Under- Contribution to Generic Advertising due to Self-Interested Inequity Aversion.

Jura Liaukonyte (contact author)
Dake Family Assistant Professor
Charles H. Dyson School of Applied Economics and Management
Cornell University, Ithaca, NY 14853
347 Warren Hall; phone: 607-255-6328;
email: Jurate@cornell.edu

Timothy J. Richards
Morrison Chair, Morrison School of Agribusiness and Resource Management,
W. P. Carey School of Business
Arizona State University, Mesa, AZ 85212
phone: 480-727-1488
email: trichards@asu.edu

Harry M. Kaiser
Gellert Family Professor,
Charles H. Dyson School of Applied Economics and Management
Cornell University, Ithaca, NY 14853
350 Warren Hall; phone: 607-255-1598
email: hmk2@cornell.edu

Bradley J. Rickard
Assistant Professor,
Charles H. Dyson School of Applied Economics and Management
Cornell University, Ithaca, NY 14853
255 Warren Hall; phone: 607-255-7417
email: bir83@cornell.edu

March 2013
Under-contribution to Generic Advertising due to Self-Interested Inequity Aversion

Abstract

We modify Fehr and Schmidt’s (1999) behavioral postulate of self-centered inequity aversion to explain producers’ reluctance to fund generic fruit and vegetable advertising as a result of “self-interested inequity aversion”—experiencing negative utility when others benefit more from a public good than themselves, but positive utility when they earn more than others. A model of self-interested inequity aversion is tested using a public-good voting experiment that largely describes the broad-based fruit and vegetable advertising case. We find strong support for the self-interested inequity aversion hypothesis. Additionally, there is evidence that if returns are equal across producers if there is government support for the program or if the information about payoffs is incomplete, the likelihood of approval for broad-based advertising rises. Higher variability in experienced returns decreases the probability of a favorable vote. Lastly, if subjects are allowed to experience trial run of a mandatory generic advertising program, they are more likely to vote in favor of keeping the program.

Keywords: Inequity Aversion, Generic Advertising, Experimental Economics.

JEL Classification: H41, M37, Q13.
Under-contribution to Generic Advertising due to Self-Interested Inequity Aversion

The idea of a mandatory checkoff program for broad-based advertising, which is designed to promote overall consumption of fruits and vegetables rather than specific commodities, is highly controversial among agricultural growers and handlers in the United States. The main concerns with such promotion programs are not necessarily related solely to the return on investment. Past studies have shown that both commodity-specific and broad-based fruit and vegetable advertising have generally been effective in increasing consumption (see Alston et al. 2005; Kaiser et al. 2005 for a review of commodity-specific advertising and Pollard et al. 2008; Capacci and Mazzocchi 2011 and Rickard et al. 2011 for broad-based advertising). Among those questioning the efficacy of broad-based campaigns, there are concerns about the distributive implications across fruits and vegetables, uncertainty of returns, asymmetry in information about potential participants’ returns, lack of government assistance and, generally, a reluctance to change the status quo in the industry. Without arriving at a mutually-agreeable funding mechanism, growers are left to continue with the system of commodity-specific, “beggar-thy-neighbor” (Alston, Freebairn and James 2001) promotion programs as growers of different fruits and vegetables advertise actively to take market share away from others. In this article, we attempt to explain why growers are often reluctant to fund generic broad-based commodity promotion programs even under a high likelihood of positive returns, using a public-good voting experiment.

Despite the Supreme Court ruling in Johanns vs Livestock Marketing Association, et al. in 2005 that reaffirmed the right of growers to impose upon themselves systems of mandatory

1 While there was never an actual vote on the proposed broad-based campaign among fruit and vegetable producers in the United States, a recent poll conducted by Produce for Better Health indicated that only 22% of fruit and vegetable growers were in favor of this program, while 31% were opposed and the largest group (47%) were undecided (Produce for Better Health, 2009).
checkoffs to pay for generic commodity promotion programs, funding for these programs remains uncertain. Indeed, Crespi (2003) describes a history of constitutional challenges to the way in which generic advertising is funded in the United States. At its core, a typical generic commodity promotion program is a public good (Alston et al. 2005) because the benefits are arguably non-rival and non-exclusive and, therefore, subject to free-riding. Benefits to commodity promotion are non-rival because an increase in demand raises prices for all producers, while they are non-exclusive because it is impossible to prevent an individual grower from taking advantage of higher prices.²

Growers’ reluctance to participate in a truly generic fruit and vegetable promotion program may be partially due to “self-centered inequity aversion” (Fehr and Schmidt 1999).³ Fehr and Schmidt (1999) argue that observed over-contribution to linear public goods in the lab is due to individuals’ experiencing negative utility whenever they earn significantly more or less than others. Instead, we modify their behavioral postulate to explain under-contribution as resulting from “self-interested inequity aversion.” Self-interested inequity aversion means that individuals experience negative utility when others benefit more from a public good than they do, but positive utility when they earn more than others. A person’s decision to contribute to the public good is thus validated when the good provides advantageous returns to themselves relative to others.

Contributions to generic advertising programs are governed by institutions set up to enable collective marketing efforts; institutions which are, in turn, formed by members’ voting behavior. Institutional arrangements are well-understood to influence contributions in a variety of social

² Clearly, institutional mechanisms could be designed to minimize these two features, but we describe a typical commodity example.
³ For example, an industry trade group, Produce for Better Health conducted a survey of fruit and vegetable growers in 2009 regarding a hypothetical mandatory broad-based promotion program for the industry. Of those indicating they opposed the program, 23% said the main reason for their opposition was that “not everybody will benefit equally/be charged equally.
dilemma situations, including common property resources (Walker, Gardner, Herr and Ostrom 2000), charitable giving (Croson 2007), linear public goods (Kroll, Cherry and Shogren 2007) and generic commodity advertising (Messer, Kaiser and Schulze 2008). Kosfeld, Okada and Riedl (2009) focus on the endogenous formation of institutions that may compel agents to contribute based on some voting scheme. Equilibrium voting patterns in their model depend critically on the preferences of members and, indeed, show that the inequity aversion model of Fehr and Schmidt (1999) can generate a “grand organization” in which all members of the industry agree to contribute. Voting decisions, therefore, are a more realistic way to measure the willingness to participate, or to compel others to participate, in any proposed broad-based advertising program.

We test our model of self-interested inequity aversion using a public-good voting experiment that broadly describes the broad-based fruit and vegetable advertising case. Subjects participate in several rounds of a market-equilibrium experiment in which advertising generates stochastic returns among participants. After participating in several simulated “years” of commodity-specific advertising, they are asked whether they would like to participate in a mandatory broad-based advertising program. All subjects see both their own returns and others’ returns from advertising. This is done to provide a context for the subjects similar to what most fruit and vegetable producers in the U.S. experience. Their vote is assumed to reflect the perceived utility derived from participating in the advertising program.

Our results show strong support for the self-interested inequity aversion hypothesis. We also find uncertainty of returns to be a significant variable in explaining voting behavior, and that subjects are risk averse when they have relatively advantageous returns, but are risk loving in the opposite case. Among treatments designed to control for non-stochastic returns, partial information, government subsidization of advertising and experience with program effect, we find that if returns
are equal across producers, if there is government support for the program or if the information about payoffs is incomplete, the likelihood of approval for broad-based advertising rises. Lastly, we find that if subjects are allowed to experience several periods under a mandatory generic broad-advertising program before they vote for it, as is sometimes the procedure used by agricultural commodity organizations, the probability of voting to keep the program increases.

We contribute to the generic advertising, and more broadly to the public goods, literature in two ways. First, it is well understood that generic advertising has many features of a classic public good (Alston et al. 2005). However, there is little research examining the failure of promotion referenda or the many legal challenges to the system of generic commodity advertising (Crespi 2003) using behavioral models of public good contribution. Second, we provide experimental evidence on the importance of inequity aversion, relative to risk aversion or efficiency in determining whether a public good will be funded.

The paper is structured as follows. In the next section, we provide some background on voluntary contribution mechanisms and behavioral explanations for under-contribution to public goods. Next, we describe a simple theoretical model of inequity aversion, and derive testable, competing hypotheses regarding the likely effect of unequal returns on voting behavior. In the subsequent section we describe the experimental procedures used to generate the data and test our hypotheses. The fifth section describes how the data were analyzed and explains and interprets the results obtained. The last section summarizes our research and presents its implications.

Background and Relevant Literature

In the absence of traditional mandatory-funding systems, voluntary funding mechanisms appear to be the most viable means of sustaining promotion programs that benefit large groups of agricultural
producers. Messer, Schmit and Kaiser (2005) study one voluntary contribution mechanism – the provision point mechanism (PPM) – in which a program is funded only if a certain proportion of growers agree to support it, at which point it becomes mandatory for all. They find an optimal range for the threshold provision point (that maximizes producer surplus) to be between 68% and 90%, depending upon the effectiveness of promotion. Although designing an alternative contribution mechanism may provide a means of funding generic advertising program, it does not address the underlying cause of the problem: an observed reluctance to contribute, despite the fact that returns tend to be relatively high (Alston et al. 2005). Because returns to most programs are generally high, we look for a behavioral cause.

Researchers have long observed, both in the lab and under real-world situations, that contributions to linear public goods do not match what conventional theory would predict. That is, theory predicts complete free-riding and zero contributions, while observed contributions are significantly higher in the real world (Rabin 1993; Fehr and Schmidt 1999; Fehr and Gächter 2000; Bolton and Ockenfels 2000). Behavioral research addresses both under-contribution and over-contribution to linear public goods. Rabin (1993) argues that over-contribution need not be altruistic by recognizing that individuals tend to help those who can help advance their own interests, and hurt those who can harm their own interests. Fehr and Gächter (2000) test the hypothesis that individual agents prefer not to be the “sucker” in public good games. That is, given the opportunity to punish free-riders, they will do so even if such punishment is costly relative to the benefits expected from future rounds of the game. Bolton and Ockenfels (2000) expand the concept of self-interest to allow considerations of equity, reciprocity and competition (ERC) to
influence an individual’s incentives to give.4 Kritikos and Bolle (2001), however, find that the model of inequity aversion developed by Fehr and Schmidt (1999) provides a better fit to experimental data than the ERC model.

Fehr and Schmidt’s (1999) model of self-centered inequity aversion assumes individuals experience negative utility whenever they earn more or less than others from the public good. Heterogeneity among agents in their aversion to inequity is important, however, as they show that just a few selfish individuals can cause contributions to fall to zero, while only a few inequity-averse players can cause contributions to rise well above the competitive level. Inequity aversion is self-centered in the sense that “...people do not care per se about inequity that exists among other people but are only interested in the fairness of their own material payoff relative to the payoff of others” (Fehr and Schmidt 1999, p. 819). Redistributive contributions result from individual incentives to correct the inequity inherent in benefits from the public good. Finding that inequity increases contributions, however, is not universal.

Inequity, or heterogeneity in the benefits derived from public goods among agents more generally may, in fact, reduce contributions (Ledyard 1995). Cherry, Kroll and Shogren (2005) design an experiment in which they test subjects’ willingness to contribute in a simple linear, public-good framework in which both initial endowments are allowed to differ. They find that contribution amounts are significantly lower when endowments are allowed to vary among subjects relative to when the distribution is homogeneous. The origin of the heterogeneity – whether the differences were earned or not – did not matter. Kroll, Cherry and Shogren (2007) investigate whether their previous finding (Cherry, Kroll and Shogren 2005) that heterogeneity in endowments

4 Reciprocity in public good games refers to the notion that individuals will give at least as much as the minimum contribution of others so that, in some sense, they obtain utility from contributing as much as anyone else (Shang and Croson 2009).
causes contributions to fall – due to what they term “anticipatory reciprocity” – and that the source of endowments does not matter are robust to the nature of the public good game. Specifically, they consider best-shot games in which the amount of the public good is determined by the largest contribution and not the sum of everyone’s contribution. They find that heterogeneity is again important, and that the source of the endowment matters in these asymmetric games.

In the following analysis, we utilize a public-goods voting experiment in an attempt to explain the reasons why growers are reluctant to fund a generic broad-based commodity promotion program for fruits and vegetables in the United States. Consistent with Fehr and Schmidt (1999), our theory focuses on heterogeneity in returns as a source of inequity.

Theory and Hypotheses

We extend the model of fairness in Fehr and Schmidt (1999) to build a predictive model of the probability that producers will contribute to a broad-based generic promotion campaign. Intuitively, our model suggests that the greater the inequity in returns among producers, the less likely a particular producer is to vote in favor of the checkoff program. Based on the general principle of inequity aversion, we test two hypotheses: (1) self-centered inequity aversion in which agents experience negative marginal utility when they earn more or less than others from the public good, and (2) self-interested inequity aversion in which agents experience negative marginal utility only if they earn less than others, but positive utility if they earn more than others. According to Fehr and Schmidt (1999), the degree of self-centered inequity is predicted to rise in the degree of disadvantageous inequity (the amount others make more than the producer) at a greater rate than with respect to advantageous inequity (the excess returns to the producer relative to others). In our extension to their model, the effects of disadvantageous and advantageous inequity are expected to
differ in sign.

An aversion to risk may also explain an agent’s unwillingness to participate in the promotion campaign. Because returns earned by subjects in our experiment are subject to varying degrees of risk, we can estimate the effect of risk aversion on the probability of contribution using a Mean-Standard Deviation (MS) utility-function approach. Meyer (1987) shows that a utility function that is linear in the mean and standard deviation of returns will produce outcome rankings that are consistent with those derived from an expected utility (EU) framework and, more importantly, can be used to test similar hypotheses regarding the nature of risk-averse behavior among respondents.

Formally, the indirect utility function that reflects this logic is given by:

\[V_h(r_h, r_{-h}) = r_h - \alpha_h DI_h - \beta_h AI_h - \theta_h \sigma_h + \epsilon_h, \]

where:

\[DI_h = \left(\frac{1}{n-1} \right) \sum_{h \neq h} \max(r_{-h} - r_h, 0), \]

is the measure of disadvantageous inequity, and:

\[AI_h = \left(\frac{1}{n-1} \right) \sum_{h \neq h} \max(r_h - r_{-h}, 0), \]

measures advantageous inequity, where \(r_h \) are the returns to agent \(h \) from participating in the checkoff program, \(r_{-h} \) are the returns to other agents, \(\alpha_h \) is a measure of the marginal disutility from disadvantageous inequity (others earn more than agent), \(\beta_h \) is a measure of the marginal disutility from advantageous inequity (others earn less than agent \(h \)), and \(\theta_h \) is the marginal disutility of risk (\(\sigma_h \) is the standard deviation of returns experienced throughout the experiment up to the vote by each subject.) We test hypotheses regarding the effect of each type of inequity on
voting behavior in a checkoff referendum by adding a vector of observed demographic features to equation (1), and include a measure of unobserved heterogeneity among experiment subjects, ε_h.

Risk aversion cannot be measured by the estimate of θ_h alone as the concept of risk aversion refers to the tradeoff between risk and returns. Meyer (1987) shows that the degree of risk aversion can be measured by the slope of the indifference curve between risk and return, which in our case is written as:

$$S^{AI}(\sigma_h, AI_h, DI_h) = \frac{-V_p(\sigma_h, AI_h, DI_h)}{V_{AI}(\sigma_h, AI_h, DI_h)},$$

for advantageous inequity, and similarly for the slope of the indifference curve with respect to DI_h, where V subscripts indicate partial differentiation. If $S^{AI} > 0$ then equation (4) implies risk aversion, $S^{AI} = 0$ implies risk neutrality, and $S^{AI} < 0$ risk preference (Eggert and Tveteras 2004). Although our linearity assumption implies that the slope of S^{AI} in the amount of advantageous inequity, or the concavity of the indifference curve, is zero by construction, we are able to test and identify how risk preferences change in the amount of AI_h or DI_h through a random-parameter estimation framework by constructing the experiment such that returns vary over individuals with varying preferences toward risk.\(^5\)

Assuming ε_h is Type I Extreme Value Distributed and allowing for α_h, β_h, and θ_h to each vary among agents, we estimate a random coefficient logit model of voting behavior where the probability of voting in favor of the checkoff program is given by:

$$\Pr(y = 1) = \frac{\exp(r_h - \sum_i y_i x_{hi} - \alpha_h DI_h - \beta_h AI_h - \theta_h \sigma_h)}{1 + \exp(r_h - \sum_i y_i x_{hi} - \alpha_h DI_h - \beta_h AI_h - \theta_h \sigma_h)},$$

where y is a binary variable that equals 1 when the subject votes for the checkoff and 0 when the

\(^5\) Note that we normalize returns to 1 in the indirect utility function, so each of the risk-preference parameters refers specifically to risk behavior with respect to AI, or DI, whichever the case may be. The notion of returns that is relevant to decision making in this model is returns relative to other agents’ returns.
subject votes against it, and x_{hi} is a vector of demographic variables describing agent h and controls for other treatments such as stochastic returns, partial information, government support, and prior experience with the program.

With this model, the self-centered inequity hypothesis, conditional on the degree of risk aversion, is given by H_0: $\alpha_h = \beta_h = 0$ against the alternative hypothesis: H_a: $1 > \alpha_h > \beta_h > 0$, or that there is indeed a significant disutility of inequity in returns to the checkoff program, and that the marginal disutility of returns is greater for disadvantageous inequity than for advantageous inequity. Therefore, the greater the difference in returns across agents, the less likely a subject is to vote in favor of the checkoff program. Self-interested inequity aversion, however, is framed in terms of the joint hypothesis: H_0: $\alpha_h = \beta_h = 0$ against a different alternative hypothesis: H_a: $1 > \alpha_h > 0; \beta_h < 0$. In this case, the agent is less likely to vote for the program if others earn more, but is more likely to vote for the program if the agent earns more than others. The greater the difference in disadvantageous returns among agents, the less likely a subject is to vote in favor of the checkoff program, but the greater the advantageous returns, the more likely to vote in favor.

Testing for the effect of inequity on the likelihood of supporting the program requires that we control for other potential explanations for why producers may be unwilling to contribute to generic advertising programs besides risk aversion. In our economic experiment, we include treatments for a number of alternatives. Returns to advertising in the “real world” vary among producers due to differences in production technology, managerial skill, or any one of a number of producer-specific attributes. Therefore, our control scenario allows for both unequal and stochastic returns in order to mimic actual practice as nearly as possible. Unlike the control group, the returns in the equity treatment (Treatment 2) are designed to be equal across all commodity groups. We also include four extension treatments to track how various factors might affect the probability of a
favorable vote. All of the treatments are described in detail below.

Methodology and Experimental Design

Experiment Design

All experimental sessions were conducted in the Cornell Lab for Experimental Economics and Decision Research. A total 285 subjects participated in the experiment. All sessions lasted just under one hour and subjects earned on average $25 with payouts ranging from $17 to $30; payments were related to subjects’ performance in the competitive experiment and on the comprehension quiz.

Subjects were seated randomly at individual computer terminals with privacy shields, and were informed that all decisions they made would be kept strictly confidential. Each session included 24 subjects. After signing a consent form, participants were given a brief introduction on the experiment, which included the basic rules of the experiment, and were invited to start reading the instructions to Part A. Participants were informed that, depending on their random seating assignment, they belonged to one of the 3 producer groups. Each producer group was assigned one of three fictitious commodities.

The experiment consisted of three parts (Part A, Part B, and Part C) designed to emulate the same order of the history of funding for fruit and vegetable generic advertising in the United States. Subjects were not aware of the specific instructions for each part as separate instructions were distributed prior to the start of each part. Part A of the experiment did not involve an advertising program. Part B included a mandatory commodity-specific generic advertising program for the three individual commodities. Part C was the same as Part B, except that subjects were asked to vote on an additional mandatory broad-based generic advertising joint for all three commodities.
based on treatment specific variation in information that was presented to subjects. After the vote, another 4 rounds of bidding where implemented. If the broad-based program approval was higher than or equal to 2/3 of the total votes, we added broad-based advertising to Part C bidding rounds. Conversely, if the vote was below 2/3, we implemented rounds only with commodity-specific advertising. Figure 1 illustrates the timeline of the experiment.

Part A – No Generic Advertising Program. The experimental design in this part of the experiment is similar to that used by Messer et al. (2005, 2008). To familiarize subjects with the experiment’s procedures, the first part of the experiment consisted of four rounds (“years”) of bidding and did not include the advertising program. Subjects received written instructions (see Appendix A), and the administrator provided a verbal description of the experiment and answered any questions. Subjects were randomly assigned to a computer that had a spreadsheet informing them of their costs for selling five units of the commodity. Each subject’s costs varied over each round, and over all four rounds subjects were exposed to the same distribution of unit costs. We did this to make the experiment as fair as possible for all subjects since they were competing against each other to earn money. The unit costs differed for each subject and each unit ranging from $1.00 to $2.75 (depending on the part of the experiment); subjects only incurred the cost if the unit was sold. Each of the three commodity groups of eight subjects had the same unit cost structure.

Using Excel spreadsheets programmed with Visual Basic for Applications, subjects submitted their offers to sell their units to the experiment administrator. These offers were stored in a database. The administrative computer calculated the market price and the number of units sold by each subject. This information was also stored in the database. When notified by the administrator, the subjects retrieved this information and profits were calculated after each round.

The administrator acted as the buyer in the market, where demand was stochastic, ranging
from 11 to 29 units per commodity. For each round and for each of the three commodity groups, demand was determined randomly by a random number generator. A triangle distribution was used where the average demand (20 units) had a 10% chance of occurring, while the extremes (11 units and 30 units) had a 1% chance of occurring. The use of stochastic demand resulted in price fluctuations that are similar to price fluctuations observed in commodity markets. That is, the amount of variation in prices in all sessions across all rounds, as measured by the coefficient of variation (CV), was 11.1%, which is fairly close to the CV of 13.6% computed for the ratio of the index of prices received to prices paid by farmers from 1980-2012 (Economic Report of the President, 2013). Similar to Messer et al. (2005) and Messer et al. (2008), demand in the experiment was assumed to be perfectly price inelastic and the supply elasticity was set at 1.5. Based on these parameters and an expected demand of 20 units, the average equilibrium price for the experiment was $1.50 per unit (see Appendix A for specific details on the probabilistic distribution of demand).

A uniform price auction determined the market price for each round and each commodity group by setting the price for all units sold at the *first rejected offer*. The uniform price auction is common in experimental settings because of its incentive-compatible characteristics, transparency, and ease of administration (Cox, Smith, and Walker 1985; Messer et al. 2009). To illustrate, suppose random demand is drawn to be 20 units. Then the market price for all units sold would be set by the offer for the 21st unit.

Part B – Mandatory Generic Commodity-Specific Advertising. To imitate the history of most commodity-specific generic advertising programs, the second part of the experiment incorporated a mandatory, commodity-specific, advertising program for each of the three commodities. Like Part A, Part B consisted of four rounds, but sellers were now informed that their unit costs increased by
$0.25 and the proceeds were used to fund a separate advertising program for each of the three commodity groups. Subjects were informed that past research has found that commodity-specific advertising generally has a significant positive effect on the market price and producer profits. Sellers were also told that advertising would deterministically increase each of the three commodities’ stochastic demand by three units. For example, if stochastic demand were drawn to be 20 units, an additional three units would be automatically added to this due to advertising and hence market demand would be 23 units. The assessment rate and corresponding increase in expected price was set to parallel the relatively high return on investment, roughly three-to-one, frequently found with generic commodity advertising (Alston et al. 2005; Kaiser et al. 2005).

Part C – Vote: Mandatory Broad-Based Advertising Program or No Program. All subjects went through the same procedures in Parts A and B to provide context similar to what most fruit and vegetable growers experienced with and without commodity-specific advertising. In Part C, subjects were asked to vote on a referendum for an additional $0.15 mandatory assessment for a broad-based advertising campaign under six different treatments. Similar to actual checkoff program referenda, subjects were told that if at least two-thirds of subjects voted for the broad-based program, then all subjects, including those who did not vote for it, would have to contribute the $0.15 assessment on each unit sold, which was on top of the $0.25 assessment for the commodity-specific program. The difference in commodity-specific and broad-based advertising was explained to all subjects.

Part C - Comprehension Test. Prior to administering the vote for broad-based advertising, we provided a monetary incentive for subjects to fully understand what they were voting on in the referendum. Subjects were asked to carefully read and later listen closely to an explanation of what the broad-based program entailed; they would then answer four test questions prior to voting, and
would be awarded additional compensation if they answered all questions correctly the first time. If they answered at least one wrong the first time, but all correctly the second time, they received a smaller level of additional compensation. Finally, they received no additional money if they did not answer all questions correctly in the first two attempts, but were still required to retake the test until they got all questions correct. Six different treatments were designed to test the theory and hypotheses developed in the previous section and are summarized in Table 1. In total we ran 12 sessions – two sessions for each treatment.

Part C - Mandatory Broad-Based Advertising Added or No Broad-Based Advertising Added.

Once the subjects completed the comprehension test and voted, the experiment administrator calculated the votes and announced whether the broad-based advertising program would be implemented. Depending on the vote results, the next 4 rounds contained either bidding with broad-based advertising program implemented or repeated the four rounds of Part B without broad-based advertising.

During all parts of the experiment we displayed the equilibrium market price for all rounds up to the current one. Subjects were instructed to look at the graphs after every round to see how prices changed with and without commodity-specific or broad-based advertising.

Survey. After the auctions and the referendum were completed, participants were asked to fill out a computerized survey regarding some characteristics thought to influence their vote. The survey questions are included in Table 3 and included subjects’ opinions on the fairness, perceived profitability, and degree of information on impacts of the broad-based program. In addition, the questions included subjects’ opinions on collective action, the involvement of government in the private sector, and feeling towards marketing being done by an individual firm.
Main Treatments

Treatment 1: Inequity Control Group. Treatment 1 was the control group and was based on factors that we hypothesize to have contributed to the low support for a mandatory broad-based program by the fruit and vegetable industry. The purpose of Treatment 1 was to reflect the current state of the industry. In this treatment, subjects were informed that the demand increase due to broad-based advertising was stochastic with full probabilistic information given for all three commodities, that the expected impact was different for each of the three commodities, and that there was a chance that there will be no advertising-induced demand impact for each commodity. In this control treatment subjects were given all the information in Table 2 including the probabilistic information for the two other groups as well as their own group. As shown in Table 2, the $0.15 assessment had a largely unequal expected demand impact: expected demand increase by 1 unit for Commodity Group 1, 2 for Commodity 2, and 3 for Commodity 3. Subjects were also informed that the demand increase due to broad-based advertising was stochastic.

Treatment 2: Equity Treatment Group. Treatment 2 relaxed the unequal returns condition of control treatment. Specifically, in this treatment, subjects were informed that, on average, the expected return from mandatory broad-based advertising would increase demand by 2 units for all three commodity groups.

Extensions

The rest of the treatments were designed as extensions to the main treatments by including additional factors that might affect the probability of a favorable vote.

Treatment 3: Inequity + Non-Stochastic Returns. With stochastic returns, inequity becomes perceived inequity as a difference in returns observed in the current period may reflect either
structurally higher returns to advertising by another producer, or simply a random draw. We controlled for uncertainty in Treatment 3 with returns that were certain. With this treatment we intended to test whether uncertainty over the expected demand and hence price impact together with inequality in returns may be an impediment for supporting the program. Specifically, in this treatment, subjects were informed that demand due to mandatory broad-based advertising was guaranteed to increase by 1 unit for Commodity Group 1, by 2 units for Commodity Group 2, and by 3 units for Commodity Group 3. Since the rest of the five treatments all have an uncertainty element in them by design, we also control for participants’ risk aversion by including measures of variability in experienced returns.

Treatment 4: Inequity + Partial Information. The differences in perceived returns among producers may be due to the quality of information available. Producers typically do not have complete information on expected impacts for their own and alternative commodities, and inclusion of perfect probabilistic information allows testing the impact of such information on the vote. Treatment 4 was designed to relax the full information assumption. In this treatment, subjects were only given probabilistic information on the potential demand impacts for their own commodity, and no information on the other two commodities.6

Treatment 5: Inequity + Government Subsidy. With Treatment 5 we tested the possibility that growers might expect an outside agent (the government) to address any perceived inequity by allowing for government support of the advertising program. It is expected that government support will reduce any perceived inequity in the system and, thereby, increase the likelihood of support. During this treatment, the subjects were informed that if the vote passed, the government would

6 Note that, because returns are stochastic, information is always incomplete (other than in Treatment 3, non-stochastic returns), but producers have full information about competitors’ returns in all treatments except Treatment 4.
match the $0.15 assessment and double the expected impact in Table 2.

Treatment 6: Inequity + Experience with Program Prior to Vote. A more recent approach that the government and commodity organizations have used is to implement the mandatory checkoff program prior to holding the referendum for a trial period, e.g., using a trial period of 18 months. The idea here is that producers in the industry will be better informed about whether the program is effective as they experience it for a period of time. In Treatment 6 we held four additional periods with broad-based advertising that none of the other treatments had prior to the vote. Unlike the other treatments where participants were asked to vote to opt-in a broad-based advertising program, in this treatment they automatically participated in four rounds of the broad-based advertising program so they had to experience the returns from this program before voting. Once the four rounds were over, we asked them to vote whether to keep or to discontinue the program. Treatment 6 was designed to test whether experiencing the program prior to the vote had a positive impact on the vote.

Estimation Procedure

Producer heterogeneity is incorporated into the voting model (2) by allowing the marginal disutility of inequity (both advantageous and disadvantageous) to vary randomly by subject. This assumption is necessary because there are many unobservable factors associated with individual subjects that may be relevant to how they let inequity affect their voting behavior. Random parameters can be decomposed into 3 components: 1) mean levels of inequity and risk measures (α_0, β_0, and θ_0); 2) component that varies with expected returns (α_1, β_1, and θ_1) and 3) component capturing unobserved inequity and risk preferences:

7 The checkoff program for cut flowers, which was a mandatory federal program followed this approach
where v_h is unobserved agent h heterogeneity and φ parameters capture how α_h, β_h and θ_h vary with individual preferences and can be interpreted as standard deviations of these inequity and risk measures.\footnote{We allow the random parameters to follow standard normal distributions in order to impose as few restrictions on the empirical model as possible. Because our theory imposes no restrictions on the unobserved heterogeneity that may be present in these estimates, we are reluctant to do so in the empirical model.}

Further, the mean response for each subjects’ expected profit level (realized profit during the experimental session, which they would expect to earn after voting and operating under the mandatory program) is conditioned on the assumption that perceptions of inequity are relative to what each agent expected to receive (Fehr and Schmidt 1999). Defining inequity in relative terms is necessary in order to capture the behavior described by Bolton and Ockenfels (2000), namely that subjects are motivated not by absolute returns, but by what they earn relative to expectations of their own returns and the returns earned by others. This specification for the random parameters also allows us to examine how the degree of risk aversion changes in the level of expected returns. To this end, we designed the experiment to replicate real-world conditions as nearly as possible by allowing for stochastic returns in all but one treatment. With stochastic returns, players must form expectations about both their own and others’ returns in deciding whether to contribute to a generic advertising program.

We estimate the model in (5) using simulated maximum likelihood. Simulated maximum likelihood is necessary because a closed form solution for the probability in (5) does not exist when
integrating over the distributions of unobserved heterogeneity for the marginal utility of disadvantageous inequity, advantageous inequity, and risk. We test our random parameter assumption in the next section against a simpler, more parsimonious fixed-coefficient logit alternative.

Empirical Results

The descriptive statistics from the data collected in the experiment are displayed in Table 4. In the base scenario, only 45.8% of subjects voted in favor of the proposed mandatory broad-based program. Table 4 also displays the outcome of the vote for the broad-based advertising program for the other treatments. As expected, the control scenario (Treatment 1) resulted in the lowest approval of the program. The following discussion of results is based on the estimation results in order to control for possible differences in subjects across the various treatments.

Table 5 presents the results obtained by estimating the logit model in (5), both the fixed-coefficient logit and random-parameter logit versions. Comparing the log-likelihood function (LLF) values of the two models using a likelihood ratio (LR) test, we easily reject the fixed-coefficient in favor of the random-coefficient logit model. Clearly, unobserved heterogeneity is an important problem in estimating voting behavior on whether to fund generic advertising programs. Because our data support the random-coefficient relative to the fixed-coefficient logit model, we use the former to test our hypotheses regarding inequity aversion. Several non-treatment variables were statistically significant in the random-coefficient model. Males had a higher probability of voting for the program. Subjects holding libertarian views on choice were less likely to vote for the program, whereas subjects who believed that collective action to improve overall industry profits is good were more likely to vote positively.
Recall our two hypotheses above: (1) self-centered inequity aversion and (2) self-interested inequity aversion. From the results in Table 5, we find that we cannot reject the null hypothesis of self-interested inequity aversion as $1 > \alpha_h > 0$ and $\beta_h < 0$ and reject the hypothesis of self-centered inequity aversion. Therefore, the primary hypothesis of Fehr and Schmidt (1999) is not nearly as other-regarding in our context as experiment subjects only experience disutility of inequity if it is not in their favor, but prefer inequity when it is in their favor. Compared to the notion of reciprocity advanced by Bolton and Ockenfels (2000) and Shang and Croson (2009), our finding suggests exactly the opposite: that individuals only contribute to the extent that they perceive themselves above others, and not below. In this regard, our result is more akin to Rabin (1993) and Fehr and Gächter (2000) in that individuals contribute only if they have a vested self-interest in doing so, and there is little likelihood that they will be the “sucker” who receives less than one’s fair share in return for contributing.

We can use the estimates of θ_h to infer the degree of risk aversion among our sample subjects both at the mean of the data, and as a function of expected returns. The value of S^{DI} implied by these estimates is -0.057, or a slight affinity for risk when others earn more than subject h. The average subject is slightly risk averse ($S^{AI} = 0.103$) when earning more than others. This finding is intuitive – when at an advantage, we would expect an agent to be particularly sensitive to the variability of returns, but when making less than others, the agent may indeed prefer a better draw to catch up. Both of these effects are attenuated as expected returns increase. That is, as returns rise, agents at an advantage will become less risk averse and those at a disadvantage relative to others will become less risk-loving. Both of these interpretations are again to be expected given what we know about loss aversion from Kahneman, Knetsch and Thaler (1991) and others.

In the main treatment, Treatment 2, we test for the effect of allowing returns to be equal
rather than unequal. This treatment fixed effect is significant at the 1% level. If expected returns are equal, ceteris paribus, then subjects are more likely to vote for the broad-based program. While the direct implication of this result is intuitive (given that mean returns are positive in the experiment design), it also supports our hypothesis that self-interested inequity aversion is conditional on the possibility that mean-returns can be equal. Even if inequity is observed as the result of a random draw, therefore, producers will be more likely to support the program if they benefit more than others.

The results presented in Table 5 allow us to test the extensions relating to other factors of perceived inequity. Subjects in Treatment 3 were not found to be more or less likely to support the referendum than in the control treatment. Recall that returns in this treatment were non-stochastic, while returns in the rest of the experiment were subject to a random draw from a known probability distribution. The finding that the Treatment 3 fixed effect is statistically insignificant is not surprising; in our estimation we already control for risk aversion across all treatments. The significant risk aversion parameter suggests that certainty in returns increases the likelihood of participation. Although the effect of Treatment 3 is not significant at a 10% level, the positive point estimate is important, and to be expected given previous research on individuals’ abilities to make decisions under uncertainty. Most notably, Tversky and Kahneman (1971) describe a specific violation of the axiom of expected utility maximization. They find that subjects tend to adhere to the “law of small numbers,” or the incorrect belief that the probability distribution of the mean from a small sample of random values is the same as the distribution of the mean from a large sample. In our experiment, the law of small numbers means that subjects may incorrectly assume that the mean

9 Alternative models were estimated in which we included various measures of each subject’s history of returns in each part. None of these specifications proved to be statistically significant so were not included in the final model.
of their small sample is the same as the expected value of the random variable itself, or “over-infer” from their experience in a manner similar to mutual fund investors chasing a high-performing manager, or a roulette player following “hot” numbers (Kahneman and Smith 2002).

We also test for the effect of removing our assumption of full information (Treatment 4). Partial information means that participants do not see the distribution of likely returns as a result of the broad-based advertising program, and only have probabilistic information on their own returns. We find that, controlling for risk aversion, partial information increases the likelihood of broad-based advertising support. This result can be attributed to the fact that the truncated information that was provided to participants did not include any indications that returns might not be equal across the commodity groups. We know from the Treatment 2 results that equal returns were an important and significant driver for program approval. Therefore, lack of information about the competitors’ returns and lack of indication that those returns might be unequal affected the likelihood of support positively.

Next, we examine whether government support of the program in the form of a match to the advertising fund would have a positive impact on the vote for the broad-based program. As expected, we find that the government support treatment has a positive impact on the vote, and it is statistically significant. Everything else constant, a matching government subsidy effectively increases the benefit/cost ratio for producers so it is not surprising that such government support has a positive impact on making the broad-based advertising program more attractive to producers.

Finally, we find that Treatment 6 (having experience with the program prior to the vote) has a significant effect on voting behavior. If participants have experience with broad-based advertising and are asked to opt-out rather than opt-in, then the likelihood of support is higher. Our result is very similar to result by Cherry, Kallbekken and Kroll (2011), where subjects voted more often in
favor of an efficiency-increasing Pigouvian tax after they had experience with it (and with the higher earnings it generated) compared to when they saw it on the ballot for the first time.

Summary and Industry Implications

In this research, we examined several possibilities as to why growers are reluctant to fund generic broad-based commodity promotion programs even under a high likelihood of positive returns. Our analysis focuses on one possibility for this behavior that we refer to as “self-interested inequity aversion”, which holds that individuals experience negative utility when others benefit *more* from a public good than they do, but positive utility when they earn more than others. This behavioral postulate is an asymmetric modification of Fehr and Schmidt’s (1999) model of “self-centered inequity aversion” used to explain producer reluctance to fund broad-based advertising.

We test a model of self-interested inequity aversion using a public-good voting experiment that emulates the broad-based fruit and vegetable advertising case. The subject pool consisted of 285 participants who participated in several “years” of a market-equilibrium experiment in which broad-based advertising generated stochastic and unequal returns among participants. At the end of each experiment, subjects were asked to vote on a mandatory broad-based advertising program.

Our results show strong support for the self-interested inequity aversion theory. We also find that uncertainty of returns explains voting behavior: the higher the variability in experienced returns, the lower the probability of a favorable vote. Because we made a number of assumptions in framing our public good experiment, subjects were assigned to several treatments designed to control for equal returns, non-stochastic returns, partial information, government subsidization of the public good and experience with program effect. Among these treatments, we find that if returns
are equal across producers, the likelihood of a favorable vote rises. Additionally, we find that government subsidy and lack of information about competitors’ payoffs increases the likelihood of broad-based advertising support. Finally, we find that if subjects are allowed to experience several periods of positive returns under a generic advertising program, they will be more likely to vote in favor of keeping the program. Hence, the important barriers to implementation of a mandatory fruit and vegetable broad-based advertising program include grower uncertainty over expected returns from the program, perceived inequities across commodities, lack of government support and a bias stemming from not experiencing such a checkoff program.
Figure 1. Graphic Layout of Experiment Design

PART A: No Advertising

PART B: Commodity-Specific Advertising

PART C: Introducing Broad-Based Advertising

Main Treatments
- Inequity Control
- Equity Treatment

Extensions
- Inequity+ Partial Information
- Inequity+ Government Subsidy
- Inequity+ Non-Stochastic Returns
- Inequity+ Experience with Program

Comprehension Test

Referendum

If “Yes”>2/3
Add Broad-Based Advertising

If “Yes”<2/3
Commodity Specific Advertising Only
Table 1. Experiment Design

<table>
<thead>
<tr>
<th>Attributes</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal Returns¹</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Certain Returns²</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Incomplete Information³</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Government Support⁴</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Experience with Program⁵</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: ¹ *Equal Returns* implies that expected returns across 3 groups are the same and equal to group 2 returns as described in Table 2, whereas the rest of the treatments have unequal returns as described in Table 2; ² *Certain Returns* implies that there is a deterministic demand increase from broad-based advertising, whereas the rest of the treatments were subject to probabilistic distribution of returns described in Table 2; ³ *Incomplete Information* implies that participants are aware of return distribution of only their own commodity, but not everybody else’s; ⁴ *Government Support* treatment guarantees Government’s 1:1 match of the assessment; ⁵ *Experience with Program* treatment lets subjects experience the returns with Broad-Based advertising.
Table 2. Probabilistic Distribution of Broad-Based Advertising Returns for Treatments with Stochastic and Unequal Returns

<table>
<thead>
<tr>
<th>Group/Commodity 1</th>
<th>Group/Commodity 2</th>
<th>Group/Commodity 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% - Δ of 0 units</td>
<td>20% - Δ of 0 units</td>
<td>20% - Δ of 0 units</td>
</tr>
<tr>
<td>20% - Δ of 0.5 units</td>
<td>20% - Δ of 1.5 units</td>
<td>20% - Δ of 2 units</td>
</tr>
<tr>
<td>20% - Δ of 1 units</td>
<td>20% - Δ of 2 units</td>
<td>20% - Δ of 3 units</td>
</tr>
<tr>
<td>20% - Δ of 1.5 units</td>
<td>20% - Δ of 2.5 units</td>
<td>20% - Δ of 4 units</td>
</tr>
<tr>
<td>20% - Δ of 2 units</td>
<td>20% - Δ of 4 units</td>
<td>20% - Δ of 6 units</td>
</tr>
</tbody>
</table>

Expected change in demand = 1 Expected change in demand = 2 Expected change in demand = 3
Table 3. Questionnaire about the Relevant Experiment Attitudes

Demographic/Academic Questions:

What is your gender? [Male/Female]
What race are you? [Caucasian/African American/Asian/Hispanic/Other]
What is your college GPA? [GPA<3.0/3.0<GPA<3.5/GPA>3.5]
Are you Management/Economics major? [Yes/No]

Yes/No Questions: (Yes=1, No=0)

While I voted yes or no on the referendum, I am actually uncertain. [Yes/No]
Would you say that you are influenced by advertisements in any capacity? [Yes/No]
While I voted yes or no on the referendum, I am actually uncertain. [Yes/No]

Scale Questions [1-9]: On a scale from 1 to 9, please respond to the following statements to register the extent to which you strongly disagree (1), have equally mixed opinions (5), or strongly agree (9).

I approve of the fairness of the proposed advertising program.
The proposed advertising program would be profitable for you.
I had enough information about the likely outcomes.
It is the duty of government to pay for advertising that promotes health (anti-smoking, anti-obesity campaigns).
Collective action by all firms in an industry to improve industry profitability is good.
Marketing strategies such as advertising are best done by each individual firm, not the industry.
Table 4. Descriptive Statistics of Experiment Outcomes by Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of "Yes" Votes</td>
<td>0.458</td>
<td>0.604</td>
<td>0.458</td>
<td>0.542</td>
<td>0.688</td>
<td>0.622</td>
</tr>
<tr>
<td>Average Part B Profit</td>
<td>3.495</td>
<td>3.818</td>
<td>4.989</td>
<td>4.418</td>
<td>4.207</td>
<td>3.932</td>
</tr>
<tr>
<td>Average Part C Profit(^2)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.67</td>
</tr>
<tr>
<td>Male</td>
<td>0.563</td>
<td>0.396</td>
<td>0.333</td>
<td>0.208</td>
<td>0.417</td>
<td>0.533</td>
</tr>
<tr>
<td>White or Caucasian</td>
<td>0.438</td>
<td>0.583</td>
<td>0.604</td>
<td>0.646</td>
<td>0.542</td>
<td>0.600</td>
</tr>
<tr>
<td>Asian American</td>
<td>0.313</td>
<td>0.292</td>
<td>0.250</td>
<td>0.229</td>
<td>0.313</td>
<td>0.289</td>
</tr>
<tr>
<td>African American</td>
<td>0.125</td>
<td>0.083</td>
<td>0.063</td>
<td>0.063</td>
<td>0.063</td>
<td>0.067</td>
</tr>
<tr>
<td>Hispanic American</td>
<td>0.042</td>
<td>0.000</td>
<td>0.063</td>
<td>0.021</td>
<td>0.042</td>
<td>0.022</td>
</tr>
<tr>
<td>Other</td>
<td>0.083</td>
<td>0.042</td>
<td>0.021</td>
<td>0.021</td>
<td>0.042</td>
<td>0.022</td>
</tr>
<tr>
<td>GPA<3.0</td>
<td>0.167</td>
<td>0.104</td>
<td>0.125</td>
<td>0.167</td>
<td>0.063</td>
<td>0.156</td>
</tr>
<tr>
<td>GPA>3.5</td>
<td>0.500</td>
<td>0.479</td>
<td>0.500</td>
<td>0.375</td>
<td>0.438</td>
<td>0.622</td>
</tr>
<tr>
<td>3.0<GPA<3.5</td>
<td>0.333</td>
<td>0.417</td>
<td>0.375</td>
<td>0.438</td>
<td>0.500</td>
<td>0.222</td>
</tr>
<tr>
<td>Management/Econ major</td>
<td>0.479</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>0.229</td>
<td>0.156</td>
</tr>
<tr>
<td>Uncertain About the Program</td>
<td>0.167</td>
<td>0.313</td>
<td>0.292</td>
<td>0.292</td>
<td>0.229</td>
<td>0.267</td>
</tr>
<tr>
<td>Fair</td>
<td>5.542</td>
<td>5.083</td>
<td>6.479</td>
<td>5.896</td>
<td>5.563</td>
<td>5.644</td>
</tr>
<tr>
<td>Profitable</td>
<td>5.896</td>
<td>5.417</td>
<td>5.938</td>
<td>5.042</td>
<td>5.813</td>
<td>5.600</td>
</tr>
<tr>
<td>Enough Information</td>
<td>5.771</td>
<td>5.563</td>
<td>6.104</td>
<td>5.167</td>
<td>6.000</td>
<td>6.378</td>
</tr>
<tr>
<td>Government Duty</td>
<td>5.542</td>
<td>6.104</td>
<td>5.917</td>
<td>5.646</td>
<td>6.208</td>
<td>6.489</td>
</tr>
<tr>
<td>Collective Action</td>
<td>5.604</td>
<td>6.229</td>
<td>5.896</td>
<td>5.583</td>
<td>5.917</td>
<td>5.867</td>
</tr>
<tr>
<td>Individual Firm</td>
<td>6.083</td>
<td>5.604</td>
<td>6.292</td>
<td>5.729</td>
<td>5.688</td>
<td>5.711</td>
</tr>
</tbody>
</table>

Imputed Measures (st. dev. in parentheses):						
Disadvantageous Inequity (DI)	-0.364	(0.886)				
Advantageous Inequity (AI)	1.141	(1.051)				
Risk (\(\sigma\))	0.114	(0.091)				

| # of Subjects | 48 | 48 | 48 | 48 | 48 | 45 |

Notes: ¹Profits reported in experimental dollars (exchange rate 1 experiment dollar = 2 US dollars);
²Treatments 1 through 5 did experience profits in part C but they happened after the vote (therefore they are N/A for the vote decision).
<table>
<thead>
<tr>
<th>Means:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantageous Inequity (α_0)</td>
<td>0.066</td>
<td>-0.403</td>
<td>4.349</td>
<td>3.817</td>
</tr>
<tr>
<td>Advantageous Inequity (β_0)</td>
<td>0.169</td>
<td>0.819</td>
<td>-4.472</td>
<td>-2.629</td>
</tr>
<tr>
<td>Risk (θ_0)</td>
<td>-0.460</td>
<td>-0.289</td>
<td>-0.460</td>
<td>-0.289</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Coefficient Functions:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DI[E(\pi)] (α_1)</td>
<td>-0.745</td>
<td>-3.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI[E(\pi)] (β_1)</td>
<td>0.513</td>
<td>2.060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk[E(\pi)] (θ_1)</td>
<td>9.053</td>
<td>3.896</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Deviations:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantageous Inequity (φ_α)</td>
<td>3.568</td>
<td>5.126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantageous Inequity (φ_β)</td>
<td>12.706</td>
<td>5.272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk (φ_θ)</td>
<td>31.204</td>
<td>4.927</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitted Values:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}$: Disadvantageous Inequity</td>
<td>-0.008</td>
<td>0.165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}$: Advantageous Inequity</td>
<td>-0.021</td>
<td>-1.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\theta}$: Risk</td>
<td>0.049</td>
<td>11.754</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imputed Risk Aversion Measures:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^{\alpha I}$</td>
<td>-0.057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S^{\beta I}$</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatments</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Treatment</td>
<td>0.510</td>
<td>1.195</td>
<td>3.014</td>
<td>3.408</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Extensions:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inequity+Non Stochastic Returns</td>
<td>-0.020</td>
<td>-0.046</td>
<td>0.215</td>
<td>0.258</td>
</tr>
<tr>
<td>Inequity+Partial Information</td>
<td>0.182</td>
<td>0.363</td>
<td>3.565</td>
<td>3.013</td>
</tr>
<tr>
<td>Inequity+Government Subsidy</td>
<td>0.945</td>
<td>2.143</td>
<td>5.646</td>
<td>4.585</td>
</tr>
<tr>
<td>Inequity+Experience with Program</td>
<td>0.658</td>
<td>1.449</td>
<td>3.299</td>
<td>3.844</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Controls</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.251</td>
<td>0.953</td>
<td>1.727</td>
<td>2.938</td>
</tr>
<tr>
<td>Ad Influence</td>
<td>0.286</td>
<td>0.844</td>
<td>0.494</td>
<td>0.745</td>
</tr>
<tr>
<td>Enough Information</td>
<td>0.096</td>
<td>1.511</td>
<td>-0.224</td>
<td>-1.734</td>
</tr>
<tr>
<td>Government Duty</td>
<td>-0.137</td>
<td>-2.394</td>
<td>-0.566</td>
<td>-4.069</td>
</tr>
<tr>
<td>Collective Action</td>
<td>0.152</td>
<td>2.187</td>
<td>0.410</td>
<td>2.757</td>
</tr>
<tr>
<td>Individual Choice</td>
<td>-0.193</td>
<td>-3.143</td>
<td>-0.216</td>
<td>-1.910</td>
</tr>
<tr>
<td>Log-Likelihood Function</td>
<td>-180.021</td>
<td></td>
<td></td>
<td>-152.092</td>
</tr>
</tbody>
</table>
References

Under-contribution to Generic Advertising due to Self-Interested Inequity Aversion
APPENDIX A

Written Instructions for the Voting Experiment

Experiment Instructions – Part A

This is an experiment in the economics of decision making. In the course of the experiment, you will have opportunities to earn experimental dollars; experimental dollars will be redeemable at the end of the experiment for U.S. dollars at an exchange rate discussed by the administrator. The actual amount of money that you earn will depend upon how many experimental dollars you earn during the experiment, but no more than 30USD. It is therefore important that you read these instructions carefully. Please do not communicate with other participants during the experiment.

In this experiment, you will participate in a series of market transactions for a fictitious commodity. In this room there are three groups of people, and each group is selling a different commodity; we will refer to these as commodities X, Y, and Z. Although the three commodities are different, they share some similarities and some consumers will see some substitution possibilities between the three commodities.

You will be given the opportunity to sell units of a fictitious commodity, and each round of the experiment involves five units. On the next page is an example of what your computer screen will look like during Part A of the experiment. The table shows you an example of Unit Costs for a subject for each of the five units of the fictitious commodity. In this hypothetical example, your first unit has a cost of $1.00, the second unit has a cost of $1.025, the third unit has a cost of $1.05, the fourth unit has a cost of $1.075, and the fifth unit has a cost of $1.10.

You must decide at what price you want to offer to sell each of your units. You submit your Offer Prices by entering them into your spreadsheet, hitting ENTER, and clicking the SUBMIT button after you have entered all five offer prices. In this hypothetical example for Round 1, the offer price is $1.00 for the first unit, $1.025 for the second unit, $1.05 for the third unit, $1.075 for the fourth unit, and $1.10 for the fifth unit.

After everyone has submitted their offer prices, the computerized auctioneer will determine demand for each commodity, how many units will be purchased, the market price for these units, and which participants sold units of the commodity. The demand for units will be randomly drawn in each round and the market price will be determined by the price of the first rejected offer (see the next page for further explanation). In the example, the computer randomly drew a demand of 18 and the corresponding price was $1.05. In this case the seller sells the first and second and third units. For Round 1, the seller earns a profit of $0.075 [($1.05 - $1) + ($1.05 - $1.025) + ($1.05 - $1.05) = $0.075].

In general, your costs will not be the same as those of other sellers. Keep in mind that the numbers used in these tables are for instructional purposes only and may not look at all like the numbers you will see during the experiment.

Determination of Demand

The demand will vary in each trading round from 11 to 29 units with an average of 20 units being purchased. The computer at the front of the room will randomly draw demand after all offers are submitted in each round. Demand will be drawn from a distribution as shown in the Figure below; here we see that there is a 10% chance that demand will be 20 units and a 1% chance that demand will be 11 or 29 units.
Treatment: 2
GROUP: 1
SUBJECT: 1

<table>
<thead>
<tr>
<th>Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 Cost with advertising:</td>
<td>$1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price of Unit 1:</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Cost with advertising:</td>
<td>$1.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price of Unit 2:</td>
<td>1.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3 Cost with advertising:</td>
<td>$1.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price of Unit 3:</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 4 Cost with advertising:</td>
<td>$1.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price of Unit 4:</td>
<td>1.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Cost with advertising:</td>
<td>$1.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price of Unit 5:</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payoff:</td>
<td>$0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Price:</td>
<td>$1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand:</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Triangular distribution of stochastic demand (in units) in each round.

Determination of Market Price

The price at which all units trade (referred to as the market price) will be determined as illustrated by the following simple example. Suppose that there are 8 units in total trying to be sold in the market, and the market demand that is drawn is 5 units. First, the auctioneer ranks in order all offer prices from lowest to highest. For example, imagine that the offer prices, ranked from lowest to highest, are:

| Offer Prices: | $1 | $1 | $1.025 | $1.025 | **$1.05** | $1.10 | $1.15 |

Units are traded in order (from left to right) until the buyer (the auctioneer) purchases all of the units needed, which is 5
in this simple example (the five lowest offer prices purchased are listed in gray). The market price is determined by the **price of the first rejected offer**, in this case **$1.05**. All 5 units purchased are sold at the market price of $1.05. In the case of a tie in offer prices, the offer received first will be ranked first (to the left).

After all offer prices have been received and the demand is randomly drawn, the market price will be computed and the results announced. When instructed, you will hit the RETRIEVE button and you will learn the market price and whether or not you sold any of your units. The computer will then calculate your profits for that round and keep track of your cumulative earnings. Remember it is always best to submit offers equaling your unit cost so you do not miss out on a potential sale.

Procedure for Part A:

1. In each round, you will enter your offer prices for each of your five units. Note that you cannot submit offers that are less than the cost. Hit ENTER after each offer price and then click the SUBMIT button.

2. After all of the offer prices have been finalized, demand for each commodity will be randomly drawn to determine the market price and which participants sold units of the commodity. The market price again will be determined by the *price of the first rejected unit*.

3. Upon notification from the administrators, click the RETRIEVE button. Your spreadsheet will show you the Market Price and whether you sold each of your three units. Profit for each unit and Total Profit for the round will be calculated automatically.

It is important that you clearly understand these instructions.

Please raise your hand if you have any questions.

Experiment Instructions – Part B (Administered separately after Part A)

This part of the experiment will operate in much the same way as Part A as you again will be given the opportunity to sell units of a fictitious commodity, and there are three groups of people in the room selling different commodities. However, in this part, the sales of your commodity will be charged an **assessment** based on the number of units you sell. The **assessment** is $0.25 per unit sold. On your screen you will now see that your “Unit Cost” also includes the $0.25 assessment fee (see the table on the next page as an example).

Total assessments collected from all subjects will be used to finance a **Commodity-specific advertising campaign** that will increase total demand for each commodity. Previous research has shown substantial increases in both prices and profits in response to commodity-specific advertising programs. At the end of each round you will observe the effects of commodity-specific advertising on demand for your commodity. The cost of the assessment is automatically deducted from your profits.

Determination of Demand

The total assessments collected will be used to finance a commodity-specific advertising campaign that will increase the total demand for your commodity by 3 units per round. This increase in demand will increase the number of units sold and should increase the market price. The demand will be determined exactly as before in Part A except that advertising has been added. For example, if the computer randomly draws a demand of 20 and the commodity-specific advertising campaign raised demand by 3 units, then the auctioneer will purchase a total of 23 units.

As was true before, it is in your best interest to bid your true unit costs. Unlike Part A, your unit costs are now higher by $0.25 reflecting the cost of the advertising.
Procedure for Part B:

1. In each round, you will enter your offer prices for each of your five units. Hit ENTER after each offer price and then click the SUBMIT button.

2. After all of the offer prices have been finalized, demand for each commodity will be randomly drawn to determine the market price and which participants sold units of the commodity. The market price again will be determined by the price of the first rejected unit.

3. Upon notification from the administrator, click the RETRIEVE button. Your spreadsheet will show you the Market Price and whether you sold each of your five units. Profits for each round will be calculated automatically.

 It is important that you clearly understand these instructions.
 Please raise your hand if you have any questions.

Experiment Instructions – Part C (administered separately after Part A and B)

In Part C, you will be provided with some new information about a different type of advertising called broad-based advertising. In Part C you will be given information and then given a short test to ensure that you understand the information. If you pass the test on the first try, you will be rewarded with 2 extra experimental dollars. If you pass the test on the second try, you will be rewarded with 1 extra experimental dollar. You will need to pass the test to proceed with the experiment. Following the test, you will then be asked to vote “Yes” or “No” for the broad-based advertising proposal.

In Part C we will keep the $0.25 per unit assessment for commodity-specific advertising from Part B, and ask you to consider an additional assessment of $0.15 per unit for broad-based advertising. In this case, the assessments from broad-based advertising will be pooled across all commodities and will be used to design an advertising program that will be applied to all commodities.

Your job is to carefully listen to the administrator regarding the details of the assessment for the broad-based advertising program. The administrator will provide the following six key pieces of information that you should consider before you vote “Yes” or “No” for the broad-based advertising program:

1. The mean expected change in demand for your commodity as a result of the broad-based advertising program.
2. The variability on the expected return for broad-based advertising for your commodity; there may be some variability on your expected return and there may be a small chance that you will receive a negative return from your investment in the broad-based advertising program.
3. The level of information that you have about the effects of broad-based advertising for your commodity, and for the other two commodities. You will have full information about the likely effects for your commodity, and you may have information about the likely effects for the other two commodities.
4. The level of government support for broad-based advertising. You may receive a match of $0.15 per unit from the government to help fund the broad-based advertising program.
5. The degree of pooling profits from the broad-based program across sellers of the three commodities. The returns from the broad-based advertising program may be pooled across sellers of all three commodities.
6. The amount of experience that you have with the broad-based advertising program. You may be given the opportunity to engage in several rounds of submitting offers to sell your commodity with the broad-based program in place before you place your vote.

Procedure for Part C:

1. Listen to the administrator carefully as they introduce the details about the broad-based advertising program. Feel free to take notes while the administrator is speaking.
2. Proceed to the test for Part C. Here you will be asked four multiple choice questions about the information that was provided by the administrator for Part C. If you pass the test on the first try you will receive 2 additional experimental dollars. If you pass the test on the second try you will receive 1 additional experimental dollar.

3. Move to the vote for part C: Vote “Yes” if you support the broad-based advertising program and are willing to pay the assessment fee of $0.15 or “No” if you do not support the broad-based program and do not wish to pay the assessment fee of $0.15.

4. The administrator will inform you about the results of the vote and will inform you how the experiment will proceed depending on the results of the vote.

It is important that you clearly understand these instructions.

Please raise your hand if you have any questions.