
1 

 

 

 

 

 

 

Chapter 2  Interest and Future Value 
 

 

 

The objectives of this chapter are to enable you to: 
   ! Understand the relationship between interest and future value 

   ! Calculate future values based on single investments 

   ! Compare investments with different compounding intervals 

   ! Calculate future values based on multiple investments 

   ! Understand annuity future value formulas 

 

2.A:  INTRODUCTION 
The expression “Time is money” certainly applies in finance. People and institutions are 

impatient; they want money now and are generally willing to pay (or impose a charge) for having 

money now (or having to wait). The time value of money is certainly among the most important 

concepts in finance. 

Interest is a charge imposed on borrowers for the use of lenders' money. The interest cost is 

usually expressed as a percentage of the principal (the sum borrowed). When a loan matures, the 

principal must be repaid along with any unpaid accumulated interest. 

In a free market economy, interest rates are determined jointly by the supply of and 

demand for money. Thus, lenders will usually attempt to impose as high an interest rate as possible 

on the money they lend; borrowers will attempt to obtain the use of money at the lowest interest 

rates available to them. Factors affecting the levels of interest rates will do so by affecting supply 

and demand conditions for money. Among these factors are: 

 

  1. Inflation: Because of diminished purchasing power, money received in the future 

by lenders is worth less than the money they lend now. Lenders will require a 

premium (interest) in addition to the principal to compensate them for this loss of 

purchase power. Furthermore, inflation makes current money balances more 

attractive to borrowers. Thus, inflation decreases the supply of and increases the 

demand for money. Interest rates will increase as the rate of inflation increases. 

(See Figures 2.1.a and 2.1.b) 

  2. Risk or Uncertainty: Creditors naturally prefer to know with certainty that the 

money they loan will be repaid in its entirety. If lenders are uncertain as to whether 

their loans will be repaid, they will require premiums to compensate them for this 

risk. Higher interest rates will result from increased uncertainty. 

  3. Intertemporal Monetary Preferences: In general, consumers (and corporations) 

will prefer to have money now rather than be forced to wait for it. If consumers 

have money now, they can choose to spend it now or spend it at some later date. 
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However, if consumers must wait for their money, they do not have the option to 

spend it now; they must wait for some later date to spend it. If consumers increase 

their desire to spend more now rather than later, interest rates will increase. 

  4. Government Policy: Governmental monetary policy will affect both supply and 

demand conditions for money. Through monetary policy, the government can 

directly control the supply of money; and through its participation in bond markets, 

it can influence the demand for money. Governmental fiscal policy (spending and 

tax programs) have a significant effect on the demand for money. 

  5. Costs of Extending Credit: Both lenders and borrowers face various negotiating and 

administrative costs when a loan is extended. Most of these costs can be 

categorized as transactions costs. Lenders will require initiation fees such as 

"points" or higher interest payments as compensation for these costs. 

 
 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 

 

  
Consider each of the following scenarios that start from initial interest rate (i0) and money balance (MB0): 

    1. Increased lending risk cause suppliers of capital to be less willing to lend. The supply curve 

for money balances shifts back to (S1) and the interest rate rises to (i1). 

    2. Expansionary fiscal policy increases the demand for money balances to (D1) and increases 

the interest rate to (i2). 

    3. Increased inflation increases the demand for monetary balances while decreasing lenders' 

willingness to supply capital. The demand curve for balances shifts out to (D1); the supply 

curve shifts back to (S1). Interest rates rise to (i3). 

    4. Increased negotiating and administrative costs incurred by lenders decrease the amount of 

credit they are willing to extend. Interest rates rise to (i1).
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Consider each of the following scenarios that start from initial interest rate (i0) and money balance (MB0): 

    1. Expansionary monetary policy increases the supply of money balances to (S1), causing interest 

rates to decline to (i1) 

    2. Alternatively, increased consumer willingness to save decreases the demand for capital to 

(D1), resulting in interest rates declining to (i1) 
 
 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 

 

 

2.B:  CALCULATION OF SIMPLE INTEREST 

Interest is computed on a simple basis if it is paid only on the principal of the loan. 

Compound interest is paid on accumulated loan interest as well as on the principal. Thus, if a sum 

of money (X0) were borrowed at an annual interest rate (i) and repaid at the end of (n) years with 

accumulated interest, the total sum repaid (FVn or Future Value at the end of Year n) is determined 

as follows: 

 

(2.1) FVn=X0(1 + n × i) 
 

The subscripts (n) and (0) merely designate time; they do not imply any arithmetic function. The 

product (n × i) when multiplied by X0 reflects the value of interest payments to be made on the 

loan; the value (1) accounts for the fact that the principal of the loan must be repaid. If the loan 

duration includes some fraction of a year, the value of (n) will be fractional; e.g., if the loan 

duration were one year and three months, (n) would be 1.25. The total amount paid (or, the Future 

Value of the loan) will be an increasing function of the length of time the loan is outstanding (n) 

and the interest rate (i) charged on the loan. For example, if a consumer borrowed $1000 at an 

interest rate of 10% for one year, his total repayment would be $1100, determined from Equation 

2.1 as follows: 
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 FV1 = $1000(1 + 1 × .1) = $1000×1.1 × $1100 

 

If the loan were to be repaid in two years, its future value would be determined as follows: 

 

 FV2 = $1000(1 + 2 × .1) = $1000×1.2 = $1200 

 

Continuing our example, if the loan were to be repaid in five years, its future value would be: 

 

 FV5 = $1000(1 + 5 × .1) = $1000×1.5 = $1500 

 

The longer the duration of a loan, the higher will be its future value. Thus, the longer lenders must 

wait to have their money repaid, the greater will be the total interest payments made by borrowers. 

 

 

2.C:  CALCULATION OF COMPOUND INTEREST 
Interest is computed on a compound basis when a borrower must pay interest on not only 

the loan principal, but on accumulated interest as well. If interest must accumulate for a full year 

before it is compounded, the Future Value of such a loan is determined with Equation (2.2):
1
 

 

(2.2) FVn = X0(1 + i)
n
 

 

For example, if an individual were to deposit $1000 into a savings account paying annually 

compounded interest at a rate of 10% (here, the bank is borrowing money), the future value of the 

account after five years would be $1610.51, determined by Equation 2.2 as follows: 

 

 FV5 = $1000(1+.1)
5
 = $1000×1.1

5
 = $1000×1.61051 = $1610.51 

 

Notice that this sum is greater than the future value of the loan ($1500) when interest is not 

compounded. 

 The compound interest formula can be derived intuitively from the simple interest formula. 

If interest must accumulate for a full year before it is compounded, then the future value of the loan 

after one year is $1100, exactly the same sum as if interest had been computed on a simple basis: 

 

(2.3) FVn = X0(1+ni) = X0(1+1×i) = X0(1+i)
1
 = $1000(1+.1) = $1100 

 

The future values of loans where interest is compounded annually and when interest is computed 

on an annual basis will be identical only when (n) equals one. Since the value of this loan is $1100 

                     

     1Readers who are unfamiliar with exponent and subscript notation may wish to read the Elementary 

Mathematics Review available on the course web site. 
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after one year and interest is to be compounded, interest and future value for the second year will 

be computed on the new balance of $1100: 

 

(2.4) FV2 = X0(1+1×i)(1+1×i) = X0(1+i)(1+i) = X0(1+i)
2
 , 

 

 FV2 = $1000 (1 + .1)(1 + .1) = $1000 (1 + .1)
2
 = $1210 

 

This process can be continued for five years: 

 

 FV5 = $1000(1+.1)(1+.1)(1+.1)(1+.1)(1+.1) = $1000(1+.1)
5
 = $1610.51 

 

More generally, the process can be applied for a loan of any maturity. Therefore: 

 

(2.5) FVn = X0(1+i)(1+i)
...

(1+i) = X0(1+i)
n
 , 

 

 FVn = $1000 (1 + .1)(1 + .1)
...

(1 + .1) = $1000 (1 +.1)
n
 

2.D.  FRACTIONAL PERIOD COMPOUNDING OF INTEREST  
In the previous examples, interest is compounded annually; that is, interest must 

accumulate at the stated rate i for an entire year before it can be compounded or re-compounded. 

In many savings accounts and other investments, interest can be compounded semiannually, 

quarterly or even daily. If interest is to be compounded more than once per year (or once every 

fractional part of a year), the future value of such an investment will be determined as follows: 

 

(2.6) FVn = X0 (1 + i/m)
mn

 , 

APPLICATION 2.1: The Purchase of Manhattan Island 
In 1626, Dutchman Peter Minuit purchased the island of Manhattan from the Wappinger 

Indians for approximately $24 in trinkets and other merchandise. This island was to become the 

center of New York City, and the location of some of the most valuable real estate in the world. 

Suppose the Indians had sold their merchandise for $24, and invested it at an annual rate of 6% 

compounded once per year. What would be the value of their investment in 2014? 

Assuming the original investment amount (X0 = $24) is invested for n = 388 years at an 

annual rate of .06, we obtain the following: 

 

 FVn = $24(1+.06)
388

 = $158,083,653,510 

 

Thus, the over 158 billion dollars that this investment would be worth today would be worth 

several times the total value of the land comprising the island. 
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where interest is compounded (m) times per year. The interpretation of this formula is fairly 

straightforward. For example, if (m) is 2, then interest is compounded on a semiannual basis. The 

semiannual interest rate is simply (i/m) or (i/2). If the investment is held for (n) periods, then it is 

held for (2n) semiannual periods. Thus, we compute a semiannual interest rate (i/2) and the 

number of semiannual periods the investment is held (2n). If $1000 were deposited into a savings 

account paying interest at an annual rate of 10% compounded semiannually, its future value after 

five years would be $1628.89, determined as follows: 

 

FV5 = $1000(1 + .1/2)
2×5

 = $1000(1.05)
10

 = $1000(1.62889) = $1628.89 

 

Notice that the semiannual interest rate is 5% and that the account is outstanding for ten six-month 

periods. This sum ($1628.89) exceeds the future value of the account if interest is compounded 

only once annually ($1610.51). In fact, the more times per year interest is compounded, the higher 

will be the future value of the account. For example, if the interest on the same account were 

compounded monthly (12 times per year), the account's future value would be $1645.31: 

 

 FV5 = $1000(1 + .1/12)
12×5

 = $1000(1.008333)
60

 = $1645.31 

 

The monthly interest rate is .008333 and the account is open for (mn) or 60 months. With daily 

compounding, the account's value would be $1648.60: 

 

 FV5 = $1000(1 + .1/365)
365×5

 = $1648.60 

 

Therefore, as (m) increases, future value increases. However, this rate of increase in future value 

becomes smaller with larger values for (m); that is, the increases in (FVn) induced by increases in 

(m) eventually become quite small. Thus, the difference in the future values of two accounts where 

interest is compounded hourly in one and every minute in the other may actually be rather trivial. 

Figure 2.2 depicts the impact of compounding frequency on future values. Notice in Figure 2.2 that 

increasing the number of periods for compounding increases the future value of loan amounts; 

however, this rate of increase occurs at a decreasing rate. 
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 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 

 

2.E.  CONTINUOUS COMPOUNDING OF INTEREST  
If interest were to be compounded an infinite number of times per period, we would say 

that interest is compounded continuously. However, we cannot obtain a numerical solution for 

future value by merely "plugging" in  for m in Equation 2.6 - calculators have no  key. In the 

previous section, we saw that increases in (m) cause the future value of an investment to increase. 

As (m) approaches infinity, (FVn) continues to increase, however at decreasing rates. More 

precisely, as (m) approaches infinity (m → ), the future value of an investment can be defined as 

follows: 

 

(2.7)      in

n eXFV 0    

 

where (e) is the natural log whose value can be approximated at 2.718 or derived from the 

following:
2
 

 

(2.8)     m

m
e )

1
1( 

m
lim  

 

That is, as (m) approaches infinity, the value of the limit in expression (2.8) approaches the 

number (e). Notice the similarity between Equations (2.6), (2.8) and (2.9). In fact, Equation (2.7) 

can be derived easily from Equations (2.6) and (2.9) which defines e
i
 as follows: 

 

(2.9)     mi

m

i
e )1( 

m
lim  

 

                     

     
2
The natural log is reviewed in the Elementary Mathematics Review on the course web site. 
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In many calculations involving continuous compounding of interest, the value 2.718 serves as an 

approximation for the number (e). 

If an investor were to deposit $1000 into an account paying interest at a rate of 10%, 

continuously compounded (or compounded an infinite number of times per year), the account's 

future value would be approximately $1648.72: 

 

 FV5 = $1000 × e
.1×5

 = $1000 × 2.718
.5

 = $1648.72 

 

The future value of this account exceeds only slightly the value of the account if interest were 

compounded daily. Also note that continuous compounding simply means that interest is 

compounded an infinite number of times per time period. 

 

 

 
 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 

 

 
Years to 

 maturity  

(n) 

 
Future 

Value 

Simple 

Interest 

 
Future 

Value 

Compounded 

Annually 

 
Future 

Value 

Compounded 

Monthly 

 
Future 

 Value 

Compounded 

Daily 

 
Future 

Value 

Compounded 

Continuously 
 

1 
 

110 
 

110 
 

110.47 
 

110.52 
 

110.52 
 

2 
 

120 
 

121 
 

122.04 
 

122.14 
 

122.14 
 

3 
 

130 
 

133.31 
 

134.81 
 

134.98 
 

134.99 
 

4 
 

140 
 

146.41 
 

148.94 
 

149.17 
 

149.18 
 

5 
 

150 
 

161.05 
 

164.53 
 

164.86 
 

164.87 
 

10 
 

200 
 

259.37 
 

270.70 
 

271.79 
 

271.83 
 

20 
 

300 
 

672.75 
 

732.81 
 

738.70 
 

738.91 
 

30 
 

400 
 

1,744.94 
 

1,983.74 
 

2,007.73 
 

2,008.57 
 

50 
 

600 
 

11,739.09 
 

14,536.99 
 

14,831.16 
 

14,841.40 

 

 TABLE 2.1: Future Values of accounts with initial $100 deposits at 10% interest 
 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 
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2.F.  FUTURE VALUES OF ANNUITIES 
An annuity is defined as a series of identical payments made at equal intervals. If payments 

are to be made into an interest bearing account, the future value of the account will be a function of 

interest accumulating on deposits as well as the deposits themselves. For example, many 

individuals open Individual Retirement Accounts (I.R.A.'s) from which they may withdraw when 

they reach the age of fifty-nine and one half years. Consider an individual who makes a $2000 

contribution to his I.R.A. at the end of each year for twenty years. All of his contributions receive 

a ten percent annual rate of interest, compounded annually. What will be the total value of this 

account, including accumulated interest at the end of the twenty-year period? The following 

equation can be used to evaluate the future value of this annuity: 

 

(2.11)       1)1(  n

n i
i

X
FVA  

 

where (X) is the annual contribution made at the end of each year by the investor to his account, (i) 

is the interest rate on the account and FVA is the future value of the annuity. This future value 

annuity equation can be used whenever identical periodic contributions are made toward an 

account. This future value equation 2.11 is derived in Equation Box 2.1. Such derivations are 

important because they are so frequently necessary for obtaining models for valuations of 

repetitive cash flows. In any case, we determine the future value of this individual's I.R.A. to be 

$114,550 as follows: 

 

      550,114$1)1.1(
1.

000,2$ 20 nFVA   

 

Application Box 2.3 provides an interesting example involving the analysis of an annuity paid into 

an Individual Retirement Account. 

Note that each of the calculations in the I.R.A. example assumes that cash flows are paid at 

the end of each period. If, instead, cash flows were realized at the beginning of each period, the 

annuity would be referred to as an annuity due. The annuity due would generate an extra year of 

interest on each cash flow. Hence, the future value of an annuity due is determined by simply 

multiplying the future value annuity formula by (1+i): 

 

(2.12)       )1()1()1(1)1( 1

, ii
i

X
ii

i

X
FVA nn

Duen  
 

 

From the example above, we find that the future value of the individual's I.R.A. is $126,005 if 

payments to the I.R.A. are made at the beginning of each year: 

     005,126$)1.1()1.1(
1.

000,2$ 21

, DuenFVA  
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In 1981, shortly after the Individual Retirement Account (I.R.A.) was signed into effect by 

President James Carter, banks all over the United States were advertising "millionaire" 

accounts. One bank pitch would proceed similar to the following: 

 

 "If you were to deposit $2,000 at the end of each year until the age of sixty five, you will 

have accumulated over $1,000,000 towards your retirement." 

 

This pitch would be accompanied by a picture a relaxed retiree on his yacht sipping champaign 

and reading the Wall Street Journal. The ad would also mention that one should start saving at 

the age of 28 (that is, accumulate savings for 38 years), and continue to draw interest at the then 

prevailing rate of 12%. As we see from the following equation, the dollar amounts claimed by 

the bank making this advertisement were quite true: 

 

 FV38 = $2,000/.12 × [(1+.12)
38

 - 1] = $1,087,197 

 

However, the bank neglected to mention what would happen if interest rates dropped below 

12% on such accounts and the impact that inflation would have on $1,000,000 over a thirty eight 

year period. 

 

Application Box 2.3: I.R.A.'s and Millionaires 
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2.G:  CONCLUSION  

The future value annuity factor (fvaf) described in Section 2.F is used to determine the future 

value of an annuity. This annuity is a series of equal payments made at identical intervals. The future 

value annuity factor may be derived through the use of a simple algebraic technique known as a 

geometric expansion. This technique is very useful when a large number of repetitive computations must 

be performed, as is often the case in finance. The geometric expansion enables us to reduce a repetitive 

expression requiring many calculations to an expression which can be computed much more quickly. 

Consider the case where we wish to determine the future value of an account based on a payment of X 

made at the end of each year t for n years where the account pays an annual interest rate equal to i: 

 

(1)  FVA = X[(1+i)
n-1

 + (1+i)
n-2

 +...+ (1+i)
2
 + (1+i)

1
 + 1] 

 

Thus, the payment made at the end of the first year accumulates interest for a total of (n-1) years, the 

payment at the end of the second year accumulates interest for (n-2) years and so on. Clearly, 

determining the future value of this account will be very time consuming if n is large. The first step in the 

geometric expansion is to multiply both sides of Equation (1) by (1+i): 

 

(2)  FVA(1+i) = X[(1+i)
n 
+ (1+i)

n-1
 +...+ (1+i)

3 
+ (1+i)

2 
+ (1+i)] 

 

The second step in the geometric expansion is to subtract Equation (1) from Equation (2) to obtain: 

 

(3)  FVA(1+i) - FVA = X[(1+i)
n
 - 1] 

 

Notice that the subtraction led to the cancellation of many terms, reducing the equation we wish to 

compute to a much more manageable size. Finally, we rearrange terms in Equation (3) to obtain 

Equations (4) and (2.11): 

 

(4)   FVA×1 + FVA×i - FVA = X[(1+i)
n
 - 1] = FVA×i = X[(1+i)

n
 - 1] 

 

                                         X[(1+i)
n
 - 1] 

(2.11)                FVA =                  i 

 

Practicing derivations such as this is an excellent way to understand the intuition behind 

financial formulas. Understanding the derivations is necessary in order to be able to modify the formulas 

for a variety of more complex (and realistic) scenarios. Appendix A.2.b at the end of this chapter 

provides a more general discussion on the geometric expansion procedure. 

 

Derivation Box 2.1: Deriving Annuity Future Values 
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In this chapter, methods were presented for calculating future values of accounts when 

interest is computed on a simple basis, compounded annually, more than once annually and 

continuously. Perhaps the most useful of the equations presented here is (2.6): 

 

 FVn = X0(1 + i/m)
mn

 

 

Although this formula can be used when interest is compounded more than once per year, 

the formula can also be used to determine the future value of an account when interest must 

accumulate for a full year before it is compounded. In this case, we need only to set (m) equal to 

one. Equation (2.6) can also be used to estimate future value when interest is continuously 

compounded. This is done by allowing (m) to equal some very large number (perhaps 100,000). 

Table 2.1 provides insight on the impact of compounding over time. Notice first that as the 

number of years to account maturity (n) increases, future value (FVn) increases. When interest is 

compounded, the rate of increase in FVn increases as n increases. Second, note also that as the 

number of compounding intervals (m) increases, future value increases. However, the rate of 

increase in FVn decreases as m increases. This relationship is apparent from Figure 2.2. Finally, 

note that more years to account maturity increases the impact that the number of compounding 

intervals has on FVn. Nonetheless, the equivalent annual rate (EAR) remains useful for 

comparisons of investments when their numbers of compounding intervals differ. 

This chapter also offered an annuity expression for computing future values of annuities. 

This expression requires fewer computations to obtain future value when the number of deposits 

(n) is large. The derivation box for the terminal value annuity expression will provide insight into 

how more complicated finance formulas are obtained. Understanding such derivations is most 

useful for practitioners who encounter many situations where appropriate formulas are not 

available and must be "invented.” 

In this chapter, computations were concerned primarily with future value. Other 

interest-related topics such as amortization and bond yields will be discussed in Chapters 3 and 4. 
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 QUESTIONS AND PROBLEMS 
 

2.1.  Why do interest rates charged by banks for the purchase of automobiles tend to exceed 

interest rates paid on savings accounts? Why are home loan (mortgage) interest rates usually lower 

than interest rates charged credit card customers? 

 

2.2.  The Williams Company has borrowed $10,500 at an annual interest rate of nine percent. 

How much will be a single lump sum repayment in eight years including both principal and 

interest accumulated on a simple basis? That is, what is the future value of this loan? 

 

2.3.  The Cobb Company has issued ten million dollars in ten percent coupon bonds maturing in 

five years. Interest payments on these bonds will be made semi-annually. 

   a. How much are Cobb's semi-annual interest payments? 

   b. What will be the total payment made by Cobb on the bonds in each of the first four 

years? 

   c. What will be the total payment made by Cobb on the bonds in the fifth year? 

 

2.4.  What would be the lump sum loan repayment made by the Williams Company in Problem 

2.2 if interest were compounded: 

  a. annually? 

  b. Semiannually? 

  c. monthly? 

  d. daily? 

  e. continuously? 

 

2.5.  The Speaker Company has the opportunity to purchase a five-year $1000 certificate of 

deposit (C.D.) paying interest at an annual rate of 12%, compounded annually. The company will 

not withdraw early any of the money in its C.D. account. Will this account have a greater future 

value than a five-year $1000 C.D. paying an annual interest rate of 10%, compounded daily? 

 

2.6.  The Waner Company needs to set aside a sum of money today for the purpose of purchasing 

for $10,000 a new machine in three years. Money used to finance this purchase will be placed in a 

savings account paying interest at a rate of eight percent. How much money must be placed in this 

account now to assure the Waner company $10,000 in three years if interest is compounded 

yearly?  

 

2.7.  A given savings account pays interest at an annual rate of 9% compounded quarterly. Find 

the annual percentage yield (APY) for this account. 

 

2.8. Assuming no withdrawals or additional deposits, how much time is required for $1000 to 

double if placed in a savings account paying an annual interest rate of 10% if interest were: 

  a. computed on a simple basis? 
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  b. compounded annually? 

  c. compounded monthly? 

  d. compounded continuously? 

 

2.9.* Assume that you are advising a twenty-three year-old client with respect to personal financial 

planning. Your client wishes to save, become a millionaire and then retire. Your client intends to 

open and contribute to a tax deferred Individual Retirement Account each year until he retires with 

$1,000,000 in that account. 

 a. If your client were to deposit $2000 at the end of each year into his I.R.A., for how many 

years must he wait until he retires with his $1,000,000? Assume that the account will pay 

interest at an annual rate of 10%, compounded annually. 

 b. What would your answer to part a be if the interest rate were 12%? 

 c. What would the client's annual payment have to be if he wished to retire at the age of forty 

with $1,000,000? Assume that the client will make deposits at the end of each year for 17 

years at an annual interest rate of 10% and that his I.R.A. will be supplemented with 

another type of retirement account known as a 401(k) so that his total annual tax deferred 

deposits can exceed $2,000. 

 d. What would your answer to part c be if your client were willing to wait until he is fifty to 

retire? 

 e. What would your answer to part d be if your client were able to make deposits into an 

account paying interest at an annual rate of 12%? 

 f. What would your answers to parts a, c and d be in the annual interest rate were only 4%? 

 g. If the annual inflation rate for the next fifty years were expected to be 3%, what would be 

the purchase power of $1,000,000 in 17 years? In 27 years? 

 h. What would be your answers to part g be if the inflation rate were expected to equal 9%? 
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 CHAPTER 2 APPENDIX 

 

2.A:  GEOMETRIC EXPANSIONS 
  Here, we introduce the concept of the geometric expansion as a technique to simplify a 

polynomial consisting of a repetitive series of terms. These terms, arranged in a series of terms 

with a single variable and exponents arranged in descending order of exponents is called a 

geometric series. A geometric expansion is an algebraic procedure used to simplify a geometric 

series. This procedure is most useful when the number of terms is large. Suppose one intended to 

solve the following finite geometric series for S: 

 

(A) S = c + cx + cx2 + cx3 + ... + cxn 

 

In this series, c is a constant or parameter and x is a quotient or variable. If n is large, direct 

calculations on this series may be time consuming and repetitive. Simplifying the series to reduce 

the number of terms may save a significant amount of time performing routine calculations. The 

geometric expansion is a two-stage procedure: 

 

 1. First, multiply both sides of the equation by the quotient: 

 

(B) Sx = cx + cx2 + cx3 + cx4 + ... + cxn+1 

 

This first step is intended to obtain a very similar type of expression with repetitive terms 

that will be eliminated in the second step. 

 

 2. Second, to eliminate these repetitive terms, subtract the above product (B) from the 

original equation (A) and then simplify the result: 

 

(C)  
Sx - S = cx + cx2 + cx3 + cx4 + ... + cxn+1

 - c - cx - cx2 - cx3 - ... - cxn
 

 

The following simplification completes the geometric expansion. Notice the set of terms that 

should cancel when we simplify: 

 

(D) Sx - S = -c + cxn+1 

 

(E) S(x - 1) = c(xn+1 - 1) 

 

Continue the process of simplification by dividing both sides by (x - 1): 

 

(F) S = c






xn+1 - 1

x - 1
for x  1. 
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Consider the following example where we set x to equal (1+i). Equations G and H will be 

identical: 

 

(G) 
S = c + c(1+i) + c(1+i)2 + c(1+i)3 + ... + c(1+i)n

 
 

(H) S = c






1 - (1+i)n+1

1-(1+i)
 = c

(1+i)n+1-1

i
 

Thus, any geometric series where x  1 can be simplified with the following right-hand side 

formula: 

 

(I) 
S = c + cx + cx2 + cx3 + ... + cxn-1 = c

xn-1

x-1

 

 

Geometric expansions are most helpful in time value mathematics with many periods and 

in situations involving series of potential outcomes with associated probabilities. Such situations 

occur very frequently in finance. The geometric expansion procedure can save substantial amounts 

of computation time for problems involving these situations. 


