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Chapter 5: Bank Risk 
 

A. Sources of Bank Risk 
 Risk management can be said to be the core business of the corporate bank, and 
inadequate risk management threatens the solvency and existence of the bank. The range of 
different potential risks faced by banks is wide-ranging, from economy-wide macroeconomic, 
political and natural disaster risks to the failure of a single customer. All of these risks are 
substantially magnified by the bank's financial risk, the risk associated with being extremely 
leveraged with debt. We have discussed major sources of bank risk in previous chapters, we will 
repeat and add to the list of these sources here, all of which have resulted in numerous bank 
failures: 
 
Risks Associated with Counterparty Default 

Credit risk, discussed more extensively in Sections 5.B, 6.D and Chapter 8 as a primary 
risk to any bank, concerns the potential that a loan or other credit asset experiences a default, or 
failure that any debtor of the bank fails to fulfill one of its obligations. Credit risk can be 
exacerbated by moral hazard, discussed in detail in the following section. 

Counterparty risk, described here in the context of a traded financial instrument, is the 
risk that a counterparty will fail to fulfill the terms of its obligation. Technically, counterparty 
risk can include credit risk, sovereign risk and settlement risk. 

Sovereign and political risk, including the risk that a national government will default on 
its debts (sovereign risk) to the bank or interfere in the foreign operations of a bank can be or 
result in a type of credit risk. 

Settlement risk, also known as delivery risk, is the potential that a counterparty will fail to 
deliver assets as per the terms of a contract. Settlement risk might be related to failure to deliver 
securities by a trade counterparty, exchange or clearing firm. 

 
Risks Associated with Rate and Price Uncertainty 

Interest rate risk, discussed extensively here in Sections 5.D through 5.I and 6.C and 
further in Chapter 8 as a primary risk to any bank, concerns the potential that a shift in interest 
rates will diminish the value of loans and other assets, or increase the payout or value 
associated with a liability, or otherwise impair the institution's or its clients' abilities to fulfill 
their obligations. 
 Market risk, discussed later in this chapter, concerns the price uncertainty at which an 
instrument can be liquidated in the market. Market risk implies price uncertainty. Even if the 
security will not be sold at the time, most banks are subject to "marking to the market" 
regulatory requirements. Marking to the market accounts for the fair value of an asset or 
liability based on its current market price, or, if unavailable, based on either similar instruments 
or an appropriate valuation model. Uncertainty or volatility on market prices can seriously 
impact a bank's balance sheet. Market risk can include interest rate risk, commodity prices 
(such as oil), off-balance sheet volatilities and exchange rate risk. Off-balance sheet risks can 
be of particular concern since the contingent liabilities associated with off-balance sheet items 
can often exceed the actual assets or liabilities of the bank by a factor of more than 10. We 
discussed many such off-balance sheet instruments in Chapter 6. Diversification can be key to 
managing market risk. 
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Risks Associated with Inadequate Balance Sheet Accounts 
Liquidity risk concerns the potential for failing to maintain a sufficient level of cash, near 

cash and other short-term or liquid assets to fulfill the institution's obligations or day-to-day 
operations in the near future. Liquidity risk can occur from or be exacerbated by the bank's 
inability to find a market for selling assets or be forced to sell at "fire-sale" prices (liquidity risk 
with respect to individual assets or liabilities). Unanticipated deposit withdrawals or liability 
redemptions can create or exacerbate bank liquidity risk. Many banks and other financial 
institutions have found that even a strong equity position can prove inadequate for ensuring that 
the institution can recover from liquidity shortfalls. However, maturity transformation is a key 
economic function of banks; banks maintain profitability by maintaining a maturity gap, by 
funding long-term loans with short-term deposits. The risks associated with maturity gaps can be 
mitigated by maturity and duration matching as described in Sections 5.F-5.I and by short-term 
depositors and other funders rolling over their claims on the bank. Deposit insurance certainly 
reduces liquidity risk, though may increase insolvency risk through moral hazard or by 
encouraging risky behavior. 
 Insolvency risk is the potential that the bank may not have sufficient capital (equity) to 
fulfill its regulatory requirements in order to offset a sudden asset value decline or liability value 
increase. These risks are also associated with maturity gaps, and can be mitigated by maturity 
and duration matching as described in Sections 5.F-5.I and by short-term depositors and other 
funders rolling over their claims on the bank. 

 
Other Risks and Risk Management 

Operational risk is the potential for "loss resulting from inadequate or failed internal 
processes, people and systems or from external events. This definition includes legal risk, but 
excludes strategic and reputational risk" (Basel Committee on Banking Supervision (2011)). 
Potential for fraud, technological and system failure, loss of data, process management, human 
error, natural or war-related disasters, governance failures and lawsuits are among the many 
types of operational risk. Employee negligence, aggressive employee targets and incentives and 
unauthorized employee rogue trading (e.g., Société Générale’s Jérôme Kerviel, Barings Bank's 
Nick Leeson) and insufficient or failed internal bank controls can combine for huge losses. Legal 
risks can include new legislation, court opinions and regulations as well as the violations of laws 
and regulations. 

Reputational risk is important because banks are highly dependent on sound or even 
pristine reputations for every line of their business activities. Reputational risk concerns the 
potential for damage to the bank's reputation caused by client or public perception and adverse 
publicity. Such damage can impair the bank's ability to conduct its activities and can diminish its 
revenues, financial and social capital. Reputational damage can result from a variety of situations 
or perceived activities that might include professional or ethics lapses, client or employee 
mistreatment, conflicts of interest, privacy and security issues, etc. 
 Risk management concerns the ongoing identification of risks, measuring the exposures 
to these risks, appropriate reporting and monitoring of these risks and controlling and mitigating 
these risks and the bank's exposures to them. The various risks described above can be 
interrelated, such as the bank that mismatches the maturity gaps in its foreign assets and 
liabilities, also intensifying its currency risk. As we will discuss below, a variety of risk 
management techniques are available for most of these risks. 
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B. Credit Risk 
 Lending is a core business function of the typical corporate bank, and credit risk is a key 
source of risk associated with lending. Credit risk refers to the potential that a borrower or 
counterparty fails to perform on an obligation. Since a large proportion of bank assets are loans, 
a primary source of credit risk to most banks will be loans and associated defaults. However, as 
we will discuss in the next chapter, a variety of types of marketable securities and derivative 
contracts are also important sources of credit risk (e.g., also known in this context as 
counterparty risk). Nevertheless, certain types of marketable and derivative securities can be 
used to mitigate credit and other risks. 
 Banks will establish and maintain credit philosophies that reflect their own markets, 
regulatory environments, risk tolerances, competitive positions and histories. These philosophies 
need to be articulated in formal written loan policies that should be supported and communicated 
throughout the lending arms of the institution. These policies will set loan exposure limits, 
articulate the responsibilities of all lending authorities playing roles in the credit extension 
process, provide guidance for any exceptions to these policies that might arise over time and be 
reviewed and revised as per the bank’s strategic direction. The lending and credit cultures of the 
bank will reflect these credit philosophies. Banks manage credit risks associated with the loan 
portfolios through their: 
 

1. Loan application processes: By carefully screening and scrutinizing the creditworthiness 
of prospective borrowers, meticulously following policies set forth by appropriate 
lending committees 

2. Loan origination processes: By maintaining strict controls over loan approval and 
disbursement processes 

3. Loan servicing and monitoring: By continuously monitoring borrower maintenance of 
loan agreement terms and behavior throughout the life of the loan 

4. Loan portfolio diversification: Because incidences of loan defaults are not perfectly 
correlated, banks can reduce their overall credit risk by appropriately diversifying their 
loan portfolios. In addition, many can securitize, offload and insure loans in securities 
and derivatives markets. 

 
Loan Application Processes 

As we emphasized earlier in the text, banks engage in intensive screening processes to 
obtain information on prospective borrowers. This screening process produces private 
information that is the key element of any relationship that emerges between the bank and its 
client.  

Most banks will have technology in place to provide systematic and cost-effective 
mechanical screening of initial loan applications. Additional screening information is normally 
easily obtainable through credit references from credit reporting agencies such as Experian, 
Equifax, Standard & Poors, Dunn & Bradstreet, etc. Most larger loans will ultimately require 
borrowers to submit detailed financial records along with tax, audit, operational and other 
records, data and analyses. Larger banks will have the technology and expertise to efficiently and 
effectively analyze such details to support lending decisions. Credit scoring programs and 
algorithms are typically used by banks for more quantitatively-based credit decisions, and are 
often geared to estimate probabilities of default (See, for example, Saunders (2000)). Much 
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larger loans will sometimes result in a syndication process that will generally be managed by the 
initiating bank. 
 
Loan Origination Processes 

Banks need to establish systematic procedures for loan approvals and disbursement 
processes. Obviously, such processes are necessary for outright fraud prevention, but also to 
ensure prudent credit extension. Loan contracts can be written to provide for substantial credit 
risk mitigation. For example, a loan contract that provides for loan security with valuable 
collateral provides significant protection against default. Loan guarantor support, including 
letters of credit and credit insurance where applicable, needs to be evaluated and can enhance 
loan value. Writing the contract that enhances the priority standing of the lender enhances the 
lender’s position in the event of bankruptcy. Loan covenants, specific requirements or 
restrictions imposed on the borrower can both reduce the likelihood of default and the lender’s 
recovery in the event of default. Covenants restricting dividend payments to shareholders, 
restrictions on additional borrowing without bank approval, requirements to maintain and insure 
assets, requirements to submit to regular audits are among the more common types of restrictive 
covenants imposed on borrowers.  

A number of proprietary management information systems such as the Moody’s RiskCalc 
package, Moody’s KMV Credit Monitor and JP Morgan’s CreditMetrics are widely available to 
banks, and are designed to provide quantitative tools for assessing credit risk, as screening 
mechanisms, ongoing loan monitoring processes and as early warning tools. Some packages can 
aid in stress testing and meeting other regulatory requirements. Such packages can assist banks at 
every stage of the lending process. 

In addition, banks need to examine and evaluate their overall lending activities on an 
ongoing basis. Consider, for example, ratios of loan losses or non-performing loans to total 
loans. Excessive or possibly increasing values for either of these ratios might suggest revisions in 
lending policy. Such ratios can be created for particular classes or types of loans extended by the 
bank. 

More subtle lending or statistical trends have the potential to indicate problems with the 
loan origination process. For example, significant loan growth over time or increasing loan 
approval rates over time might indicate strengthening bank business; rapid loan growth and loan 
approval rates might also indicate aggressive lending predicated on deteriorating credit 
standards. 
 
Loan Servicing and Monitoring 

Monitoring borrowers is a key activity of the corporate bank. Banks accomplish this by 
regularly or continuously updating their information on borrowers, by visiting client facilities, 
meeting with client officers, regularly examining firm accounting statements and operational 
data. Corporate banks establish relationships with their borrowers, who benefit from easier 
access to credit and other bank facilities. 

Ongoing banking relationships set the stage for effective ongoing monitoring of corporate 
clients; banks monitor the performance of existing loans to borrowers while considering the 
extension of additional loans and services to those same clients. These monitoring activities 
enable the bank to evaluate the ongoing performance of their loan assets and to take corrective 
measures should borrower activities increase the risks of outstanding loans. Such relationships 
are often strong enough that corporate boards will often have membership representation from 
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their most important bank. Obviously, bank representation on a client’s board of directors 
improves bank monitoring and the flow of information between banks and their borrowers. 
 
Loan Portfolio Diversification 
 Undue concentrations of loan portfolios to specific borrowing clients, single industries or 
sectors or narrow geographic regions subject the bank to increased risk of distress and failure. 
While it is important for banks to seek their client niches and specialties, loan portfolio focus 
increases the risk of lending bank distress and failure. Banks reduce overall credit risk by 
diversifying borrower-specific credit risk, to the extent that sound business practices and 
regulators permit, across clients, sectors and industries and geographic regions. In addition, 
interrelationships between bank credit risk and other risks (e.g., interest rate risk) can be an 
important consideration to most banks. 
 
C. Other Types of Default Risk 
 Any party with an obligation to the bank can default or otherwise fail to deliver as 
agreed. We used credit risk above in the context of a lending relationship, and review other 
forms of default risk below. 
 
Counterparty Risk 
 Counterparty Risk concerns the potential that a counterparty in a securities or other 
financial trading transaction will fail to fulfill the terms of its obligation. For example, if a bank 
were to arrange an interest rate swap transaction with a broker, the bank might lose its potential 
profits from a profitable contract if the broker were to fail prior to the settlement date, thereby 
rendering the swap agreement worthless. Counterparty risk might include the potential for a 
counterparty to default on a forward contract by failing to deliver cash or instruments as 
obligated, the potential that a letter of credit, loan guarantee or other third-party contract to a loan 
will fail to be honored as can the potential for a payment order (check) given to a counterparty's 
bank to fail to clear or execute. Counterparty risk can be particularly acute during periods with 
volatile markets, as was clear with the failure of Lehman Brothers during the 2008 financial 
crisis. 
 Securities exchanges with central clearing parties can provide protection against 
counterparty risk when the exchanges and central clearing parties are less likely to default than 
counterparties. Hence, as with settlement risk, counterparty risk can be mitigated by trading 
exchange-listed derivatives and instruments rather than contracting with individual institutions or 
trading over-the-counter instruments. When this is not possible or practical, it is important for 
banks to establish early warning systems for counterparties with obligations, and to create and 
maintain watch lists of potentially troubled counterparties, and ensure that these lists are 
distributed among all relevant employees, including risk management, treasury and legal offices. 
Maximum threshold obligation amounts need to be established for each counterparty with which 
the bank trades, just as the bank will establish credit limits. 
 
Sovereign and Political Risk 
 Sovereign risk is the potential that a national government borrower will default on its 
debt. Obviously, for lenders to governments, sovereign risk is an important type of credit risk. In 
some instances, governments will simply repudiate their debt obligations. For example, China, 
Cuba and North Korea repudiated their debts during the Cold War, refusing to acknowledge their 
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debt agreements. Lending banks often have little recourse in the case of debt repudiation by 
sovereign countries beyond simply refusing to extend additional credit. Other countries, 
including Mexico and Argentina during the 1970s oil crisis and Greece during the early 21st 
century (and 4 other times since 1826) have rescheduled or restructured their repayments after 
defaulting. Rescheduling debt payments or restructuring them (reducing or converting them to 
contingency-based payments) usually requires an arduous negotiating process. 
 Political risk, while not technically a form of default risk, concerns the potential that a 
national government will interfere in the operations of a bank. Such interference can extend to 
surprises in tax policy, changes in lending or labor regulations or a variety of specific currency 
(e.g., devaluations or restrictions on bans on repatriation) or banking regulations. Loan 
diversification can be very helpful in mitigating sovereign and political risk. 
 
Settlement Risk 
 In the previous section, we characterized settlement risk as the potential for a  
counterparty to fail to deliver assets as per the terms of a contract. For example, a trade 
counterparty in a forward contract might simply be unable to deliver treasury bills as per the 
forward agreement, defaulting on its agreement with the bank and potentially leaving the bank 
unable to fulfill its own contractual obligations or meet regulatory capital or liquidity 
requirements. A similar failure by an exchange or clearing firm trading a futures contract could 
have a similar impact on the bank. A delay by as little as a single day or even a few hours can be 
consequential as such a failure, especially if large, can trigger reverberation or domino effects 
throughout an entire banking system. 
 Settlement risk might also be considered a form of counterparty or credit risk. Most 
exchanges, including futures, commodities and FX exchanges use clearing firms and clearing 
houses to deliver securities. Modern clearance operations, including implementation of novation 
and netting procedures can significantly reduce settlement risk. However, forward contracts tend 
to be individually arranged and traded bank-to-bank rather than in organized exchanges. Hence, 
when available, the bank might benefit from the security that clearing firms offer on futures 
exchanges relative to forward contracts. A custodian's failure to deliver assets held in trust can 
also be considered a form of settlement risk. Nonetheless, regulatory limits on credit exposure, 
margin requirements, third party guarantees and collateral (be aware of International Swaps and 
Derivatives Association and national regulatory requirements concerning the rules for collateral 
management) and can also mitigate settlement risks. 
 
D. Interest Rates1 
 For calculation purposes, it is often easier to assume that all discount and interest rates 
are equal for all periods, along with all bond yields. This means that the yield curve, which 
depicts the yields to maturity of zero-coupon bonds with respect to their terms to maturity, is 
flat.2 But, of course, such assumptions are not realistic. Furthermore, interest rates do change 
over time, sometimes very unpredictably, and long term rates frequently exceed short term rates. 

In this chapter, we discuss yields that vary among debt instruments over terms to 
maturity, and express long term interest rates as functions of short term rates. We will distinguish 

                                                           
1 See Teall (2018). 
2 A zero coupon bond, also known as a pure discount bond or strip makes no explicit interest payments, but is 
purchased at a discount from its face or maturity value. Its yield is expressed as a function of its maturity and current 
market values. 
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between yields or rates on instruments originating at time zero or now (spot rates, on instruments 
originating now) and yields or rates on instruments originating in the future (forward rates, on 
instruments to be originated in the future at rates locked in at time zero or now). More 
specifically, we will argue that long term interest rates are related to the geometric mean of a 
series of short term spot rates and forward rates. The compounding effect of interest rates leads 
to long term rates being calculated based on geometric rather than arithmetic means.  More 
specifically, at least initially, we will suggest that the long term spot rate will be expressed as a 
geometric mean of short term spot and forward interest rates. 
 
Present Value and Discount Rates 
 Suppose that we wish to analyze a bond (a CD or any other interest-bearing debt 
instrument) maturing in n periods with a face value (or principle amount) equal to F (principal) 
paying interest annually at a rate of c. The annual interest payment is rate c multiplied by face 
value F (or cF). These interest payments are made at the end of each year. In addition, the bond 
makes a single payment of F at time n. Using a standard present value model discounting cash 
flows at an annual rate equal to k, the bond is evaluated as follows: 
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 For example, let c equal .10, F equal $1000, k equal .12 and n equal 2. The present value 
of this bond is $966.20, computed as follows: 
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Bond Yields 
 Present Value is used to determine the economic worth of a bond or other debt 
instrument; the return of a bond measures the profit relative to the investment of a bond. There 
are several measures of debt instrument return including yield to maturity y: 
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Yield to maturity is, obviously, the value for y that satisfies Equation 5.2 (or k in Equation 5.1). 
Usually, a solution must be obtained through an iterative process. The yield to maturity (or 
internal rate of return) for the instrument described above is 12%, computed as follows: 
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Thus, yield to maturity can be interpreted as that discount rate which sets the purchase price of a 
bond equal to its present value. 
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The Term Structure of Interest Rates 
 The Term Structure of Interest Rates is concerned with how yields and interest rates vary 
with respect to dates of maturity. The Pure Expectations Theory states that long term spot rates 
can be explained as a geometric mean of short term spot and forward rates. Thus, the Pure 
Expectation Theory defines the relationship between long and short term interest rates as 
follows, where r0,n is the rate on an instrument originated at time 0 and repaid at time n, and rt-1,t 
is the is the rate on an instrument originated at time t-1 and repaid at time t: 
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Thus, the first subscript provides that origination date of the relevant spot or forward rate and the 
second date provides its maturity date. 
 
Illustration: Term Structure 
 Consider an example where the one-year spot rate r0,1 is 2%. Investors are expecting that 
the one-year spot rate one year from now will increase to 3%, meaning that the one-year forward 
rate r1,2 on loans originated in one year is 3%. Further suppose that investors are expecting that 
the one year spot rate two years from now will increase to 5%; thus, the one-year forward rate 
r2,3 on a loan originated in two years is 5%. Based on the pure expectations hypothesis, the three-
year spot rate in this market is calculated as follows (figures are rounded): 
 

𝑟଴,ଷ = ඩෑ൫1 + 𝑟௧ିଵ,௧൯
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೙
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= ඥ(1 + .02)(1 + .03)(1 + .05)
య

− 1 = .03326 
 
This implies that a riskless borrower could obtain a three-year loan at 3.326%. Similarly, the 
two-year spot rate is calculated as follows: 
 

𝑟଴,ଶ = ඩෑ൫1 + 𝑟௧ିଵ,௧൯

௡

௧ୀଵ

− 1 = ට൫1 + 𝑟଴,ଵ൯(1 + 𝑟ଵ,ଶ) − 1 = ඥ(1 + .02)(1 + .03) − 1 = .025 

 
For valuation purposes, these spot rates can be used as discount rates for their corresponding 
periods. Notice that as spot rates rise, the value of debt instruments will fall. This effect is more 
dramatic with longer-term instruments. 
 
Illustration: Pricing a Bond 
 In an arbitrage-free market, any other bond or other debr instruments with cash flows 
paid at the ends of some combination of years 1, 2 and 3 must have a market price that is 
consistent with these three spot rates. For example, a 3-year 4% coupon Bond 4, discounted with 
the spot rates determined above, can be valued as follows: 
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Any other market price for Bond 4 will lead to an arbitrage opportunity.  
 
Calculating Forward Rates 
 Prices and cash flows from any combination of three of these bonds above will be 
consistent with the following forward rates (figures are rounded): 
 

𝑟ଵ,ଶ =
(1 + 𝑟଴,ଶ)ଶ

1 + 𝑟଴,ଵ
− 1 =

(1 + .025)ଶ

1.02
− 1 = .03 

 

𝑟ଶ,ଷ =
(1 + 𝑟଴,ଷ)ଷ

(1 + 𝑟଴,ଶ)ଶ
− 1 =

(1 + .03326)ଷ

1.025ଶ
− 1 = .05 

 

𝑟ଵ,ଷ = ඨ
(1 + 𝑟଴,ଷ)ଷ

(1 + 𝑟଴,ଵ)
− 1 = ඨ

1.03326ଷ

1.02
− 1 = .04 

 
Table 5.1 summarizes all of the relevant spot and forward rates in this market given our initial 
one-year forward rates of 𝑟଴,ଵ =.02, 𝑟ଵ,ଶ =.03 and 𝑟ଶ,ଷ=.05. 
 

Maturity Date 
1 2 3 

0| 0.02 0.024988 0.033258 
Origination Date   1| N/A 0.03 0.039952 

2| N/A N/A 0.05 
 
Table 5.1: Spot and Forward Rates Illustration 
 
E. Interest Rate Risk 
 In general, the three primary types of debt instrument risk faced by banks might be 
categorized as follows: 
 

1. Default or credit risk: Borrowers from banks might not fulfill all of their obligations. 
2. Liquidity risk: An efficient market for banks to sell securities or otherwise raise capital 

might not exist or might be impaired. 
3. Interest rate risk: Market interest rate fluctuations affect values of existing term loans and 

other assets, affect liability values as well as bank earnings. 
 
In addition, many debt contracts can be called (redeemed or repaid) prior to maturity by the 
borrower or issuer, subjecting the bank to call risk or prepayment risk. 
 On the asset side of the bank's balance sheet, U.S. Treasury issues are generally regarded 
as being practically free of default risk. Furthermore, there exists an active market for Treasury 
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issues, particularly those maturing within a short period. Thus, Treasury issues are regarded as 
having minimal liquidity risk as well. However, all debt instruments are subject to interest rate 
risk. Longer-term instruments are subject to increased interest rate risk due to the increased 
periods that the yields on longer-term instruments are likely to differ from shorter-term 
instruments. We will discuss hedging this interest risk in the next section. 
 
Sources of Interest Rate Risk 
 Our primary concern in this section is interest rate risk. Interest rate risk draws from 
several factors, including the following:3 
 

 Repricing risk: related to the cash flow structures and repricing of the bank's assets and 
liabilities along with relevant off balance sheet items. This risk typically involves or is 
related to maturity gaps, differences in the maturity structures between assets and 
liabilities. We will discuss maturity gaps and stress tests to analyze them in later chapters 
and corrective measures later in this chapter. 

 Basis risk: arising from instruments created or sold in different markets, such as different 
countries, involving different types of instruments (e.g., mortgages vs. CDs, LIBOR vs. 
SOFR rates) institutions or industries, etc., causing the instruments to reprice differently. 

 Yield curve risk: arising from changes in the slope and the shape of yield curves (non-
parallel yield curve shifts) 

 Option risk: arising from options held by counterparties, including options to retire debt 
or CDs early or extend loans when interest rates shift. 

 
The Evolution of Short-Term Rates4 
 As we discussed earlier in this chapter, the yield curve depicts varying spot rates over 
associated terms to maturity. Understanding the nature of the uncertainty that drives spot and 
forward rates, particularly short term rates is essential to understanding fixed income 
instruments. 
 
The Merton Model 
 The Merton [1973] term structure model prices bonds based on the assumption that short-
term interest rates (more precisely, instantaneous spot and forward rates rt) are related to an 
arithmetic Brownian motion process Zt: 
 
(5.4)     𝑑𝑟௧ =  𝜇𝑑𝑡 + 𝜎𝑑𝑍௧ 
 
 Instantaneous rates rt following arithmetic Brownian motion are normally distributed, and 
normal distributions are often very easy to work with. On the other hand, in this model, changes 
in interest rates are unrelated to historical or long-term mean rates. This means that directional 
moves for short term interest rates cannot be predicted based on available information, 
particularly when the drift µ is low compared to interest rate volatility . The range of potential 
interest rate changes is from an unreasonable negative infinity to positive infinity. Negative 
interest rates are very possible under Brownian motion, but may seem less likely (though not 
                                                           
3 See Federal Deposit Insurance Corporation (2018). 
4 This subsection, intended as a very superficial introduction to term structure models can be skipped without loss of 
continuity in the chapter. 



11 
 

impossible) in practice. 
 
The Vasicek Model 
 In more realistic scenarios, we might observe that when the short-term spot rate seems 
high, that is it exceeds the long-term mean rate (r0 > 𝑟̅), the drift in the short term rate might be 
expected to be negative so that the short-term rate drifts down towards the long-term mean rate 
𝑟̅. We might say that interest rates are currently high in this scenario, and we expect for them to 
drop towards the long-term mean 𝑟̅. When the short-term rate r0 is less than the long-term rate (r0 
< 𝑟̅), the drift might be expected to be positive. Thus, the short-term rate has a tendency to revert 
to its long-term mean 𝑟̅, whose value might be the value justified by economic fundamentals 
such as capital productivity, long-term monetary policy, etc. 
 Define the term 0 <  < 1 to be a constant that reflects the speed of the mean-reverting 
adjustment for the instantaneous rate rt towards its constant long-term mean rate 𝑟̅; that is,  is 
the mean reversion factor, sometimes called a "pullback factor." This pullback factor is typically 
estimated or calibrated based on a statistical analysis of historical data. Let dZt represent 
Brownian motion shocks or random disturbances to rt. If volatility  is assumed to be 
independent of the short-term rate (e.g., it is a constant), the following defines the Ornstein-
Uhlenbeck mean reverting process, also known as a Vasicek process in fixed income analysis: 
 
(5.5)    𝑑𝑟௧ = (𝑟̅ − 𝑟௧)𝑑𝑡 + 𝜎𝑑𝑍௧ 
 
The Ornstein-Uhlenbeck process is sometimes called an elastic random walk. The Ornstein-
Uhlenbeck process has two components, the mean reversion component (𝑟̅ - rt) and the 
Brownian motion component 𝜎dZt. The Brownian motion component is the disturbance factor 
that causes the short-rate rt to diverge from the long-term mean rate 𝑟̅. The mean reversion 
component draws the short term rate rt back towards the long term mean rate 𝑟̅. A higher value 
for  implies a faster reversion ( < 1) by the short-term rate rt towards the long term mean rate 
𝑟̅.  
 If  were zero, there would be no mean reversion and the process would be a Brownian 
motion. One drawback to the Vasicek interest rate model is that interest rate shifts have a 
normally distributed component, leading to the unfortunate result that it is possible for the 
interest rate to become negative. Obviously, this creates an arbitrage opportunity when cash is 
available for investors to hold. Figure 5.1 depicts a simulation of a Vasicek process over length 
of time 200, with r0 = .05, and 𝜎 = .02 and  = .1. Also notice on Figure 5.1 that the process can 
drop to zero and that large changes in interest rates away from the long-term mean 𝑟̅ tend to lead 
to large changes in the rate back towards the long-term mean. 
 The Vasicek yield curve model has a number of desirable characteristics. The model 
captures the empirical tendency for interest rates to revert towards some sort of mean rate. The 
model is driven off short term interest rates, much as actual interest rates might be impacted by 
the Federal Funds rate, the "overnight" bank-to-bank controlled by the central bank (Fed). 
However, there are a number of problems with the Vasicek model in characterizing the behavior 
of the yield curve:  
 

1. The Vasicek model is likely to apply only in reasonably "normal" scenarios. For 
example, in situations involving crises such as hyperinflation, mean reversion is not 
likely to characterize the behavior of interest rates.  
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2. Because it is based on Brownian motion, the Vasicek model does not allow for discreet 
jumps in the interest rate process.  

3. The Vasicek model produces the result that all short- and long-term rates are perfectly 
correlated. 

4. Related to the difficulty put forth just above, the Vasicek model assumes only a single 
underlying risk factor when, in fact, there is significant evidence that there may well be 
multiple factors. For example, sometimes the yield curve can "twist;" that is, long- and 
short-term rates can move in opposite directions. Multiple risk factors can often explain 
such "twisting."  

5. Finally, the Vasicek model allows for the possibility of negative interest rates, even for 
negative real interest rates, a phenomenon that we should expect to observe rarely, if at 
all. 

 
 Why work with an interest rate model that presents all of these difficulties? As with most 
other financial models, we simply balance realism and ease of model building. The Vasicek 
model does capture some of the characteristics of a reasonable interest rate process and it is 
rather easy to work with, particularly in terms of parameter calibration. In addition, it is useful 
and sometimes very straightforward to adapt this framework into more realistic alternative 
depictions of interest rate processes. 

 
Figure 5.1: Simulation of Vasicek Process: r0 = .05, 𝝈 = .02 and  = .1 
 
Bond Prices and Interest Rate Shifts 
 Equation 5.6 depicts a very simple relationship between interest rate shifts and a bond's 
discount rate or yield to maturity. As interest rates change in one direction, bond prices will 
change in the opposite direction. The longer one waits to recapture the value associated with his 
bond (the longer the bond's term to maturity), the greater will be the sensitivity of the bond's 
price to interest rate changes: 
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 Let us consider how a change in interest rates might affect the value of a bond. Start by 
assuming that the terms of the bond contract, n, F and c are constant. To estimate this 
relationship, we will find the derivative of PV with respect to (1+y): 
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Notice first that this derivative is negative, implying that interest rates and bond prices change in 
opposite directions. This relationship is depicted in Figure 5.2 for a zero coupon bond paying 
$100 in 10 years. Notice in Figure 5.2 and Equations 5.6 and 5.7 that an increase in interest rates 
from, say 5% to 10% would significantly decrease the value of bank assets. Second, notice from 
Equations 5.6 and 5.7 that as n, the bond's term to maturity increases, this inverse relationship 
becomes stronger. This is a major problem for banks, which are so heavily engaged in the 
process of maturity transformation. Banks with short-term deposits and long-term financial 
assets face significant risks that result from even small changes in interest rates. 
 

 
Figure 5.2: Zero Coupon Bond Price and Interest Rates 
 
F. Asset-Liability Management 
 Asset-liability management, the coordinated management of accounts on both sides of the 
bank’s balance sheet, might be the most important financial activity of the modern commercial 
bank. Major decisions concerning the management of interest rate risk are typically overseen by 
the bank's board of directors and made by a senior executive team often known as the Asset-
Liability Management Committee (ALCO, sometimes called the Finance Committee), often 
including the bank CEO, COO, CFO, certain board members and other officers. The ALCO will 
establish and maintain interest rate risk measurement, monitoring and reporting systems, devise 
risk management strategies, institute internal control systems, impose position and risk limits and 
authorize policy exceptions. We will discuss many of these interest rate risk management 
functions in this and in the next two chapters. The ALCO will typically delegate its day-to-day 
operating responsibilities to the bank's treasury unit or investment officer. 
 
The Maturity Gap 
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 The modern corporate bank's emphasis on asset transformation, particularly maturity 
transformation makes bank profitability and total equity levels very sensitive to interest rate 
shifts. Demand deposits, a primary source of funding for most banks, are essentially money 
market instruments with zero terms to maturity. However, corporate bank borrowers tend to 
prefer take on longer-term debt, meaning that banks tend to lend from very short-term deposits. 
This mismatch in maturities is the basis of the maturity gap, which is sometimes defined as the 
weighted-average time to maturity of financial assets minus the weighted-average time to 
maturity of liabilities. While there are a number of variations on a standard gap ratio, one simple 
variation that appears in analyses is: 
 

Gap Ratio =  
Risk Sensitive Assets − Risk Sensitive Liabilities

Average Earning Assets
 

 
Assets might be weighted by terms to maturity for another perspective. 
 

 <1 
Month 

1-3 
Months 

3-12 
Months 

1-3 
Years 

3-10 
Years 

>10 
Years Total 

Investments 20 5 5 0 0 0 30 
Loans 10 5 5 20 20 10 70 
Total Assets 30 10 10 20 20 10 100 
Demand 
Deposits 

-60 0 0 0 0 0 -60 

CDs -3 -4 -6 -4 -2 -1 -20 
Subordinated 
Loans 

-2 -1 -2 -2 -2 -1 -10 

Total 
Liabilities 

-65 -5 -8 -6 -4 -2 -90 

Equity       -10 
Periodic Gap -35 5 2 14 16 8 0 
Cumulative 
Gap 

-35 -30 -28 -14 2 10 0 

Table 5.2: Sample Abbreviated Gap Report for a Bank ($millions) 
 
 A Gap report is prepared by a bank to assess its repricing imbalances and interest rate 
exposure. A Gap report categorizes a bank’s assets, liabilities and off-balance sheet instruments 
into maturity bands, summarizing asset-liability differences at each maturity band. For example, 
a bank might segment all of its assets and liabilities as depicted in Table 5.2. This bank is said to 
have a negative gap, since there are significant negative periodic and cumulative gaps in the 
shorter maturity terms in the table. These gaps lessen as the terms to maturity increase. This 
suggests that if interest rates were to rise, the decline in asset value would more than offset the 
decline in liability value (changes in asset and liability value are not depicted in the table), bank 
income would decline as would the value of the bank's equity. 
 
Managing the Maturity Gap 
 Time deposits and fixed income instruments provide for fixed interest payments at fixed 
intervals and principal or balance repayments. In the absence of default and liquidity risk (and 
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hybrid or adjustable features), uncertainties in interest rate shifts are the primary source of 
pricing risk for most fixed income instruments. In remainder of this chapter, we will discuss the 
analysis of fixed income instruments and how to manage interest rate uncertainty. In the next two 
chapters, we will introduce various types of securities used by banks to manage various risks and 
examples involving stress testing and asset-liability management. However, the following is a 
brief list of actions that a bank can undertake to manage its interest rate risk: 
 

 Refuse to make intermediate- and long-term loans when the asset-liability maturity 
mismatch is too worrisome. Many banks will devise loan policies to prevent making 
loans large enough to create such mismatches. Unfortunately, banks can lose clients and 
miss out on profitable opportunities with this strategy. 

 Seek to create assets with floating rate structures: While borrowers often prefer fixed-rate 
loans, banks will often seek to encourage borrowers to accept floating rate loans. In many 
instances, banks will need to offer very low interest rates on floating rate loans to entice 
borrowers to accept them. 

 Seek to zero-out maturity gaps in the Gap report: This might be a useful and relatively 
simple way to deal with maturity gaps. However, the maturity segments can have fairly 
wide ranges, and any variation of ranges within a segment can lead to errors in the net 
effects of shifting interest rates. 

 Cash flow dedication: Banks can seek to match exactly asset payoff structures to liability 
payoff structures so as to minimize the effects of interest rate shifts on bank income. We 
will discuss this strategy in the next section. Sometimes, finding assets or liabilities to 
complete the exact match is difficult or requires compromises in pricing or interest rate 
terms. 

 Immunization: Banks can seek to match the interest rate sensitivity of asset values to the 
interest rate sensitivity of liability values. We will discuss this strategy later in this 
chapter. 

 Employ derivative contracts: Forward rate agreements, interest rate swaps, futures 
contracts, floors, caps, collars and swaptions are among the instruments that can be used 
to help banks manage interest rate risk. Such techniques can create unintentionally 
complex risk exposures. We will briefly discuss such tools in the next chapter. 

 Sell (offload) assets to move them off the balance sheets to reduce the bank's interest rate 
sensitivity. We will discuss this strategy in the next chapter. 

 
G. Matching Asset and Liability Cash Flows 
 Banks seek to ensure relatively stable income levels over time and modest variability in 
equity capital. Typically, a bank must provide payments to its depositors for any given period 
and will collect payments on its loans and other assets over the same period. Accordingly, banks 
should invest in assets to ensure that depositor obligations and other liabilities are paid as 
needed. In many cases, banks will purchase assets to ensure that the cash flows produced by 
these assets exactly match the liability payments that the bank is required to make. This exact 
matching strategy is sometimes referred to as dedication and is intended to minimize the cash 
flow volatility or risk of the bank. Essentially, the bank manager determines the cash flows 
associated with the bank's liability (or asset) structure and replicates them with a series of assets 
(or liabilities). With cash inflows exactly matching cash outflows (along with profits), the bank's 
risk is minimized. Maturity mismatches between a bank's cash inflows and cash outflows are 
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often revealed in the bank's gap report. Afterwards, the bank's treasury unit may undertake 
portfolio repositioning efforts to close this gap. 
 
Dedication Illustration 
 Consider, for example, a bank that funds its operations with fairly short-term time 
deposits. Suppose that this bank has just extended balloon payment loans to three clients that are 
expected to produce payments to the bank of $12,000,000 in one year, $14,000,000 in two years, 
and $15,000,000 in three years. To hedge against interest rate increases that would devalue the 
loans, the bank will seek to fund these loans through a series of one, two and three year CD 
accounts. The bank's Asset-Liability Committee has decided to use a CD broker service to 
market these certificates of deposit to the general public. 
 Suppose that this bank has determined that it will sell one, two and three year CDs to 
match the cash flow structure of this loan portfolio with spot interest rates consistent with rates 
prevailing in the marketplace. Interest payments will be made on each of the CDs at the end of 
each of the three years until they mature. CD1 will be a 1-year, 3% certificate, CD2 will be a 2-
year, 4% certificate, and CD3 will be a 3-year, 5% certificate, with these CD rates being 
consistent with spot rates prevailing in the market. The next issue is to determine how many of 
each of the three certificates to sell to investors. 
 The cash flow structures of the bank's three loans will be matched to the cash flows 
associated with the bank's CD structure so as to eliminate variability in bank profits that might 
result from interest rate shifts. The bank will carry these loans on the asset side of its balance 
sheet and needs to issue CDs to investors that it will carry on the liabilities side of its balance 
sheet. 
 In year 1, the bank must pay its CD1 holders $1030, CD2 holders $40 and CD3 holders 
$50. These payments should be combined to total $12,000,000, the cash inflow from loan 
recipients. Cash inflows must be matched to cash outflows in years 2 and 3 as well. Only one 
exact matching strategy will exist for this scenario, summarized by the equation system below. 
The following system can be solved for cd1, cd2 and cd3 to determine exactly how many of each 
of the CDs should be sold to satisfy the bank's cash flow requirements: 
 
                                                12,000,000 = 1030cd1 + 40cd2  +  50cd3 
                14,000,000 =              1040cd2  +  50cd3 
               15,000,000  =                             1050cd3    
 
There are many ways to solve this system for the numbers the three CDs to dedicate to the bank's 
portfolio of assets. In this very simple case, we can bootstrap a solution, first solving the third 
equation for cd3, then using that solution to solve the second equation for cd2 and using the two 
solutions to solve the first equation for cd1. Thus, we find from this system that our solutions are: 
 
     cd1 = 10,460.90 
     cd2 = 12,774.73 
     cd3 = 14,285.71 
 
Thus, with additional rounding, the bank should sell through its CD broker 10,461 CDs1, 12,775 
 CDs2, and 14.286 CDs3. This set of CDs will exactly match the asset cash flow structure 
producing $12,000,000 in one year, $14,000,000 in two years, and $15,000,000 in three years. 
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The total purchase price associated with these CDs will be $37,521,337.89 (based on using spot 
rates for discounting and with minimal rounding). Interest rate shifts will not affect the cash flow 
structures of either assets or liabilities once they are locked in. 
 
Issues with Dedication 
 Exact matching or dedication programs can be very effective when liquidity is sufficient 
to obtain deposits, loans and assets with appropriate cash flow structures when needed. However, 
what if, for example, a bank needs to lock in a cash flow from its portfolio of term loans equal to 
exactly $1,000,000 on a specific date exactly 12 years, 3 months and 2 days into the future? If no 
clients need to make term loans with this set of exact characteristics, some sort of approximation 
must be acceptable. Alternatively, what if such assets are available, but overpriced (or with 
unacceptably low interest rates)? Again, the manager must work with an approximation or accept 
investment in overpriced loan assets. In any case, dedication programs can limit managers with 
respect to what loans they can invest in and in what quantities they must granted. Next, we will 
prepare for a discussion on portfolio immunization, which is not always as effective as an 
interest rate hedging tool, but does allow for more flexibility. 
 
H. Duration 
 As we discussed earlier, bonds and certain other debt instruments issued by the United 
States Treasury are often regarded to be practically free of default risk and of relatively low 
liquidity risk. However, these bonds, particularly those with longer terms to maturity are subject 
to market value fluctuations after they are issued, primarily due to changes in interest rates 
offered on new issues. Other bank assets will also be subject to interest rate risk. Generally, 
interest rate increases on new debt issues decrease values of bonds that are already outstanding; 
interest rate decreases on new debt issues increase values of bonds that are already outstanding. 
Immunization models such as the duration model are intended to describe the proportional 
change in the value of a bond induced by a small proportional change in interest rates or in yields 
of new issues. 
 
Bond Duration 
 As discussed earlier, many analysts use present value models to value debt issues, 
frequently using yields to maturity of new issues as discount rates to value existing issues with 
comparable terms. It is important for analysts to know how changes in new-issue interest rates 
will affect values of bonds with which they are concerned. Bond duration measures the 
proportional sensitivity of a bond to changes in the market rate of interest.  
 Suppose that investors have valued a bond such that its market price equals its present 
value; that is, the discount rate k for the bond equals its yield to maturity y. If market interest 
rates and yields were rise for new treasury issues, then the yield of this bond would rise 
accordingly. However, since the contractual terms of the bond will not change, its market price 
must drop to accommodate a yield consistent with the market. Thus, increases in bond yields 
lead to bond price declines.  
 
Deriving the Simple Macaulay Duration Formula 
 Assume that the value of an n-year bond paying coupon interest at a rate of c on face 
value F is determined by a present value model with the yield y of comparable issues serving as 
the discount rate k: 
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Assume that the terms of the bond contract, n, F and c are constant. Just what is the proportional 
change in the price of a bond induced by a proportional change in market interest rates 
(technically, a proportional change in [1+y])? This may be approximated by the bond's Macaulay 
Simple Duration Formula as follows: 
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 Equation 5.8 provides a reasonable approximation of the proportional change in the price 
of a bond in a market meeting the assumptions described above induced by an infinitesimal 
proportional change in (1 + y). To derive this measure of a bond’s interest rate sensitivity 
(Equation 5.8), we first rewrite Equation 5.2 in polynomial form (to take derivatives later) and 
substitute y for k (since they are assumed to be equal): 
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First, find the derivative of PV with respect to (1+y): 
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Equation 5.11 can be rewritten: 
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Since the market rate of interest is assumed to equal the bond yield to maturity, the bond's price 
P0 will equal its present value PV. Next, multiply both sides of Equation 5.11 by (1+y)÷P0  to 
obtain the bond’s proportional interest rate sensitivity, which is often more practical for portfolio 
purposes: 
 

(5.13)  
0

1

0

)1()1(
)1(

)1( P

ynFytcF

P

y

yd

dPV
Dur

n

t

nt


 






  

 
Equation 5.13 is equivalent to the right side of Equation 5.2. Thus, duration is defined as the 
proportional price change of a bond induced by an infinitesimal proportional change in (1+y) or 
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1 plus the market rate of interest: 
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Illustration of Duration Calculation 
 Consider a two-year 10% coupon treasury issue which is currently selling for $966.20. 
The yield to maturity y of this bond is 12%. Default risk and liquidity risk are assumed to be 
zero; interest rate risk will be of primary importance. Assume that this bond's yield or discount 
rate is the same as the market yields of comparable treasury issues (which might be expected in 
an efficient market) and assume that bonds of all terms to maturity have the same yield. Further 
assume that investors have valued the bond such that its market price equals its present value; 
that is, the discount rate k for the bond equals its yield to maturity y. 
 Since the market rate of interest will likely determine the yield to maturity of any bond, 
the duration of the bond described above is determined as follows from Equation 9: 
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This duration level of -1.907 suggests that the proportional decrease in the value of this bond will 
equal 1.907 times the proportional increase in market interest rates. This duration level also 
implies that this bond has exactly the same interest rate sensitivity as a pure discount bond (a 
bond making no coupon payments) that matures in 1.907 years. For example, if interest rates 
were to decline by .3% to 11.7%, the bond's price would rise by approximately (-1.97-
.3%$966.20) = $5.71 to approximately $971.91 based on this duration calculation. Duration is 
considered a first order approximation (based on a first derivative only), hence its results should 
not be taken to be exact. 
 Application of the Simple Macaulay Duration model does require several important 
assumptions. First, it is assumed that yields are invariant with respect to maturities of bonds; that 
is, the yield curve is flat. Furthermore, it is assumed that investors' projected reinvestment rates 
are identical to the bond yields to maturity. Any change in interest rates will be infinitesimal and 
will also be invariant with respect to time. The accuracy of this model will depend on the extent 
to which these assumptions hold. We will discuss convexity later in the next section, which will 
allow for better estimates given larger changes in interest rates. 
 
I. Immunization 
 Immunization is concerned with controlling asset and liability values in the face of 
interest rate uncertainty, seeking to ensure that institutional value is immunized from interest rate 
shifts. 
 
Portfolio Immunization 
 Earlier, we discussed bond portfolio dedication, which minimizes interest rate risk by 
matching cash flows of bond portfolios with required payouts associated with liabilities. This 
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process assumes that no transactions will take place within the portfolio and that cash flows 
associated with liabilities will remain as originally anticipated. Clearly, these assumptions will 
not hold for many institutions. Alternatively, one can hedge fixed income portfolio risk by using 
immunization strategies, which are concerned with matching the present values of asset 
portfolios with the present values of cash flows associated with future liabilities. More 
specifically, immunization strategies are primarily concerned with matching asset durations with 
liability durations. If asset and liability durations are matched, it is expected that the net fund 
value (equity or surplus) will not be affected by a very small shift in interest rates; asset and 
liability changes offset each other. Again, this simple immunization strategy is dependent on the 
following: 

 
 1. Changes in (1 + y) are infinitesimal. 
 2. The yield curve is flat (yields do not vary over terms to maturity). 
 3. Yield curve shifts are parallel; that is, all short- and long-term interest rates 

change by the same amount and the yield curve maintains its shape. 
 4. Only interest rate risk is significant. 

 
 The first assumption, because it allows us to use calculus to measure sensitivities, can 
only be an approximation when interest rates change by finite amounts. We will discuss bond 
convexity shortly as a correction for this scenario. Assuming flat yield curves and parallel yield 
curve shifts are useful in that we do not have to distinguish between different rates (e.g., short- 
and long-term rates) over the term of the bond. Immunization becomes significantly more 
complicated when we need to analyze fixed income risks such as those related to liquidity and 
default. 
 
Immunization Illustration 
 Consider a second illustration involving the bank in our dedication illustration above that 
funds its operations with fairly short-term time deposits. Continue to suppose that this bank has 
just extended balloon payment loans to three clients that are expected to produce payments to the 
bank of $12,000,000 in one year, $14,000,000 in two years, and $15,000,000 in three years. To 
hedge against interest rate increases that would devalue the loans, the bank will seek to fund 
these loans through a series of one, two and three year CD accounts. Again, the bank's Asset-
Liability Committee has decided to use a CD broker service to market these certificates of 
deposit to the general public. Interest payments will be made on each of the CDs at the end of 
each of the three years until they mature. All of the CDs will be issued at coupon rates of 4%, 
consistent with the flat market yield curve, with CD1 maturing in 1 year, CD2 maturing in 2 
years, and CD3 maturing in 3 years. Our problem is to determine how many of each of the three 
certificates to sell to investors. 
 In this illustration, the pension fund manager still has anticipated cash payouts of 
$12,000,000, $14,000,000 and $15,000,000 over the next three years 1, 2 and 3. Now, suppose 
that the manager seeks to immunize interest rate risk associated with this liability stream by 
issuing CDs. Rather than exactly match the liability outflow streams with bond inflows, the 
manager will match durations of the CD liability stream with the duration of the loan investment 
portfolio. The managers will seek to ensure that changes in the value of the liability stream 
induced by interest rate changes is approximately the same as changes in the value of the loan 
portfolio. This will minimize fluctuations in the net value (assets minus liabilities) of the fund as 
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interest rates vary. In addition, given the flat yield curve of 4%, the value of the portfolio of 
loans is $37,817,193.90. 
 We calculate bond and liability stream durations as follows: 
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Portfolio immunization is accomplished when the duration (weighted average duration) of the 
portfolio of loans equals the duration (-2.048) of the CDs issued by the bank: 
 
   DurCD1 ∙ wCD1 + DurCD2 ∙ wCD2 + DurCD3 ∙ wCD3 = DurL 
        wCD1       +         wCD2 +         wCD3 =  1 
 
   -1 ∙ wCD1    – 1.962 ∙ wCD2   –    2.886 ∙ wCD3 = -2.048 
         wCD1       +          wCD2    +    wCD3 =  1 
 
There are an infinity of solutions to this two-equation, three variable system. Any solution that 
both satisfies these two equations and satisfies any other of the manager’s other constraints 
and/or preferences is acceptable. For example, one solution to this system of equations results in 
an immunized portfolio with the following weights: wCD1 = 0.1, wCD2 = .157836 and wCD3 = 
.742164. 
 Duration immunized portfolios are most effective when interest rate changes are 
infinitesimal. Since interest rate changes are likely to be finite, and perhaps even large, 
immunization strategies will be improved if we correct for finite interest rate movements by 
using convexity. Duration is based on the first derivative of a bond's price with respect to interest 
rates. This first derivative, or first order approximation would be accurate only if the relationship 
were linear, which it is not. To correct for non-linearities in this relationship, we match asset and 
liability portfolio convexities as well as durations to correct for finite interest rate changes. We 
will discuss convexity calculations next. 
 
Convexity5 
 In the previous section and subsection, we used duration to determine the approximate 
change in a bond's value induced by a change in interest rates (1+y). However, the accuracy of 
the duration model is reduced by finite changes in interest rates, as we might expect. Duration 
may be regarded as a first order approximation (it only uses the first derivative) of the change in 
the value of a bond induced by a change in interest rates. Convexity is determined by the second 
                                                           
5 This subsection can be skipped without loss of continuity in the chapter or remainder of the text. 
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derivative of the bond's value with respect to (1+y); that is, convexity is concerned with the 
change of  the bond's value with respect to the change of the change in (1+y). Recall that the first 
derivative of the bond's price with respect to (1+y) is given: 
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We find the second derivative by determining the derivative of the first derivative as follows: 
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 Convexity is merely the second derivative of P0 with respect to (1+y) divided by P0: 
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The first two derivatives can be used in a second order Taylor series expansion to approximate 
new bond prices induced by changes in interest rates as follows: 
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Convexity Illustration 
 Consider a 5-year ten-percent $1000-face-value coupon bond currently selling at par 
(face value). We might compute the present yield to maturity of this bond as y0 = .10. The first 
derivative of the bond's value with respect to (1+y) at y0 = .10 is found from Equation 5.10 to be 
3790.79 (duration is 3790.79 × 1.1 ÷ 1000 = 4.17); the second derivative is found from Equation 
5.15 to be 19,368.34 (convexity is 19,368.34 ÷ 1000 = 19.37). If bond yields were to drop from 
.10 to .08, the actual value of this bond would increase to 1079.85, as determined from a standard 
present value model. If we were to use the duration model (first-order approximation from the 
Taylor expansion, based only on the first derivative), we estimate that the value of the bond 
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increases to 1075.82. If we use the convexity model second-order approximation from Equation 
16, we estimate that the value of the bond increases to 1079.69.  
 Note that this second estimate with the second-order approximation generates a revised 
bond value that is significantly closer to the bond's actual value as measured by the present value 
model. Therefore, the duration and immunization models are substantially improved by the 
second order approximations of bond prices (the convexity model). The fund manager wishing to 
hedge portfolio risk should not simply match durations (first derivatives) of assets and liabilities, 
he should also match their convexities (second derivatives). 
 
Immunization Illustration 
 Now, let us reconsider our portfolio dedication illustration from Sections D and E along 
with the portfolio immunization illustration from above. In this illustration, the bank treasurer 
has anticipated cash payouts of $12,000,000, $14,000,000 and $15,000,000 over the next three 
years. We calculate bond A, B and C convexities along with that for the liability stream as 
follows: 
 

Conv୅ =  
ଶ×

రబ

(భశబ.బర)యା଺×
భబరబ

(భశబ.బర)ర

ଵ଴଴଴
 = 5.41 

 

Conv୆ =  
ଶ×

లబ

(భశబ.బర)యା଺×
లబ

(భశబ.బర)రାଵଶ×
భబలబ

(భశబ.బర)ఱ

ିଵ଴ .ହ
 = 10.30 

 

Convେ =  
ଵଶ×

భబబబ

(భశబ.బర)ఱ

ି଼଼
 = 11.09 

 

Conv୐ =  
ଶ×

భమ,బబబ,బబబ

(భశబ.బర)య ା଺×
భర,బబబ,బబబ

(భశబ.బర)ర ାଵଶ×
భఱ,బబబ,బబబ

(భశబ.బర)ఱ

ିଷ଻,଼ଵ଺.ଵଶ଴
 = 6.38  

 
Portfolio immunization is accomplished when the weighted averages of the duration and the 
convexity of the portfolio of bonds equals the duration and convexity (6.38) of the liability 
stream: 
 
(5.19)   DurA    ∙ wA + DurB    ∙ wB + DurC   ∙ wC = Duro 
   ConvA ∙ wA + ConvB ∙ wB + ConvC ∙ wC = Convo 
      wA       +       wB +            wC =  1 
 
   -1.962   ∙ wA     –   2.837 ∙ wB –   3      ∙ wC = -1.975 
       5.41  ∙ wA     + 10.30    ∙ wB + 11.09 ∙ wC =  6.38 
                  wA     +               wB +             wC =  1 
 
The single solution to this 3 X 3 system of equations is wA = 0.106, wB = 5.166 and wC = 4.272. 
This system provides an improved immunization strategy over the duration benchmark alone. 
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Exercises 
 
1.  We did not use the term refinancing risk in this chapter. Typically, the term refinancing is 
used to describe the process of loan repayment, then obtaining a new loan, probably with 
different repayment terms. Based on this definition of refinancing, what type of risk discussed in 
this chapter would we most likely associate with refinancing risk? 
 
2.  A $1,000 face value bond is currently selling at a premium for $1,200. The coupon rate of this 
bond is 12% and it matures in three years. Calculate the following for this bond assuming its 
interest payments are made annually: 
 a. Its annual interest payments. 
 b. Its yield to maturity. 
 
3.  Work through each of the calculations in Problem 2 above assuming interest payments are 
made semi-annually. 
 
4.  Consider an example where we can borrow money today for one year at 5%; y0,1 = .05. 
Suppose that we are able to obtain a commitment to obtain a one year loan one year from now at 
an interest rate of 8%. Thus, the one year forward rate on a loan originated in year equals 8%. 
According to the Pure Expectations Theory, what is the two year spot rate of interest y0,2? 
 
5.  Suppose that the one-year spot rate y0,1 of interest is 5%. Investors are expecting that the one 
year spot rate one year from now will increase to 6%; thus, the one year forward rate y1,2 on a 
loan originated in one year is 6%. Furthermore, assume that investors are expecting that the one 
year spot rate two years from now will increase to 7%; thus, the one year forward rate y2,3 on a 
loan originated in two years is 7%. Based on the pure expectations hypothesis, what is the three-
year spot rate? 
 
6.     Suppose that the one-year spot rate y0,1 of interest is 5%. Investors are expecting that the 
one year spot rate one year from now will increase to 7%; thus, the one year forward rate y1,2 on 
a loan originated in one year is 7%. Furthermore, assume that the three-year spot rate equals 7% 
as well. What is the anticipated one year forward rate y2,3 on a loan originated in two years based 
on the pure expectations hypothesis? 
 
7.   Under what circumstances will borrowing short-term to fund long-term assets create bank 
losses? Under what circumstances will borrowing long-term to fund short-term assets create 
bank losses? 
 
8.  Banks engage in maturity transformation activities, maintain maturity gaps on their balance 
sheets and face risks because of these maturity gaps. Banks frequently have long-term assets 
funded with short-term liabilities. What types of institutions make natural trading partners for 
banks to offload their long-term assets? 
 
9.  A thrift institution expects to make payments of $30,000,000 in one year; $15,000,000 in two 
years; $25,000,000 in three years; and $35,000,000 in four years to its depositors. These 
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anticipated cash flows are to be matched with a portfolio of the following $1000 face value 
bonds: 
    CURRENT  COUPON  YEARS TO 
  BOND    PRICE   RATE MATURITY 
    1     1000   .10         1 
    2      980   .10      2 
    3    1000   .11      3 
    4    1000   .12       4 
How many of each of the four bonds should the fund purchase to exactly match its anticipated 
payments to depositors? 
 
10.  Suppose that a thrift institution expects to make payments of $1,500,000 in one year; 
$2,500,000 in two years; and $4,000,000 in three years. These cash flows will be matched with a 
portfolio of bonds E, F and G whose characteristics are given in the table below. These three 
bonds must be used to match the cash flows associated with the fund's liability structure. For 
example, in year 1, Bond E will pay $1100, F will pay $120 and G will pay $100. These 
payments must be combined to total $1,500,000 for year 1. Cash flows must be matched in years 
2 and 3 as well. How many of each of these bonds must be purchased or sold to exactly match 
the institution's cash flow needs? What will be the net investment into these bonds? 
   CURRENT   FACE COUPON YEARS TO 
 BOND     PRICE VALUE   RATE MATURITY 
   E   1010   1000   .10      1 
   F   1100   1000   .12      2 
   G    950   1000   .10      3 
 
11.  What is the duration of a 10% 10-year balloon payment loan? 
 
12.  While much of a bank’s income from a typical loan derives from interest, banks sometimes 
require a lender to maintain a “compensating balance” in a no-interest or low-interest demand 
deposit account. How does the lending bank benefit from this practice? 
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Solutions 

 
1.  Interest rate risk: Since market rates of interest change nearly continuously, and such changes 
normally include a strong random element, predicting interest rates is very difficult. In addition, 
since most lenders express their reluctance to lend with higher interest rates, increased lender 
reluctance to lend increases interest rate risk. 
 
2.    a.  Its annual interest payments: 
   iy = Int/F 
   Int = iy(F) ;     = (.12)(1000)     = $120  
   b. Through substitution, we find yield to maturity to be .04697429 or 4.697429% 
 
3.    a.  Its annual interest payments: $120, or $60 every six months. 
    b.  Its yield to maturity y is found by substitution and eventually arriving at: 
  0 =  -1,200 + 60/[1+(y/2)]1 + 60/[1+(y/2)]2 + ...+ 60/[1+(y/2)]5 + 1060/[1+(y/2)]6 
   y = .0476634 

 
4.  According to the Pure Expectations Theory, we compute the two year spot rate as follows: 
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5.  The three-year rate is based on a geometric mean of the short term spot rates as follows: 
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6.     The three-year rate is based on a geometric mean of the short-term spot rates as follows: 
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We solve for y2,3 as follows: 

  0903.01)07.1)(05.1(22504.1 3,2  y  

 
7.  Insurance companies, particularly life insurance companies maintain long-term sources of 
funding from their policyholders. For example, life insurance policyholders frequently maintain 
their policies for decades. Insurance companies often prefer to build long-term asset portfolios in 
order to minimize their maturity gaps, and often make natural trading partners for banks. 
 
8.   Borrowing short-term to fund long-term assets will cause bank losses when interest rates rise. 
Borrowing long-term to fund short-term assets will cause bank losses when interest rates fall 
 
9. The following matrix system may be solved for b to determine exactly how many of each of 
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the bonds are required to satisfy the fund's cash flow requirements: 
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CF                       .  b       =        Po 
 

First, we invert Matrix CF to obtain CF-1: 
 























000892.000

000096.00090.00

000087.00009.000909.0

000079.00008.000083.000909.

 

CF -1 
 
    Alternatively, without matrices, we set up and solve the following system: 
 

1100b1 + 100 b2 +  110 b3 +120b4=30000000 
1100b2 + 110 b3 +120b4=15000000 

1110 b3 +120b4=25000000 
1120b4=35000000 

        
 First, solve the fourth equation, we obtain b4: 

b4=31250 
 

Now, substitute b4=31250 in the original third equation: 
1110 b3 +120×31250=25000000 

        
Solving this equation, we find that b3=19,144.14. Now, substitute b3, b4 into the original second 
equation: 

1100b2 + 110×19,144.14 +120×31250=15000000 
Solve this equation, we know that b2=8,312.858. Substitute b2, b3, b4 into the original first 
equation: 

1100b1 + 100 ×8,312.858 +  110 ×19,144.14 +120×31250=30000000 
Finally, we find that b1=21,193.5. Notice that we were able to use the bootstrapping method to 
solve his system. We find that the purchase of 21,193.5 Bonds 1, 8,312.858 Bonds 2, 19,144.14 
Bonds 3 and 31,250 Bonds 4 satisfy the insurance company's exact matching requirements. 
 
 
10.  Only one matching strategy exists for this scenario. The following system may be solved for 
b to determine exactly how many of each of the bonds is required to satisfy the fund's cash flow 
requirements: 
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1100 120 100
0 1120 100

0 0 1100

b E
bF
bG



1,500,000

2,500,000

4,000,000

CF  b  L
 

Inverting Matrix CF and multiplying by Vector L, we find that the purchase of 824.9704 Bonds 
E, 1907.467 Bonds F and 3636.363 Bonds G satisfy the manager's exact matching requirements. 
The fund's time zero payment for these bonds totals $6,385,979.9292. 
 
11.  10 years: All payments on a balloon payment loan are made at maturity, which is 10 years 
for this balloon payment loan. The interest rate is irrelevant. 
 
12.  First, compensating balances, an indirect charge imposed on borrowers who are required to 
maintain deposit accounts, provide the bank with low-cost funding on which it can earn profits. 
Second, compensating balances can mitigate credit risk, serving as collateral in the event of 
borrower default. 
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Appendix 5.A: Review of Matrices and Matrix Arithmetic 

 A matrix is simply an ordered rectangular array of numbers. A matrix is an entity that 
enables one to represent a series of numbers as a single object, thereby providing for convenient 
systematic methods for completing large numbers of repetitive computations.  Such objects are 
essential for the management of large data structures. Rules of matrix arithmetic and other matrix 
operations are often similar to rules of ordinary arithmetic and other operations, but they are not 
always identical. In this text, matrices will usually be denoted with bold uppercase letters. When 
the matrix has only one row or one column, bold lowercase letters will be used for identification. 
The following are examples of matrices: 
 

𝐀 =  ൥
4 2 6
3 7 4
8 −5 9

൩ 𝐁 =  ൤
2 −3

3/4 −1/2
൨ 𝐜 =  ൥

1
5
7

൩ 𝐝 =  [4] 

 
 The dimensions of a matrix are given by the ordered pair m × n, where m is the number 
of rows and n is the number of columns in the matrix. The matrix is said to be of order m × n 
where, by convention, the number of rows is listed first. Thus, A is 3 × 3, B is 2 × 2, c is 3 × 1, 
and d is 1 × 1. Each number in a matrix is referred to as an element. The symbol ai,j denotes the 
element in Row i and Column j of Matrix A, bi,j denotes the element in Row i and Column j of 
Matrix B, and so on. Thus, a3,2 is -5 and c2,1 = 5. 
 There are specific terms denoting various types of matrices. Each of these particular types 
of matrices has useful applications and unique properties for working with. For example, a vector 
is a matrix with either only one row or one column. Thus, the dimensions of a vector are 1 × n or 
m × 1. Matrix c above is a column vector; it is of order 3 × 1. A 1 × n matrix is a row vector with 
n elements. The column vector has one column and the row vector has one row. A scalar is a 
1 × 1matrix with exactly one entry, which means that a scalar is simply a number. Matrix d is a 
scalar, which we normally write as simply the number 4. A square matrix has the same number 
of rows and columns (m = n). Matrix A is square and of order 2. The set of elements extending 
from the upper- leftmost corner to the lower- rightmost corner in a square matrix are said to be 
on the principal diagonal. For each of these elements ii,j, i = j. Principal diagonal elements of 
Square Matrix A are a1,1 = 4, a2,2 = 7 and a3,3 = 9. Matrices B and d are also square matrices. 
 A symmetric matrix is a square matrix where ci,j equals cj,i for all i and j; that is, the ith 
element in each row equals the jth element in each column. Scalar d and matrices H, I, and J 
below are all symmetric matrices. A diagonal matrix is a symmetric matrix whose elements off 
the principal diagonal are zero, where the principal diagonal contains the series of elements 
where i = j. Scalar d and Matrices H, and I below are all diagonal matrices. An identity or unit 
matrix is a diagonal matrix consisting of ones along the principal diagonal. Both matrices H and 
I following are diagonal matrices; I is the 3 × 3 identity matrix: 
 

𝐇 =  ൥
13 0 0
0 11 0
0 0 10

൩ 𝐈 = ൥
1 0 0
0 1 0
0 0 1

൩ 𝐉 =  ൥
1 7 2
7 5 0
2 0 4

൩ 

 
Matrix Arithmetic 
 Matrix arithmetic provides for standard rules of operation just as conventional arithmetic. 
Matrices can be added or subtracted if their dimensions are identical. Matrices A and B add to C 
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if ai,j + bi,j = ci,j for all i and j:  
 

൦

𝑎ଵ,ଵ 𝑎ଵ,ଶ … 𝑎ଵ,௡

𝑎ଶ,ଵ 𝑎ଶ,ଶ … 𝑎ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑎௠,ଵ 𝑎௠,ଶ … 𝑎௠,௡

൪ +

⎣
⎢
⎢
⎡

𝑏ଵ,ଵ 𝑏ଵ,ଶ … 𝑏ଵ,௡

𝑏ଶ,ଵ 𝑏ଶ,ଶ … 𝑏ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑏௠,ଵ 𝑏௠,ଶ … 𝑏௠,௡⎦

⎥
⎥
⎤
 = ൦

𝑐ଵ,ଵ 𝑐ଵ,ଶ … 𝑐ଵ,௡

𝑐ଶ,ଵ 𝑐ଶ,ଶ … 𝑐ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑐௠,ଵ 𝑐௠,ଶ … 𝑐௠,௡

൪ 

A                                        B                                        C 
 
Note that each of the three matrices is of dimension 3 × 3 and that each of the elements in Matrix 
C is the sum of corresponding elements in Matrices A and B. The process of subtracting matrices 
is similar, where di,j - ei,j = fi,j for D - E = F:  
 

  

⎣
⎢
⎢
⎡

𝑑ଵ,ଵ 𝑑ଵ,ଶ … 𝑑ଵ,௡

𝑑ଶ,ଵ 𝑑ଶ,ଶ … 𝑑ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑑௠,ଵ 𝑑௠,ଶ … 𝑑௠,௡⎦

⎥
⎥
⎤
 -൦

𝑒ଵ,ଵ 𝑒ଵ,ଶ … 𝑒ଵ,௡

𝑒ଶ,ଵ 𝑒ଶ,ଶ … 𝑒ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑒௠,ଵ 𝑒௠,ଶ … 𝑒௠,௡

൪ = 

⎣
⎢
⎢
⎡

𝑓ଵ,ଵ 𝑓ଵ,ଶ … 𝑓ଵ,௡

𝑓ଶ,ଵ 𝑓ଶ,ଶ … 𝑓ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑓௠,ଵ 𝑓௠,ଶ … 𝑓௠,௡⎦

⎥
⎥
⎤
 

   D                       -                E                      =                      F 
 
 Now consider a third matrix operation. The transpose AT of Matrix A is obtained by 
interchanging the rows and columns of Matrix A. Each ai,j becomes aj,i. The following represent 
Matrix A and its transpose AT: 
 

൦

𝑎ଵ,ଵ 𝑎ଵ,ଶ … 𝑎ଵ,௡

𝑎ଶ,ଵ 𝑎ଶ,ଶ … 𝑎ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑎௠,ଵ 𝑎௠,ଶ … 𝑎௠,௡

൪ ൦

𝑎ଵ,ଵ 𝑎ଶ,ଵ … 𝑎௠,ଵ

𝑎ଵ,ଶ 𝑎ଶ,ଶ … 𝑎௠,ଶ

⋮ ⋮ ⋮ ⋮
𝑎ଵ,௡ 𝑎ଶ,௡ … 𝑎௠,௡

൪ 

A     AT 
 
 Two matrices A and B can be multiplied to obtain the product AB = C if the number of 
columns in the first Matrix A equals the number of rows B in the second.6 If Matrix A is of 
dimension m × n and Matrix B is of dimension n × q, the dimensions of the product Matrix C 
will be m × q. Each element ci,k of Matrix C is determined by the following sum: 

   kj

n

j
jiki bac ,

1
,, 



  

 

൦

𝑎ଵ,ଵ 𝑎ଵ,ଶ … 𝑎ଵ,௡

𝑎ଶ,ଵ 𝑎ଶ,ଶ … 𝑎ଶ,௡

⋮ ⋮ ⋮ ⋮
𝑎௠,ଵ 𝑎௠,ଶ … 𝑎௠,௡

൪× 

⎣
⎢
⎢
⎡
𝑏ଵ,ଵ 𝑏ଵ,ଶ … 𝑏ଵ,௤

𝑏ଶ,ଵ 𝑏ଶ,ଶ … 𝑏ଶ,௤

⋮ ⋮ ⋮ ⋮
𝑏௡,ଵ 𝑏௡,ଶ … 𝑏௡,௤⎦

⎥
⎥
⎤

 

A  ×  B   

                                                           
6 If it is possible to multiply two matrices, they are said to be conformable for multiplication. Any matrix can be 
multiplied by a scalar, where the product is simply each element times the value of the scalar. 
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= 

⎣
⎢
⎢
⎢
⎡

∑ 𝑎ଵ,௝𝑏௝,ଵ
௡
௝ୀଵ ∑ 𝑎ଵ,௝𝑏௝,ଶ

௡
௝ୀଵ … ∑ 𝑎ଵ,௝𝑏௝,௤

௡
௝ୀଵ

∑ 𝑎ଶ,௝𝑏௝,ଵ
௡
௝ୀଵ ∑ 𝑎ଶ,௝𝑏௝,ଶ

௡
௝ୀଵ … ∑ 𝑎ଶ,௝𝑏௝,௤

௡
௝ୀଵ

⋮ ⋮ ⋮ ⋮
∑ 𝑎௠,௝𝑏௝,ଵ

௡
௝ୀଵ ∑ 𝑎௠,௝𝑏௝,௠

௡
௝ୀଵ … ∑ 𝑎௠,௝𝑏௝,௤

௡
௝ୀଵ ⎦

⎥
⎥
⎥
⎤

 = ൦

𝑐ଵ,ଵ 𝑐ଵ,ଶ … 𝑐ଵ,௤

𝑐ଶ,ଵ 𝑐ଶ,ଶ … 𝑐ଶ,௤

⋮ ⋮ ⋮ ⋮
𝑐௠,ଵ 𝑐௠,ଶ … 𝑐௠,௤

൪ 

A×B                                                   C 

 

 
Notice that the number of columns (n) in Matrix A equals the number of rows in Matrix B. Also 
note that the number of rows in Matrix C equals the number of rows in Matrix A; the number of 
columns in C equals the number of columns in Matrix B. 
 An inverse Matrix A-1 exists for the square Matrix A if the productsAA-1 or A-1A equal 
the identity Matrix I: 
    
           A ×A-1= I 
           A-1×A= I 
 
 One means for finding the inverse Matrix A-1 for Matrix A is through the use of a process 
called the Gauss-Jordan Method. 
 
Illustration: The Gauss-Jordan Method 
 An inverse Matrix A-1 exists for the square Matrix A if the product A-1A or AA-1 equals 
the identity Matrix I. Consider the following product: 

    





































10

01

15

1

15

4
15

2

30

1

18

42
 

          A           A-1 =     I 
 
We will use the Gauss-Jordan Method to invert Matrix A by first augmenting A with the 2×2 
identity matrix as follows: 
 

(B)   







1018

0142




 

 
For the sake of convenience, call the above augmented Matrix B. Now, a series of elementary 
row operations (addition, subtraction or multiplication of each element in a row) will be 
performed such that the identity matrix replaces the original Matrix A (on the left side). The 
right-side elements will comprise the inverse Matrix A-1. Thus, in our final augmented matrix, 
we will have ones along the principal diagonal on the left side and zeros elsewhere; the right side 
of the matrix will comprise the inverse of A. Allowable elementary row operations include the 
following: 
 
 1. Multiply a given row by any constant. Each element in the row must be multiplied by the 

same constant. 
 2. Add a given row to any other row in the matrix. Each element in a row is added to the 

corresponding element in the same column of another row. 
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 3. Subtract a given row from any other row in the matrix. Each element in a row is 
subtracted from the corresponding element in the same column of another row. 

 4. Any combination of the above. For example, a row may be multiplied by a constant 
before it is subtracted from another row. 

 
Our first row operation will serve to replace the upper left corner value with a one. We multiply 
Row 1 in B by .5: 
 

CB 




















1018

05.215.)1(

1018

014







 row2
 

 
Now we obtain a zero in the lower left corner by multiplying Row 2 in C by 1/8 and subtracting 
the result from Row 1 of C as follows: 
 

DC 




























8

1
5.

8

15
0

05.21)2(8/11

101

05.21






 rowrow

8
 

 
Next, we obtain a 1 in the lower right corner of the left side of the matrix by multiplying Row 2 
of matrix D by 8/15: 

ED 

































15

1

15

4
10

05.21

15

8
)2(

8

1
5.0

05.21








row

8
15  

 
We obtain a zero in the upper right corner of the left side matrix by multiplying Row 2 of matrix 
E above by 2 and subtracting from Row 1 in E: 
 

FE 






































15

1

15

4
10

15

2

30

1
012)2(1

15

1

15

4
10

05.1







 rowrow2
 

 
The left side of augmented Matrix F is the identity matrix; the right side of F is A-1. 
 
Illustration: Solving Systems of Equations 
 Matrices can be very useful in arranging systems of equations. Consider for example the 
following system of equations: 
 

  05.12.05. 21  xx  

  08.30.10. 21  xx  
 

This system of equations can be represented as follows: 
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
























08.

05.

30.10.

12.05.

2

1

x

x
 

         C    ×  x    =    s 
 
Thus, we can express this system of equations as the matrix equation Cx= s, where in general C 
is a given n×n matrix, x is a given n×1column vector, and x is the unknown n×1 column vector 
for which we wish to solve.  In ordinary algebra, if we had the real-valued equation Cx = s, we 
would solve for s by dividing by both sides of the equation by A, which is equivalent to 
multiplying both sides of the equation by the inverse of A. Here we show the algebra, so that we 
see that this process with real numbers is essentially equivalent for the process with matrices: 
 

Cx=s, C-1Cx=C-1s, 1(x)=C-1s, x=C-1s 
 
With matrices, the process is: 
 

Cx=s, C-1Cx=C-1s, Ix=C-1s, x=C-1s. 
 
Of course, in ordinary algebra, it is trivial to find the inverse of a number C, which is simply its 
reciprocal 1/C. To find the inverse of a matrix C, we use the Gauss-Jordan method described 
above. We begin by augmenting the matrix C by placing its corresponding identity matrix I 
immediately to its right: 
 

(A)     







1030.10.

0112.05.




 

 
We will reduce this matrix using the allowable elementary row operations described earlier to the 
form with the identity matrix I on the left replacing C, and to the right will be the inverse of C: 
 

(B)   







 10206.0

0204.21





1)210(2

2011

BARowB

ARowB




 

 

(C)   















3

50

3

100
10

4010001





3/522

)24.2(11




BRowC

CBRowC
 

            I  C-1 

 
Thus, we obtain Vector x with the following product: 
 

(D)   













































3

1
8.1

08.

05.

3

50

3

100
40100

2

1

x

x
 

    C-1           s    =   x    =    x 
 
Thus, we find that x1 = 1.8 and x2 = -1/3. 



35 
 

Appendix 4.A Exercises 
 
1.  Add the following matrices: 
 

൥
2 4 9
6 4 25
0 2 11

൩ + ൥
3 0 6
2 1 3
7 0 4

൩ = 

     A                    B              
2.  Subtract E from D: 
 

൥
9 4 9
6 4 8
5 2 9

൩ − ൥
5 0 6
2 1 6
5 0 9

൩ = 

         D                E            
 
3.  Transpose the following: 
 

 a. ൥
1 8 9
6 4 25
3 2 35

൩ 

  A  

 b.  ൦

9
6
3
7

൪ 

  y 

 c. ൥
. 09 . 01 . 04
. 01 . 16 . 10
. 04 . 10 . 64

൩ 

                V  
 
4.  Multiply the following: 

   
































129

15

67

1723

1246

947

 

           A        ×     B    
 

5.  Invert the following matrices:  

a. [8] b. ቂ1 0
0 1

ቃ c.ቈ
4 0

0
ଵ

ଶ

቉ 

 

d.  ቂ1 2
3 4

ቃ e. ቂ. 02 . 04
. 06 . 08

ቃ  f.ቂ−2 1
1.5 −.5

ቃ  
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g. ቂ33.33 −8.33
−8.33 8.33

ቃ  h. ൥
2 0 0
2 4 0
4 8 20

൩ 

 
6.  Solve each of the following for x:  

a.   ቂ
33.33 −8.33
−8.33 8.33

ቃ ቂ
𝑥ଵ

𝑥ଶ
ቃ = ቂ

. 01

. 11
ቃ 

C                 x   =     s 
 

b.   ൦

. 08 . 08 . 1 1

. 08 . 32 . 2 1
. 1 . 2 0 0
1 1 0 0

൪ ൦

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

൪ = ൦

. 1

. 1

. 1

. 1

൪ 

    C                      x   =     s 
 

Appendix 4.A Exercise Solutions 
 
1.  The sum is as follows: 

൥
2 4 9
6 4 25
0 2 11

൩ + ൥
3 0 6
2 1 3
7 0 4

൩ =  ൥
5 4 15
8 5 28
7 2 15

൩ 

         A                    B                      C 
 
2.  The difference is as follows: 

   ൥
9 4 9
6 4 8
5 2 9

൩ − ൥
5 0 6
2 1 6
5 0 9

൩ =  ൥
4 4 3
4 3 2
0 2 0

൩ 

         D                   E                      F 
 

3.a. ൥
1 8 9
6 4 25
3 2 35

൩ ൥
1 6 3
8 4 2
9 25 35

൩ 

          A     AT 
    b. The transpose of a column vector is a row vector: 

  ൦

9
6
3
7

൪ [9 6 3 7] 

  y                yT 
Similarly, the transpose of a row vector is a column vector. 
    c.  Note that the transpose VT of a symmetric matrix V is V: 

  𝐕 = ൥
. 09 . 01 . 04
. 01 . 16 . 10
. 04 . 10 . 64

൩ 𝐕୘ = ൥
. 09 . 01 . 04
. 01 . 16 . 10
. 04 . 10 . 64

൩ = 𝐕 

 
4.  Matrix C, the product of A and B is found as follows: 
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




















































)1217()12()63()917()52()73(

)1212()14()66()912()54()76(

)129()14()67()99()54()77(

129

15

67

1723

1246

947

 

         A       ×     B      =                                       C 

   

















































224184

184170

154150

129

15

67

1723

1246

947

 

           A        ×     B    =         C 
Notice that the number of columns (3) in Matrix A equals the number of rows in Matrix B. Also 
note that the number of rows in Matrix C equals the number of rows in Matrix A; the number of 
columns in C equals the number of columns in Matrix B. 
 
5.a. 1/8 = .125 
 b.    The inverse of the identity matrix is the identity matrix: 

    ቂ
1 0
0 1

ቃ 

     c. The inverse of a diagonal matrix is found by inverting each of the principle diagonal 
elements: 

    ቂ
. 25 0

0 2
ቃ 

    d. First, augment the matrix with the Identity Matrix: 

   𝑟𝑜𝑤 1
𝑟𝑜𝑤 2

ቂ
1 2 ⋮ 1 0
3 4 ⋮ 0 1

ቃ 

Now use the Gauss-Jordan Method to transform the original matrix to an identity matrix; the 
resulting right-hand side will be the inverse of the original matrix: 

  1𝑎
2𝑎

ቈ
1 2 | 1 0

3 4 | −1
ଵ

ଷ

቉
𝑟𝑜𝑤 1 × 1

𝑟𝑜𝑤 2 ×
ଵ

ଷ
− (1𝑎) 

  1𝑏
2𝑏

൤
1 0 | −2 1
0 1 | 1.5 −.5

൨
(1𝑎) − 2 × (2𝑏)

(2𝑎) × −1/.6
 

Thus, the inverse matrix is: 

   ቂ
−2 1
1.5 −.5

ቃ 

e.  ൤
. 02 . 04 | 1 0
. 06 . 08 | 0 1

൨ 

  ቈ
1 2 | 50 0

0
ଶ

ଷ
| 50 −16

ଶ

ଷ

቉ 

  ൤
1 0 | −100 50
0 1 | 75 −25

൨ 

The inverse matrix is: 

  ቂ
−100 50

75 −25
ቃ 

f. The inverse matrix is:  ቂ1 2
3 4

ቃ 

g. The inverse matrix is:  ቂ. 04 . 04
. 04 . 16

ቃ 
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h.      ൥

2 0 0 | 1 0 0
2 4 0 | 0 1 0
4 8 20 | 0 0 1

൩ 

൥

1 0 0 | . 5 0 0
0 4 0 | −1 1 0
0 8 20 | −2 0 1

൩ 

൥

1 0 0 | . 5 0 0
0 1 0 | −.25 . 25 0
0 0 2 | 0 −2 1

൩ 

൥

1 0 0 | . 5 0 0
0 1 0 | −.25 . 25 0
0 0 1 | 0 −.1 . 05

൩ 

The inverse matrix is:  

൥
. 5 0 0

−.25 . 25 0
0 −.1 . 05

൩ 

 
6.a.  See 5.g above for the inverse of C: 

𝐶ିଵ = ቂ
. 04 . 04
. 04 . 16

ቃ 

ቂ
. 04 . 04
. 04 . 16

ቃ ∙ ቂ
. 01
. 11

ቃ = ቂ
𝑥ଵ

𝑥ଶ
ቃ=ቂ

. 0048
. 018

ቃ 

          𝑪ି𝟏 ∙   s       =     x      =   x 
   b. Our original system of equations is represented: 

൦

. 08 . 08 . 1 1

. 08 . 32 . 2 1
. 1 . 2 0 0
1 1 0 0

൪ ∙ ൦

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

൪=൦

. 1

. 1

. 1

. 1

൪ 

     C ∙   x     =    s       
The elements of C and s are known; our problem is to find the weights in vector x.  Thus we will 
rearrange the system from Cx = s to C-1s = x, where C-1 is the inverse of matrix C.  So, the time-
consuming part of our problem is to find C-1. We will begin by augmenting Matrix C with the 
Identity Matrix I: 
 

  

𝑅𝑜𝑤 1
𝑅𝑜𝑤 2
𝑅𝑜𝑤 3
𝑅𝑜𝑤 4

൦

. 08 . 08 . 1 1 ⋮ 1 0 0 0

. 08 . 32 . 2 1 ⋮ 0 1 0 0
. 1 . 2 0 0 ⋮ 0 0 1 0
1 1 0 0 ⋮ 0 0 0 1

൪
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑆𝑦𝑠𝑡𝑒𝑚

 

 

 

1𝑎
2𝑎
3𝑎
4𝑎

൦

1 1 1.25 12.5 | 12.5 0 0 0
0 3 1.25 0 | −12.5 12.5 0 0
0 1 −1.25 −12.5 | −12.5 0 10 0
0 0 −1.25 −12.5 | −12.5 0 0 1

൪

(𝑟𝑜𝑤1) ∙ 12.5

(𝑟𝑜𝑤2) ∙ 12.5 − (1𝑎)

(𝑟𝑜𝑤3) ∙ 10(1𝑎)

(𝑟𝑜𝑤4) ∙ 1 − (1𝑎)
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1𝑐
2𝑐
3𝑐
4𝑐

൦

1 0 0 6.25 | 12.5 −6.25 5 0
0 1 0 −3.125 | −6.25 3.125 2.5 0
0 0 1 7.5 | 5 2.5 −6 0
0 0 0 −3.125 | −6.25 3.125 7.5 1

൪

(1𝑏) − (3𝑐) ∙  .83
(2𝑏) − (3𝑐) ∙  .416

(3𝑏) ∙ −1/1.6
(4𝑏) − (3𝑐) ∙ −1.25

 

 

 

1𝑑
2𝑑
3𝑑
4𝑑

൦

1 0 0 0 | 0 0 −10 2
0 1 0 0 | 0 0 10 −1
0 0 1 0 | −10 10 −24 2.4
0 0 0 1 | 2 −1 2.4 −.32

൪

(1𝑐) − (4𝑑) ∙  6.2
(2𝑐) − (4𝑑) ∙ −3.125

(3𝑐) − (4𝑑) ∙  7.5

(4𝑐) ∙ −1/(3.125)

 

I                                 C-1 

 

൦

0 0 −10 2
0 0 10 −1

−10 10 −24 2.4
2 −1 2.4 −.32

൪ ൦

. 1

. 1

. 1

. 1

൪ = ൦

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

൪ = ൦

−.8
. 9

−2.16
. 308

൪ 

 

        C-1                                       ∙s    =    x    =      x 
Now it is clear that: 
 x1 = (0×.1) + (0×.1) + (-10×.1) + (2×.1) = -.8 
 x2 = (0×.1) + (0×.1) + (10×.1) + (-1×.1) = .9 
 x3 = (-10×.1) + (10×.1) + (-24×.1) + (2.4 × .1) = -2.16 
 x4 = (2×.1) + (-1×.1) + (2.4×.1) + (-.32×.1) = .308 
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Appendix 5.B: Matrices and Spreadsheets 
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