would opera :
Wh‘g:hi'ft‘ takes the next word from the input and creates a new stacl_(e?try fo:i 11‘: e(.fm'
each lexical entry it has in the dictionary). qu example, given a le;;ca e(:)u;y ;

every: Lexical Category=Det, Interpretation=APAQ(for-all x.Px — Qx
Shift produces a stack entry like: .
Det, nil, APAQ(for-all x.Px — QX . ‘ '
Six(lcc lexical categories are always complete the §econd needed cl:m;net r::'l a sSt;;:;
entry created by Shift will always be empty. Having fc:’;:t;:c:; n;;vdsaa:inputrg;imer
i i top o .
records a new configuration with that entry on gL e
i in the input sentence. (In what fo , th
updated to the succeeding word in t '
i:fterpretation of non-logical words is assume‘:d to be the assocmt:-i‘t:ll Kobx;‘s;am, as is
customary: thus the interpretation of ‘man’ will be relprtcs:mi;iy a(s) iz of. iy
i eted en ;
‘Invoke-rule’ can only apply when there is a comp fytic ko ing
i i has been completely processed an y
representing a constituent that ‘ e e By
i it checks the rules in the grammar to see
preted. Essentially, it (' drsey g berg i
1d begin some higher level co t. ne-
represented by that entry cou : : ¢ Rt
is i the actual implementation.

lookahead is incorporated for efficiency in- ‘ i
his is sufficient to rule out the vast majority

Phrase Structure Grammar framework t (] oo o555
y iguities that a naive parsing algorithm enco ¢

of ‘false starts’ or temporary ambngqltles ‘] ‘ _

most notably those concerning conjunction and optional modifiers. This suggests

that at least this modest degree of lookahead may be available to the human parsing
mechanism, but I have not explored the question in any detail.)

If Invoke-rule succeeds in matching a category of an entry with the first member
of the right hand side of a rule, and the rule is consistent with the lookahead word,
it creates a new entry from them. Logically speaking, this process happens as
follows: assume, for illustration, an entry of the form: ‘

(Det, nil, EVERY) -

(where the interpretation of ‘every’ might actually be as above) and a example rule
of the form:

NP — Det N; DET (N)
where the part after the semi-colon is the semantic component, stating that the
meaning of the whole NP is derived by applying the meaning of the determiner to
the meaning of the noun. The Det entry matches the beginning of the right-hand
side of the rule and so could begin an NP constituent. Now assume a function, call it
Abstract, which when applied to a rule of this form produces from its right hand
side and semantic component the result of lambda-abstracting over all the right
hand side symbols (in the order specified in the rule) which appear in the semantic
component. Thus Abstract applied to the rule above would produce:

- Adetin [det (n)]
If applied to a rule like:

S — NP VP; VP(NP)
it would produce

Anpivp [vp (np)]

This is simply a more literal rendering of what the rule actually says, in fact: making
explicit the fact that the items occurring in the semantic part of the rule are to be
interpreted as variables — the meaning of the sentence is found by taking the
meanings of the NP and the VP (parsed in that order) and applying the latter to the
former as function to argument.

When Invoke-rule has matched an entry to a rule it produces a new entry where
the category is the left hand side of the rule, the ‘needed’ list is all but the first of the
right-hand side, and the interpretation is the result of applying Abstract to the rule,
and then applying the expression resulting from this operation, as a function (which

it will always be), to the interpretation of the original entry. In the example above
the result of all this would be:

(NP, N, A\n[EVERY (n)])
In other words, the new interpretation is simply that of the whole rule with that of
the existing entry put in the appropriate place. In general, the interpretation of an
incomplete constitutent is that it is a function expecting to find the needed items as
arguments: there is in this respect a parallelism between the needed field and the
interpretation, the latter being in effect a semantic version of the former.

‘Combine’, as you might expect, combines a complete entry on top of the stack
with an incomplete one below it, if the category label of the former matches the first
‘needed’ item of the latter. For example, if the stack contained an entry like the one
just described with a complete entry on top:

(N, nil, MAN)

(NP, N, An [EVERY (n)])
then Combine would produce a new entry with the category of the incomplete one,
the remainder, if any, of the needed list, and an interpretation which is the result of
applying that of the incomplete entry to that of the complete one. Here the result

would be: A2
il, EVERY (M _
wlglP,b:tz;-reductioi (lambda conversion) of the lambdg expressions h‘as taken
place. The result of this operation is a complete c_onstltucnt, in this instance,
although this need not be the case. If the interpretation of tl?e bottom-!'nost 1te;1c'i
had been a function expecting, say, two arguments, the new l_nterpretanon wouls
be another function still expecting one argument.hiln general, if the needed field is
i ew interpretation will always reflect this.
no';'ﬁ;l;:ht;:ee oper;rtjions are in fact sufficient to alllow. the parser to ogerate asa
practical parsing device. If it is run as stated so far, it will d‘erwe all possible parses
allowed for a sentence by a particular grammar, and will deliver the §emant1c
interpretations corresponding to them. Other than the.fact that these m.terptr:-
tations are built up incrementally, the parser operates in most res.pects gicel fte
systems we referred to above: it is a full context-free Parset. and _vﬂl haq e ea A
right, and centre-embeddings to arbitrary depth., stacking up constltuenlt:' u; a way
which is extremely profligate of memory allocation, consuming space whic grows
i rtion to the length of the input sentence.] . :
- pAr(;E:ther operation |gst thus also necessary if we are to mai_ntam consistency :jw:ih
our original assumptions. If our model is to bc- finite state in the sense intended,
then some mechanism must be deployed to restrict the_ amount of syntactic memory
used to some relatively constant level. ‘Clear’ is intended to do this, _and ;.o
correspond to the intuition that once a comple'te or oon?pletable represental.tl.lior} ofa
proposition has been built up, the syntactic information n;ef:led to do this tlsnt(l:g
longer required, under normal circumstances. Fpr example, if in parsing a s&iafn }?j .
we know that we have begun on the final constituent, we can be sure that, if this is
grammatical, the whole thing ‘will be grammatical: the items we ha_we alregdy
parsed cannot affect the outcome at this point. Thus t.?le syntactic information
associated with the earlier stage of parsing of the sentence is no lo_nger m:ce.s.s:ar‘j:fl i :
Clear operates when: (i) the stack grows 'beyond some limit (detell"mu}e 05;
various factors); (i) two adjacent incomplete items on thq stack are projections
V (i.e. VP or S); and (iii) the top oml:.l of the two potentially contains everything
ne underneath it. '
nﬁieeit&:oégglﬁgotnhsefgr Clear are met, the effect is that tpc interpretation of the
bottommost entry is composed with that of ic one gbove it, the bottom one then
being erased completely. For example, in a situation like:
_top..

(VP, S, As [HOPES (s)])
(S, VP, Avp [vp(SOME(MAN))])

-bottom- ‘ ;
where the next-to-bottom entry is of the type that the one underneath is looking

for, the result of Clear is that the stack will contain:
-top-
(5.5 [\vp {vp (SOME (MAN))} [As {HOPES ()}(x)1])

-bottom- . ' ! _
When this ‘S’ eventually finds the S it is looking for, the interpretation will reduce

212 S. G. Pulman

to what we would have had more directly if Clear had not operated.

The first condition represents the claim that Clear is, ultimately, motivated by
short term memory restrictions: when a certain threshold is exceeded, Clear
operates to remove purely syntactic information. Notice that the intended inter-
pretation of Clear is as a purely syntactic limitation: it is obvious that no such
limitation at the short term level applies to semantic memory. This is modelled here
by the fact that Clear guarantees that the amount of syntactic information that will
appear on the stack at any point in a parse is limited by whatever the threshold
operating is, whereas the semantic interpretations which may be found under the
same circumstances can grow to an arbitrary size.®

The second condition is intended to capture the intuition that it is the main
predicate of a sentence which when encountered provides enough information to
be able to continue parsing safely after that point with no reference to anything
before. When a verb is encountered, the number and type of (obligatory)
arguments that should appear in its complement will be known. (Some compli-
cations to this clause are necessary to deal with adjectives and nouns which
subcategorize for particular complements, but these details will be ignored here.)
In common with many recent proposals, it is assumed that all optional (post)
modifiers are introduced by left-recursive rules: NP — NP PP, VP — VP PP, etc.

The third condition above corresponds to the obvious truth that you can only get
rid of syntactic information when it is safe to do s0, and that ‘selective forgetting’ is
not possible: either all the syntactic information relevant to the earlier portion of
the sentence is discarded, or none of it is. Otherwise, the claim, and the later
explanations which depend on it, would be vacuous.

The exact nature of the threshold for Clear is quite complex: presumably in a
realistic model it would reflect many different factors, both linguistic and non-
linguistic, which can affect transient memory load capabilities. Here, we simply
capture some of this by a crude limit on the number of stack entries that can appear
at a time: a limit of something like six seems to get things about right in practice.
What ‘about right’ means will emerge below. 1

Here is a trace of the parser to show how all these operations work together. The
meanings of the individual lexical items have been suppressed in the interests of
readability. For simplicity, we will assume that Clear can operate when there are
just two items on the stack. It is important to stress that under the assumptions just
sketched, Clear would not operate in parsing such a simple sentence. ‘
Sample grammar:;

S— NP VP ; VP (NP)

VP— VNP; V (NP)

NP — Det N : Det (N)
Input: the cat caught a mouse

Shift:

(Det, nil, THE)
Invoke:

(NP, N, An [THE (n)])
Shift:

(N, nil, CAT)

(NP, N, An [THE (n)])

Memory limitations 213

Combine:
(NP, N, THE(CAT))

Invoke:
(S, VP, Avp [vp (THE (CAT))))

Shift:
(V. nil, CAUGHT)
(S, VP, Avp [vp (THE (CAT))])

Invoke:
{VP, NP, Anp [CAUGHT (np)])
(S, VP, Avp [vp (THE (CAT))])

?Sl.e ;r}:,‘ Ax [Avp {vp (THE (CAT))}{Anp {CAUGHT (np)} (x)]])

Shift:
il, A
é?.cltfl‘?,l?\x [;\VP {vp (THE (CAT))}{Anp {CAUGHT (np)} (x)]])

Invoke:
P,N,An[A)
?S\I NP, A:[?EVP({?IE (THE (CAT))}{Anp {CAUGHT (np)} (x)]])

Shift:
(N, nil, MOUSE))

,N, An[A _
g.PNP, Mn[avifgf)g (THE (CAT))}{Anp {CAUGHT (np)} (x)]])

Combine: sl
il, A(MOUSE
EE.PT:I?’I. hx[g"p{VP(THE (CAT))}{Anp{CAUGHT(np)}x)]])

Combine:

(S, nil, Ax[Avp{vp(THE (CAT))}[Anp{CAUGHT(pp)}(x)]](5 MOUSE))) _
At this point the parse is complete, and the complex interpretation beta-reduces to:

CAUGHT (A (MOUSE))](THE (CAT)) '
Th[e resulting interpretation is exactly wl_lat would have been obtained by a
‘classical’ system operating as described earlier.

6. PARSING RECURSIVE CONSTRUCTIONS NON-RECURSIVELY

It should be clear that our procedure provides a direct model of the process ﬂ?f
incremental interpretation on the assumpti.on _that at le_ast a central parl:j;); A:
meaning of a sentence is given by a translation into a logical fo.rm of this A
soon as a word is encountered on a left to right pass through an input sent?ncei it is
integrated into the logical form being built up. At every stage, this logical o:;n
contains as much information about the meaning of the sentence so far as can t acl
derived from what has been processed. It should also be clear that the pa:ruil
interpretations, though of course not yet complete _and thus. not yet necess:]y
expressing a complete proposition, are perfectly mea}mngful objects boft:l intuitive Z
and formally speaking (within the higher-order logic assumed pere, nctu:)ns Ee
just terms like any other): they can be used to perform inferences, be

214 8. G. Pulman

antecedent for anaphora or ellipsis, be integrated with the context so as to assess
and discard alternative interpretations corresponding to different parsings, and in
general perform any of the functions we expect the meaning of a sentence or
sentence fragment to be able to do.

The procedure also remains faithful to the assumption of the compositional,
syntax-driven nature of semantics. The parser assumes that semantic information
can be associated with syntactic rules in some way [though it is not ruled out that
some extra aspects of interpretation may need to be computed by separate
procedures: for example, identification of variables for the purposes of indicating
coreference; cases of wide scope of quantifier phrases in syntactic narrow scope
positions, etc. See Cooper (1983) for relevant discussion]. Once the rule in question
has been identified by Invoke-rule, the semantic information involved is extracted
and used to form the next stack entry. The syntactic information is also used to
form expectations about what constituents must come next, (although it is
conceivable that if semantic type is entirely predictable from syntactic category and
vice versa this information is actually redundant). No other mechanisms for linking
syntax with semantics are required, at least as far as these basic elements of the
interpretation of a sentence are concerned.

An important thing to notice is that all of this is achieved without building any
explicit syntax trees during the course of parsing a sentence. Syntactic information
is of course used to build up the interpretation and to guide the parse, but this does
not result in the construction of an independent syntactic level of representation.
While it is true that in some sense trees are implicit in the sequence of operations of
the parser, this is an inevitable consequence of the fact that the rules used
themselves define trees, and as we shall see, even in this weak sense the tree
structures implicit for certain types of recursive construction are not isomorphic to
those which would be defined by the grammar.

One way of describing this aspect of the operation of the parser is as embodying
the intuition often expressed (most often in the oral tradition, though explicit in
Isard, 1974), that syntax is a ‘control structure’ for semantics. That is to say, the
role of syntax in the process of language comprehension is as a set of tacit
instructions for building representations of meaning, rather than as a level of
representation with construction procedures of its own. The truth of this is of
course ultimately a question for experimental investigation, but this way of looking
at syntax has the merit of being consistent both with the widespread agreement
among linguists that syntax plays a central role in language understanding, and with
the already mentioned failure of psycholinguists to find any very strong evidence
that purely syntactic representations (of any richness) are computed at any stage
during normal comprehension.

We argued earlier, following Miller and Isard (1964), that the human parsing
mechanism is fundameéntally incapable of operating recursively. To be more
precise: if (in the worst case) the parser encounters an instance of a construction in
the course of trying to parse an earlier instance of it, the record of the earlier
instance will be erased and ‘forgotten’, causing confusion in those cases where the
information is needed to complete a parse successfully, as in the centre embedding
cases. Clearly this is not absolute: some instances of centre embedding can be
found to a depth of 4 or 5, but for simplicity we will assume that there is some small
fixed limit, L. :

The present procedure implements the no recursion restriction quite literally: if

e ——————————————————

Invoke-rule attempts to put on the stack an incomplete constituent of category X
when there are already L instances of such incomplete Xs on the §tack, t.hen the
earliest instance is erased before Invoke-rule can succ.eed. T_he interesting and
striking thing about this restriction is that as statefi. it _appllcs to all types of
recursion, and thus might be expected to result in parsing failures not just for ceptre
embedded examples of a depth greater than L, but for left gnd nght. recursions
deeper than L too. However, this does not happen: the b'f\su: operations of the
parser in fact conspire to bring it about that both left and right recursions can be
parsed, the former fully, and the latter to just the extent, apps?rcntly, that is needed
to be able to provide them with an appropriate interpretation. Thu§ a perff_actly
general and simple restriction can be imposed, rather th'an some version qualx.ﬁc'd
so as to distinguish between different types of recursion. Furthermore, this 1s-
achieved without any need to change the original_ form of the grammar in any way:
no preprocessing, readjustment rules, or conversion to t'rafnsducers is necessary. 1

The simplest case is that of left recursion, which we will illustrate with an artificia

example grammar:

A— Aa;A(a)

A—aja : . 4]
When processing a string ‘aaa. . .’, the parser operates as in the following trace (‘B
is the interpretation of ‘a’): i

Shift:

(a, nil, B)

Invoke:
(A, nil, B)

Invoke:
(A, a, \a (B(a)])

Shift:
(a, nil, B)
(A, a, \a[B(a)])

Combine:
(A, nil, B(B))

Invoke: ‘
B(B(a :

if:‘t;,i;\ ;o[o'm(t 1(t gzlevident that we have entered a cycle of .coperatto_ns: Imlroke
begins a new A constituent, having just completed o‘ne;‘that_ is coml?lned with a
following ‘a’ to form another A, and so on. At no point in this cycle is there ever
more than one occurrence of an incomplete A constl'tut?nt on the stack, anc_l SO
there is never any situation in which the rccursion.lmutatlpn would come into
effect. In other words, (like any left corner mechanism), this parser can process
unbounded left recursion without the stack growing beyond a constant depth. .

Centre embeddings of a depth greater than L will not be_ parsed Forrectly by this
procedure, however. To see how this works out in detail we will assume these
simple rules (derived from Gazdar, 1982) for relatives:

NP — NP REL

REL — NP VP

REL — (NP) S/NP

216 §. G. Pulman

S/NP — NP VP/NP

VP/NP — V NP/NP

NP/NP — trace

We will make several simplifying assumptions at this point, in the interests of
cl_ar.lty of exposition. Firstly, notice that we are assuming that relative clauses are a
dlsnnf:t cc_:nstituent from S. This is a distinction made in some but not all linguistic
theories: it is not a crucial one for our purposes. Secondly, we will assume that no

recursion at all is allowed. Thus no more than one instance of a particular '

incomplete constituent can appear on the stack at any one time. (However, notice
thsft what distinguishes constituents from each other in this respect is the n'ﬂe that
builds thc_:m, not the category label ‘NP’, etc., which may be shared. In this simple
grammatical framework, each rule defines a different type of constituent for the
purposes pf the recursion limitation.) Finally, rather than build the incremental
semantic interpretations yielded by the parser we will display the partial tree (in
Iabellc.d bracket form) that a more conventional parser might give: the point can be
made just as easily this way, and trees are considerably more ‘human-readable’
than the complex lambda expressions actually built by the parser.

For a sentence like:

(14) The mouse the cat the dog bit caught escaped
we ought to build a tree like:

(15) S

Ne
RllaL
S/NP
NP/
VP
~
RIIEL
SIN{
; /NP/NP /I}P/NP
P \lz v

~

the mouse the cat the dog bit t caught t escaped

Things proceed as follows, ignoring some obvious steps:
(i) (NP, nil, [NP the mouse])
(ii) (NP, REL, [NP[NP the mouse][REL. . D
(iii) (NP, nil, [NP the cat))
{NP, _REL, [NP[NP the mouse][REL. . .]])
At this point, if we are to find the correct interpretation or build the appropriate
parse tree Invoke must recognize the NP ‘the cat’ as the beginning of another
relative clause, and place on the stack an entry like:

Memory limitations 217

(NP, REL, [NP[NP the cat][REL. . .]])

But of course this will violate the recursion restriction, for there is already an [NP,
REL. . .] on the stack. Let us assume that this earlier one is thus erased, or at least
rendered inaccessible to the parsing procedure in some way. Things now proceed
— again ignoring obvious details — until we have recognized the sentence as far as
the word ‘bit’:

(iv) (NP, nil, [NP[NP the cat][REL[S/NP[NP the dog][VP/NP bit]]]])

At this point the procedure runs into trouble. If the parser merely continues with
‘caught’ it will be stuck: ‘caught’ in its own is not a complete VP, for it is missing an
object. So a possible parse in which what is on the stack is the subject of ‘caught’
will fail. But there is no other option available for it. In order to treat ‘caught’
correctly, the parser needs to know not only that it is a VP/NP, which it will be able
to do, but also that this constituent is of part of a REL, and thus can legitimately
have a missing object. But this of course is precisely the information that is no
longer available to it, for the REL entry which would have signalled this has been
erased. Thus no S/NP constituent is predicted, and the VP/NP ‘caught’ cannot be
integrated with the rest of the sentence. (The reader is invited to check that with
the basic operations available to it, and the grammatical rules given, the parser
cannot proceed beyond this point coherently.)

It is reassuring to remember that it is exactly at this point — after the first verb of
the sequence stacked up — where both intuitive and experimental evidence (Miller
and Isard, 1964) suggest the onset of difficulty with these constructions. Our
parsing procedure seems to run into trouble at exactly the same point that people
do when they are processing these centre embedded constructions. It is interesting
too that the model as described will apparently parse sentences like:

The cat that the rat that the dog bit squealed
although not being able to assign a fully coherent interpretation to it. We should
therefore hope to find that speakers likewise do not experience as much of a
syntactic problem with such sentences. Intuitively, this is so: hearers are not
conscious, when the sentence is first heard, of anything like the degree of difficulty
of a sentence like (32), and it is often only when they stop to reflect that the
incomplete nature of the sentence becomes apparent to them. It would be
interesting to see if this intuition can be experimentally supported.

Turning now to right recursion, there are two cases of interest. With multiple
sentential complementation like

(16) Joe thought that Bill expected that Mary knew . . .
we might expect that exactly the same thing would happen as in the centre
embedding cases. At the point at which the deepest sentences are encountered, the
earliest S constituents are still incomplete, and thus the recursion restriction ought
to mean that they are erased from the stack. However, this is where the motivation
for the Clear operation will become apparent, for the operation of Clear means that
the recursion limit may be avoided in these constructions. We will illustrate this
again with the simplifying assumption that no recursion at all is permitted, and that
Clear operates when there are two appropriate items on the stack. Thus whenever
we have a stack of the form:

(VP, S, B)

(S, VP, o)

Clear will erase the bottom entry leaving:

(S, 8, Mx[a{B(x)}D

218 S. G. Pulman

Whenever there is a stack of the form:

(S, VP,)

(VP, S, o)

Clear will likewise produce:

(VP, VP, Ax[a{B(x)}])

Thus neither recursive category will ever have more than one instance on the stack
at a time. As in the earlier illustrative examples, the process of function
composition means that, when the final constituent is encountered, the whole
complex logical expression reduces down to exactly what we would have had under
the ‘classical’ view: the difference here is that we do not depend on the whole
syntactic tree being explicitly constructed first in order to get the correct results.
Notice, incidentally, that this final process of beta-reduction is not part of the
process of assembling the meaning: the meaning is fully assembled already, even in
the form of a complex unreduced lambda expression. The reduced form is merely a
more easily readable logically equivalent version. ;

There are several qualifications which have to made to the above simplified
picture to arrive at a more satisfactory general account. Since the motivation for
Clear is partly via considerations of short-term memory load, in a more realistic
model some extra parameter to reflect this transient load should clearly be involved
such that Clear only operates when a certain threshold is exceeded, and where this
threshold reflects something not limited to a crude count of stack entries or any
similar measure, but can take into account non-syntactic constraints on memory
and computation. :

A second respect in which more detail needs to be added concerns the
connection between the conditions on Clear, and the limitation on recursion. The
current model implies that they are connected, in the sense that with a recursion
limit of one, even a sentence like

(17) John expected that Bill would leave
could not be parsed unless Clear had operated, thus implying that Clear should in
reality operate under the unrealistically severe conditions we have been assuming
for illustration. A recursion limit of one is in fact a reasonable first approximation
to the behaviour of speakers when faced with centre embeddings (under the
analysis assumed above — obviously the limit has to be stated differently if REL is
identified with S), but it seems unlikely that Clear is so restricted. It does not seem
very plausible to maintain that such a short sentence as (17) imposes any very great
strain on syntactic short-term memory, and even if were to try to endorse such a
claim it would be faced with unwelcome empirical consequences elsewhere: if
operating under such a severe restriction Clear would actually prevent VP
conjunctions from being parsed at all, for by the time the conjunction is reached,
the only constituent left on the stack is labelled as an S, not a VP, and so Invoke-
rule cannot find an appropriate candidate to continue.

Perhaps a better way to think about it is to imagine Clear operating whenever it
can, though delayed by some margin behind the input. Thus things lower down the
stack would be Cleared, while constituents higher up need not be. This would mean
that unless the first conjunct of a conjunction was so long and complex that
Clearing had begun to operate within it, all conjuncts would be parsed normally.
This is what the rough and ready limit on stack depth is intended to model: with a
limit of about six, and a recursion limit of about three, the parser seems to produce
about the right kind of behaviour (where Clearing takes place as low as possible on

Memory wmuununs -

the stack): i.e. centre embeddings of degree two fill the stack., but can (]ust)_ be
parsed; those of greater than two cannot be pa_rsed approprlately; su‘np_le nght
embeddings like (17) are parsed without Clearing or the recursion hm.lt bt':m_g
exceeded, but those of degree three or more trigger Clear before .tl"le recursion hr.rut
is reached. In the centre embedding cases, of course, the conditions for Clearing
et.)

al‘;ﬂot:‘f:ﬁ l::la.scs of right recursion need be ‘rescued’ Py Clear, however. 'Conmdcr
the case of multiple PP or REL modifiers, the former introduced by rules like:

NP — NP PP

PP — P NP] .
Given a sequence of the form ‘NP P NP P NP’, there are two possible parses:

(18)

NP PP
>
P NP
(19)
NP
L%
NP PP
\

PP

[\

NP P NP P NP

Given three PPs in a row there are five parses, with four, fourteen, jfmd so on,
(see Church and Patil, 1982; Pulman, 1983 for discussion). Th(_a same thing appl!es
to conjunctions as well: it is not difficult to construct realistic sentences w1:1h
multiple conjunctions or PPs which would have many thousands of parses accord-
i les like those above.
mgCtlzar:ly then, a parsing procedure which fol_lowqd faithfully what a grammar
might say about such cases would lead us to a situation where there may be man);
distinct parse trees, only one of which may accurately reflect the actual pat.tern o
attachment of PPs to the NP they modify: examples can be found which are
consistent with all the logical possibilities allowed by a grammar, as examples like
these suggest:]

(20a) The house in the woods by the river

(b) The book on rock climbing by the writer from Scotland

(c) The bird in the tree near the flowerbed u_nth ared beak : _

It is clear that there are several non-syntactic factors affectmg the parsing qf
optional modifiers like these. Intonation can force a particular attachment (this

220 S. G. Pulman

‘attachr.nem’ may not need to be made syntactically at all, of course), some
syntactically possible attachments could be ruled out on pragmatic grounds ’and o
on. In the case where a definite attachment is not suggested by intonation’We can
thmk_of the parsing model as ‘consulting the context’ whenever a choice arises as
descnbcd‘ earlier, making an attachment on this basis, and then continuing. Thus
the combinatorial explosion suggested by the grammar will never actually h&;ppeu
for each prepositional phrase (or relative clause) will only give rise to one arse’
and t‘ht.': multiplicative effect of a string of modifiers will not arise. il
It ls.mteresting to point out, however, that even if the context was not consulted
to cziec1de on the correct attachment, the parser would still not deliver all the parses
assigned to a sFring of modifiers by the grammar. In fact, assuming a recursion limit
of one, there is only one ‘parse’ of such structures that will succeed. The parsing

procedure will process these cases in a way which i
i Yy which corresponds to a left branching or

(21

NP

LSk

NP PP
A

NP PP

oy

NP-“pp

Centre err_lbed_defi parsings of these (which will always be possible) would exceed
the recursion limit, and so will right embedded parses, since Clear — applying only
to projections of V, recall — cannot rescue the structures.

It has often been poted .(Chomsky, 1965, p. 13ff.; Reich, 1969; Langendoen
197‘5).that struct.ures. involving a longish string of modifiers like these, even whcre;
_thelr Interpretation is clearly that of a right embedded structure, typically have
mul))n:ajt;og colntours that do not respect this syntactic structure. Multiple right
embedded relative clauses appear to consist intonational i
embedded sentences: ' e

Ega) Egls is t}[achman] [who helped me write that book][that nobody ever reads]

is is [the man [who helped me write [that book

| (255;(_15]]]]]] [ook [that nobody ever
as in (22a), rather than having a contour which grou i

: : ; ps words according to the
syntactically appropriate bracketing in (22b). (This sentence is actual%y short
enough to receive the ‘correct’ contour with ‘some planning.) The breaks appear
betw:en the. head NP of the relative and its modifying clause, thus splitting the
constituent into two, intonationally. Similar effects b
g can be found for sequences of
of[& this con:‘ext, it is surely significant that the stacked ‘parse’ which the operation

e procedure mimics is actually the one which corresponds
unexpected intonation patterns: RS 2
(23a) [That’s the company][that manufactures the d i
rugs|[that have th
effects][that made her come out in a rash] el ke

Memory limitations a1

(b)

Similar remarks apply to the intonational peculiarities of the multiple possessive
determiner examples: these determiners usually have something like a list intona-
tion

(24) [John’s][mother’s][friend’s]doctor. . .
rather than having a single contour over the whole NP, and are often felt to be
‘awkward’ in some intuitive way in this respect. Notice that here, the sequence of
‘intonational’ constituents corresponds exactly to the sequence of complete non-
recursive ‘Det’ constituents built on top of the stack while parsing such examples.

The exact interpretation of the implications of these intonational facts for a
model of parsing is rather complex, admittedly. Let us make the simplest
assumption suggested by the competence hypothesis: that the structures over which
intonation contours are computed during production are isomorphic to those
implicit while parsing. If this is so, then the intonational facts are, as we have seen,
consistent with our model, and provide no support for the iterative treatment of
these constructions suggested by the authors discussed earlier.

The ‘stacking’ treatment of right recursive modifiers is of course affected by
exactly how much recursion is possible (though the treatment of left recursion is
unaffected by this). Even if several different paths are pursued, though, the
incremental interpretation made available will enable the decision as to which is the
appropriate path to pursue to be taken as soon as possible, thus allowing the others
to be discarded. Thus either way the operation of the parsing procedure is faithful
to the obvious fact that these constructions are on the whole completely un-
problematic as far as human parsing is concerned.

7. CONCLUSIONS

We began with two hypotheses about the nature of human parsing: that it has the
characteristics of a strict finite state device, and that it has particular difficulties with
recursion. While related, these are separate hypotheses. We have also discussed
various further requirements that can be placed on models of parsing, if they are to
capture the most basic properties of human sentence comprehension: in particular
the requirement that syntactic analysis be integrated with semantic and contextual
interpretation in a way consistent with the observed ability of humans to under-
stand sentences incrementally while hearing them. Something else that we have
assumed, more as a methodological stance than anything, is the ‘competence
hypothesis’ implicit in the quotations from Chomsky with which we began: that a
competence grammar may be literally included with a model of performance.

We have described a computer program which captures all these properties.

LLL 3. U, Fulman

Bc'cause qf the ‘Clear’ operation, and the recursion restriction, it operates with
stflctly finite state resources, although using a grammar of richc;' power, and thus
fails to parse certain types of construction correctly. These are e:ﬁ;actly the
constructions that people find difficult or impossible to process accurately. It
provides, incrementally, semantic interpretations for the sentences it parses. to
cxac.:tly the extent, we have argued, that such interpretations are built usin ’ \

the information contained in a grammar. e

The recursion limitation and the basic operations of the parser-i
to combi‘ne to provide a fairly satisfactory lr’nodel of the pargirf;e;r:g t:ﬁ:é:;rﬁfnm
of the dlffereint types of recursive constructions found in English. Although thg
overall behaviour of the procedure approximates that of the devices described by
Krauwer and Des Tombe (1981), Langendoen (1975), and Langendoen and
Lang§am (1984), it does so in a way which involves no preprocessing or mani-
pula.tmn of the grammatical formalism at all, thus embodying a particularly strong
version of the competence hypothesis. In this model, simple principles concerning
the_natlfre. of the human parsing device interact with a straightforward description
of linguistic competence to produce an apparently accurate abstract model of some
of the central phenomena of parsing performance. This is essentially the relation
;E:it\:)ee:ngr;mmar and pac:l's;ar implicit in Chomsky’s description of the function

,n), e present model can the i i
characteﬁzaﬁo: e et refore be taken as a first approximation to the

NOTES

Xers;?m of parts of t.his paper have been given as talks at the Universities of Essex, Cambridge, Sussex
eading, and York since about 1982 and an earlier version of the parser was described in a pape‘r for lhe:
second ‘.European conference of the Association for Computational Linguistics which appears in the
r;oeeedlf . ngs (Pulman, 1985). I am grateful to the audiences on these occasions for their comments and to
Ge ollowing people for their comments, criticisms and encouragement: Ted Briscoe, Eva Ejerhed
. erald Gazdar, Steve_ Ha.rlow, Steve Isard, David Reibel, Geoffrey Sampson, Aaron Sloman Maﬂ;
teedman, Graeme Ritchie and Yorick Wilks. Phil Johson-Laird, Charles Clifton and an anor;ymous
reflew;h also mnlde many valuable suggestions concerning both form and content.
. The usual meanings of these terms is as follows: where X and Y are variabl i
! : l es over non-terminal
symbols, ill'lfl @ a_nd'g are variables over strings of terminal and non-terminal symbols, we say thataa
lgrame.d_maa is ‘nesting’ if for some X a_nd Y, X = > a¥YpB, (a and B non-null), (i.e. there is a derivation
< ing from).[to aYp), al_ld that it is ‘self-embedding’ if for some X, X =>Xp. In the case where a is
null we have left—em!)eddmg‘ (left recursion) and where B is null we have ‘right-embedding’ (right
;;iumon). Whe‘re neither are null we have ‘centre-embedding’. (Note that in Chomsky (1963
sz.‘)\ ::1: term self-lembeddmg' is taken to mean centre embedding only.) g
! ernative explanations for centre embedding difficulties are advanced b
et al. (1973), Kimball (1973), and Frazier and Fod y.‘among others..Fl'o.dor
s s o or (1978). These proposals are discussed and criticised
3. Proposals similar in spirit are advanced by Ej j
i ‘ y Ejerhed (1982), and Ejerhed and Church (1983), wh
::;oimte :'zodel of synn;ix in which recursion has been eliminated, thus guaranteeing ﬁnite(-statz:n‘:sso
n which some non-finite- i intersecti: i ;
el nite-state phenomena (nesting and inte; ng dependencies) are handled
4, Although so far we have been concerned only wi ion i
i ; y with recursion in syntax, it seems reasonabl
plausible to assume that semantic recursion provides an equivalent degree of difficulty. To ta;e a sil::slz

example, multiple negation, ei ici i ici
b Lo 01-l:;hree g either explicit or implicit, seems very awkward to process when beyond a

He doesn’t not not like the picture
You can't fail not to dislike it

On t.hc a.r.sum!:uon m?t the semantic rule for negation operates on a whole proposition, then such
rn‘ulflple negau.ves, while arguably not involving syntactic recursion, would involve semanti;: recursion
Similarly, ml._llnple comparatives are notoriously difficult to process accurately and easily. If (a) and (bi
are grammatical, then in most frameworks (c) and (d) will also automatically be gran'umu'éal:

(a) This building is taller than that one

(b) This building is taller than it is wide

(¢) This building is taller than it is wider than that one

(d) This building is taller than it is longer than it is wider than that one
(c) is grammatical and means something like ‘the height of the former building exceeds the extent to
which its width exceeds that of the latter’ But the sentence is awkward, to say the least, and (d) requires
some conscious effort to arrive at an appropriate reading. These examples involve only right embedding
and so the difficulty cannot be traced to this. In a semantics for comparatives such as that presented in
Klein (1982), however, the rule for interpreting such adjective phrases would have to be applied
recursively in order to produce an appropriate interpretation. Interestingly, examples like (d) invite a
conjunction type misanalysis ‘taller and longer and wider than’ exactly analogous to what is observed in
the case of centre embeddings (Blumenthal, 1966): if the no recursion hypothesis applies at the semantic
as well as the syntactic level then this parallelism is accounted for.

Recursion difficulties may also explain the well-known awkwardness of self-reference. Exactly the
same phenomenon of recursive application seems to be involved here: evaluating the meaning,
reference or truth of some expression involves referring to the expression currently being evaluated. Not
all examples of self reference involve conscious difficulty of processinig, but all evoke a stylistic effect, at
the very least, as in the joke philosophy essay on ‘Is this a question?” (you are supposed to write, ‘Yes, if
this is an answer’), but the difficulty most ordinary mortals encounter in even understanding, at first
acquaintance, an expression like ‘the set of all sets that are not members of themselves' suggests that the
no recursion principle may apply here too, independently of any further conceptual difficulties
associated with logical paradoxes. In sum, therefore, there seems to be some evidence for maintaining
the no recursion principle as a general principle of linguistic (and perhaps non-linguistic) performance,
rather than being specific to the syntactic processor.

5. The program is written in Franz Lisp under Berkeley 4.2 Unix on a Sun II workstation. It uses a
grammar with syntactic and semantic coverage of all the constructions used for illustration, various types
of ‘wh’ constructions, as well as some types of phrasal and sentential conjunction, and has access to a
lexicon of about 3000 words.

6. Isn't this cheating? Aren’t we merely transducing into a language rich enough to do what we are
denying the parser the ability to do? Two points: we are, at this point (and despite the speculations ina
preceding footnote) making claims only about restrictions on the ability to form syntactic representa-
tions (i.e. stack entries) only. This claim is unaffected by whatever properties semantic representations
per se turn out to have. Secondly, it is in any case assumed provisionally that logical forms of the type
built here are ultimately dispensable: they are merely a way of modelling the building up of a truth
conditional interpretation via translation into a disambiguated language. The logical forms are proxies
for the model-theoretic interpretations which can be read off from them, and as such are theoretically
dispensable, and not a language or level of representation in their own right.

REFERENCES

Ades, A.E. and Steedman, M.J. (1982). On the order of words. Linguistics and Philosophy 4, 517-558.

Aho, A.V. and Ullman, 1.D. (1972). The Theory of Parsing, Translation, and Compiling, Vol 1.
Prentice-Hall, Englewood Cliffs, N.J.

Altmann, G. (1985), The resolution of local syntactic ambiguity by the human sentence processing
mechanism. In: Proceedings of the Second European meeting of the Association for Computational
Linguistics, ACL.

Bach, E. (1977). Comments on the paper by Chomsky. In: Formal Syntax, P.W. Culicover, T. Wasow
and A. Akmajian (Eds). Academic Press, New York.

Berwick, R.C. and Weinberg, A.S. (1984). The Grammatical Basis of Linguistic Performance:
Language Use and Acquisition. MIT Press, Cambridge, Mass.

Blumenthal, A.L. (1966). Observations with self-embedded sentences. Psychonomic Science 6, 453—
454,

Bresnan, J. (Ed.) (1982). The Mental Representation of Grammatical Relations. MIT Press, Cambridge
Mass.

Bresnan, J. and Kaplan, R. (1982). Introduction to Bresnan (Ed.) (1982).

Bresnan, J., Kaplan, R., Peters, S. and Zaenen, A. (1982). Cross-serial dependencies in Dutch.
Linguistic Inquiry 13, 613-635.

Briscoe, E.J. (1984). Towards an understanding of spoken speech comprehension: the interactive
determinism hypothesis. Ph.D. Diss., Dept of Linguistics, University of Cambridge.

Caplan, D. (1972). Clause boundaries and recognition latencies for words in sentences. Perception and

224 S. G. Pulman

Psychophysics 12, 73-76.

Chomsky, N. (1959) On Certain formal properties of grammars. Information and Control 2, 136-167.

Chomsky, N. (1964). On the notion ‘rule of grammar’. In: The Structure of Language: Readings in the
Philosophy of Language, J.A. Fodor and J.J. Katz (Eds). Prentice Hall, N.J..

Chomsky, N. (1963). Formal properties of grammars. In: Handbook of Mathematical Psychology, Vol
II, R. Luce, R. Bush and E. Galanter (Eds). John Wiley, New York.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, Mass.

Chomsky, N. (1980). Rules and Representations. Basil Blackwell, Oxford.

Chomsky, N. and Miller, G. (1963). Finitary models of language users. In: Handbook of Mathematical
Psychology, Vol 11, R. Luce, R. Bush and E. Galanter (Eds). John Wiley, New York.

Church, K.W. (1980). On memory limitations in natural language processing. MIT Technical report
(MIT/,LCS/TR-245)

Church, K.W. and Patil, R. (1982). Coping with syntactic ambiguity. American Journal of Computa-
tional Linguistics 8, 139-149,

Cooper, R. (1983). Quantification and Syntactic Theory. D. Reidel, Dordrecht:

Crain, S. and Steedman, M.J, (1985). On not being led up the garden path: the use of context by the

psychological parser. In: Natural Language Parsing: Psycholinguistic, Theoretical, and Computa tional

Perspecitves, A. Zwicky, L. Kartunnen, and D. Dowty (Eds). Cambridge University Press, Cam-

bridge.

De Roeck, A. eral. (1982). A myth about centre-embedding. Lingua 58, 327-340,

Ejerhed, E. (1982). The processing of unbounded dependencies in Swedish. In: Readings on Unbound-
ed Dependencies in Scandinavian Languages: Umea Studies in the Humanities 43, E. Engdahl and E.
Ejerhed (Eds). University of Umea.

Ejerhed, E. and Church, K.W. (1983). Finite state parsing In: Papers from the 7th Scandinavian
Conference of Linguistics, Publication no 9, F. Karlsson (Ed.) University of Helsinki, Dept of
Linguistics, pp. 410432,

Fodor J.A., Bever T.G. and Garret, M.F. (1974). The Psychology of Language. McGraw-Hill, New
York.

Fodor, J.D. (1978). Parsing strategies and constraints on transformations. Linguistic Inquiry 9, 427-473.

Frazier, L. (1979). On Comprehending Sentences: Syntactic Parsing Strategies. Indiana University
Linguistics Club, Bloomington, Ind.

Frazier, L. and Fodor J.D. (1978). The sausage machine: a new two stage parsing model. Cognition 6,
291-325.

Ford, M., Bresnan, J. and Kaplan, R.M. (1982). A competence-based theory of syntactic closure.In:
The Mental Representation of Grammatical Relations, Bresnan, J. (Ed). MIT Press, Cambridge,
Mass. <

Gawron, J.M. et al. (1982). The GPSG linguistics system. Proceedings of the 20th Annual Meeting.
Association for Computational Linguistics.

Gazdar, G. (1982), Phrase structure grammar. In: The Nature of Syntactic Representation. P. Jacobson.
and G. Pullum (Eds). D. Reidel, Dordrecht, pp. 131-186.

Gazdar, G., Klein, E., Pullum, G. and Sag, 1. (1985). Generalised Phrase Structure Grammar. Basil
Blackewll, Oxford. ‘

Harris, Z. (1954). Distributional structure. Reprinted in: The Structure of Language,].J. Katz and J.A.
Fodor (Eds). Prentice-Hall, N.J. (1964).

Isard, §. (1974). What would you have done if? Theoretical Linguistics 1, 233-256.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge University Press, Cambridge.

Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition 2, 15-47.

Kimball, J. (1975). Predictive analysis and over-the-top parsing. In: Syntax and Semantics, Vol. 4 J.
Kimball (Ed.) Academic Press, New York.

Klein, E. (1982). The interpretation of adjectival comparatives. Journal of Linguistics 18, 113-136.

Krauwer, S. and Des Tombe, L. (1981). Transducers and grammars as theories of language. Theoretical
Linguistics 8, 173-202.

Langendoen, D.T. (1975). Finite state parsing of phrase structure languages and the status of
readjustment rules in grammar. Linguistic Inquiry 6, 533-554.

Langendoen, D.T. and Postal, P. (1984). The Vastness of Natural Languages. Basil Blackwell, Oxford.

Langendoen, D.T. and Langsam, Y, (1984). The representation of constituent structures for finite state
parsing. In: Proceedings of Coling 84. Association for Computational Linguistics.

Maling, J. and Zaenen, A. (1982). Scandinavian extraction phenomena. In: Jacobson and Pullum (Eds).

Memory limitations 225

Marcus, M. (1980). A Theory of Syntaciic Recognition for Natural Language. MIT Press, Cambridge,
Mass,

Marr, D. (1977). Artificial intelligence : a personal view. Reprinted in: Mind Design, J. Haugeland

(Ed.) Bradford Books, MIT Press, Cambridge, Mass: pp. 129-142.

Marslen-Wilson, W.D. (1975) Sentence perception as an interactive parallel process. Science 189, 226
228.

Marslen-Wilson, W.D. and Tyler, L.K. (1980). The temporal structure of spoken language understand-
ing. Cognition 8, 1-71.

Miller, G. and Isard, S.D. (1964). Free recall of self embedded English sentences. Information and
Control 7, 292-303.

Milne, R.W. (1982). Predicting garden path sentences. Cognitive Science 6, 349-373,

Montague, R. (1973). The proper treatment of quantification in ordinary English. In: Approaches to
Natural Language, J. Hintikka et al. (Eds). D. Reidel, Dordrecht.

Pulman, S.G. (1983). Generalised phrase structure grammar, Earley’s algorithm, adn the minimisation
of recursion. In: Automatic Natural Language Parsing, K. Sparck Jones and Y. Wilks (Eds). Ellis
Horwood, Chichester.

Pulman, S. G. (1985). A parser that doesn't. Proceedings of the Second European Meeting of the
Association for Computational Linguistics, ACL. .

Pulman, $.G. (forthcoming). Computational models of parsing. In: Progress in the Psychology of
Language, Vol. 2, A. Ellis (Ed). Lawrence Erlbaum.

Reich, P. (1969). The finiteness of natural language. Reprinted in: Synsactic Theory I, F. Householder

(Ed.). Penguin, Harmondsworth.

Ritchie, G. (1980) Computational Grammar. Harvester Press, Hassocks.

Rosenschein, S.J. and Shieber, S.M. (1982). Translating English into logical form. Proceedings of the
20th Annual Meeting of the, Association for Computational Linguistics, ACL.

Schlesinger, .M. (1968). Sentence Structure and the Reading Process. Mouton, The Hague.

Schubert, L.K. (1984). On Parsing Preferences. In: Coling 84: Proceedings of the 10th International
Conference on Computational Linguistics. Computational Linguistics, Stanford, Calif.

Schubert, L.K. and Pelletier, F.J. (1982). From English to logic: context free computation of
‘conventional’ logical translation. American Journal of Computational Linguistics 8, 27-44.

Shieber, S. (1983). Sentence disambiguation by a shift-reduce parsing technique. Proceedings of the 21st
Annual Meeting of the Association for Computational Linguistics, ACL.

Steedman, M.J. (1983). On the generality of the nested dependency constraint and the reason for an
exception in Dutch. Linguistics 211, 35-66.

Tyler, L.K. and Marslen-Wilson, W.D. (1977). The on-line effects of semantic context on syntactic
processing. Journal of Verbal Learning and Verbal Behaviour 16, 683-692.

Wanner, E. (1980). The ATN and the Sausage Machine: which one is baloney? Cognition 8, 209-225.

Woods, W.A. (1970). Transition network grammars for natural language analysis. Communications of
the ACM 13, 591-606.

Woods, W.A. (1973). An experimental parsing system for transition network grammars. In: Natural
Language Processing, R. Rustin (Ed). Algorithmics Press, New York.

