
Suppose we have n samples of feature vectors ~xi, where each is comprised of m features,

~xi = (xi,1, xi,2, . . . , xi,k, . . . , xi,m). (In the case of the text data, the features were

stopword counts.) These can be stacked into an n×m matrix with entries Mij = xi,j :

M =


~x1

~x2
...
~xn


If we’re interested in visualizing or clustering these n samples, we need to measure

distances between them. Although it is difficult to visualize directly in m dimensions, the

distances are encapsulated in the pairwise dot products ~xi ·~xj =
∑m

k=1 xi,k xj,k . The idea

behind dimensional reduction is to find some lower dimensional representation ~yi for the

~xi that encapsulates the same pairwise relations.

Notice that these relations are naturally encoded in the matrix product MMT (where

MT is the transpose of M , MT
ij = Mji):

(MMT)ij = ~xi · ~xj

By construction, MMT is a symmetric matrix. A fundamental property of symmetric

matrices (known as eigenvalue decomposition) is they can be written in the form

MMT = ULUT (1)

where U is an “orthogonal” matrix, with UT = U−1 (so that UUT = UTU = 1, with 1

the n× n identity matrix diag(1,1,...,1), i.e., 1’s along the diagonal and 0 elsewhere), and

L is a diagonal matrix of the form

L =


s21

s22
. . .

s2n

 .

The UT matrix acts as a rotation to a frame in which the matrix looks as simple as possible,

stretching or shrinking the ith axis by the eigenvalue s2i , and U then rotates back to the

original frame.

The above decomposition is unique, up to reordering of the eigenvalues, and by conven-

tion they’re in descending order with s21 the largest. For a general matrix, the eigenvalues

can be negative, but a matrix of the form MMT will automatically have positive eigen-

values `i, so they’re written as `i = s2i in the above. This means we can also write L = S2

1 INFO 6010, 29 Mar 13 – 5 Apr 13

where S = diag(s1, . . . , sn), and then MMT = (US)(US)T , where US is the matrix U

with all elements of the kth column scaled by sk.

Suppose we wish to approximate the matrix MMT by a matrix with fewer param-

eters, i.e., to implement a “dimensional reduction”. We can approximate the matrix by

ignoring the smallest eigenvalues, i.e., successively zeroing them out. So if it turns out for

example that the first ` are much larger than the rest, then we can set the rest to zero

and substitute S` = diag(s1, s2, . . . , s`, 0, . . . , 0) to approximate MMT as (US`)(US`)
T .

The mathematical statement is that this is the best approximation to MMT with ` such

parameters.

Consider the case (` = 2) when only the first two s2i are substantial. Then MMT is

approximated by

(MMT)approx = US2S2U
T =


s1u11 s2u12

s1u21 s2u22

...
... 0

s1un1 s2un2





s1u11 · · · s1un1

s2u12 · · · s2un2

0


This tells us that the ~yi defined as the rows of US2:

~y1 = (s1u11, s2u12)

...

~yi = (s1ui1, s2ui2)

...

~yn = (s1un1, s2un2)

(2)

satisfy (MMT)approx = ~yi · ~yj . The ~yi are thus the desired dimensionally reduced versions

of the original ~xi’s, best capturing their pairwise dot products, ~xi · ~xj ≈ ~yi · ~yj , with just

` = 2 dimensional vectors. This permits us to plot the ~yi in two dimensions to see how the

original data is clustered.

The python realization of eqn. (2) in the assignment notebook used

U,S,Vt = linalg.svd(M) # decomposes M = USV T

to calculate directly* the matrices U and S. The ~yi of eqn. (2) are given by truncating

rows of US, in python as US[:,:2] (or US[:,:`] for ` > 2), where the matrix product US is

* The SVD=“singular value decomposition” of an n ×m matrix M calculates as well

an m×m matrix V , which like the n× n matrix U satisfies V V T = 1, and S is diagonal

with at most min(n,m) non-zero elements si.

2 INFO 6010, 29 Mar 13 – 5 Apr 13

given by

US = U[:,:len(S)].dot(diag(S)) . # len(S) in case n > m

Equivalently, the eigenvalues of the symmetric n× n matrix MMT can be calculated

as in eqn. (1) using

L,O = linalg.eigh(M.dot(M.T))

where O and L will agree with U and S*S, respectively, up to reordering. These can be

compared using some random M , e.g., M=random.random([18,50]), but since linalg.eigh()

happens to return eigenvalues in ascending order, the comparison requires first setting

L=L[::-1] and O=O[:,::-1] to reverse the order. Then the sequences of values in S and

sqrt(L) will agree (as easily confirmed by checking that norm(S-sqrt(L)) vanishes).

3 INFO 6010, 29 Mar 13 – 5 Apr 13

For circumstances in which there’s a restricted set of alternatives, labelled say i =

1, . . . , d, and each of which can be assigned a probability pi, there is a way to quantify the

“information uncertainty” (due to Shannon), in bits of information:

H =
d∑

i=1

pi log2

1

pi
= −

d∑
i=1

pi log2 pi . (1)

For example, in the case of flipping a single fair coin, we would have p1 = p2 = 1/2, so

H =
1

2
log2 2 +

1

2
log2 2 =

1

2
+

1

2
= 1 bit ,

which is the amount of information conveyed by a single H/T (heads/tails) result. Simi-

larly, the amount of information in 2 fair coin flips (pi = 1/4) is 2 bits, and the amount in

3 fair coin flips (pi = 1/8) is 3 bits.

In general, if there are n equally likely possibilities, then the formula reduces to

H =
n∑

i=1

pi log2

1

pi
=

n∑
i=1

1

n
log2 n = log2 n bits ,

so the amount of information conveyed by rolling a fair die (pi = 1/6) is log2 6 ≈ 2.6,

intermediate between 2 and 3 bits. The information in eqn. (1) is maximized in this

equiprobability case: when the pi are not all equal (but of course still sum to 1), then the

information uncertainty is always less than log2 n. For example, a coin that has a 99%

probability of coming up heads has H = −(99/100) log2(99/100) − (1/100) log2(1/100) ≈
.08 bits of information, where much less than 1 bit of information is acquired since there

was already a large likelihood the result would be heads. The general result for the coin

that comes up H with probability p ∈ [0, 1] is given by B(p) = −p log2 p−(1−p) log2(1−p),

and has maximum of 1 bit for p = 1/2:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

B
(p

)

def B(q):

if q==0 or q==1:

return 0.

else:

return -q∗math.log(q,2)-(1-q)∗math.log(1-q,2)

p=linspace(0,1,101)

H=map(B,p) # or H=[B(q) for q in p]

xticks(linspace(0,1,11))

xlabel(’p’)

ylabel(’B(p)’)

plot(p,H)

savefig(’Bp.pdf’)

4 INFO 6010, 29 Mar 13 – 5 Apr 13

The formula (1) has the property that the information is additive when combining

independent systems, as in the cases of the multiple coin flips above. This is easy to see

in the special case of two systems with m and n equiprobability possibilities, respectively,

where the information satisfies H = log2 mn = log2 m + log2 n and is hence the sum of

the information uncertainties for the two subsystems (this is ultimately the reason for

the logarithm). For example, in the case of flipping a coin and rolling a die, there are

12 possibilities with pi = 1/12 (coin is H, die is 1, etc.) and the total information is

log2 12 = log2 2 + log2 6 ≈ 3.6.

Shannon (1948) showed that eqn.(1) is the unique measure of information (up to over-

all normalization, which we choose to measure in bits) which has the properties: additive

as described above (and independent of the order in which the system is divided into

parts), continuous in all the pi, symmetric in the pi (i.e., independent of their order), is

maximized when all possibilities are equally likely, and increases with that total number

of possibilities.

To get more intuition into what it means to have a non-integer number of bits of

information, consider a stream of letters ABAAcBABd . . . generated by the probability

distribution: pA = 1/2, pB = 1/4, pc = 1/8, pd = 1/8. The information content is

H = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8
=

1

2
+

1

2
+

3

8
+

3

8
= 1

3

4
.

In order to transmit the stream of information, naively it would take 2 bits/character

to represent each of four possibilities. But can we somehow encode a stream of unequal

probability alternatives using fewer bits/character on average? The idea is to reserve the

smallest number of bits for the most frequent characters to reduce the average usage. So

we represent the most probable A by a single 0, and use 1 as a signal that we need to look

at the next bit (known as a “prefix code”). Then we can represent B by 10, and use 11

to signal that we need to look at a third bit, so c can be encoded as 110 and d as 111.

The sequence ABAAcBABd is then encoded as 0 10 0 0 110 10 0 10 111, and using the

rules we can see that the sequence 0100011010010111 can be unambiguously decoded as

ABAAcBABd. What is the average number of bits per character used in this scheme?

Since A occurs half the time and needs 1 bit, B occurs 1/4 of the time and needs 2 bits, c

and d each occur 1/8 of the time and need 3 bits, on average this means

1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 = 1

3

4
bits per character.

In general, the Shannon information gives the number of bits per character for an optimal

encoding scheme (if it exists), resulting in the optimal compression ratio.

Shannon also experimented with estimating the bits/character of English text. Since

the probabilities of the 26 letters are far from equal, we expect somewhat less than the

5 INFO 6010, 29 Mar 13 – 5 Apr 13

maximum log2 26 ≈ 3.7 bits/char. The uncertainty per character was first estimated by

giving people a section of text and asking them to guess the next letter (in principle they

could employ 1- and higher gram probability distributions of letter co-occurrences to aid

them, now this is easier with computers . . .). The typical estimates are in the range 1–1.5

bits/char, which is why it’s possible to compress text files (using gz, zip, or equivalent).

With the notion of information in hand, there’s a related notion of mutual information

shared by two random variables. Roughly speaking, it quantifies the extent to which they

are dependent (so that independent random variables have zero mutual information). It is

fun to describe this metaphorically. Consider that the world W consists of a set of states

w ∈ W with some probability distribution
∑

w∈W p(w) = 1, and associated information

uncertainty H[W] = −
∑

w∈W p(w) log2 p(w). Now imagine there are certain types of

data d ∈ D that we can measure, which as well come with some probability distribution∑
d∈D p(d) = 1, and associated information uncertainty H[D] = −

∑
d∈D p(d) log2 p(d).

Let’s ask on average how much information we can expect to obtain about the world

by making these measurements. After measuring some d, the new probability distribution

for the world is p(w|d) = p(w, d)/p(d), i.e., conditioned on having measured d. The

new information uncertainty is H[W |d] = −
∑

w∈W p(w|d) log2 p(w|d), and if lower than

H[W] their difference represents the amount of information about the world obtained from

having measured d. On average, the expected information uncertainty after measuring is

thus
∑

d∈D p(d)H[W |d]. The mutual information I[W ;D] between the world W and data

D is defined as the expected information gain from making the measurements: I[W ;D] =

H[W]−
∑

d∈D p(d)H[W |d]. From the definitions, we find that it satisfies

I[W ;D] = H[W]−
∑
d∈D

p(d)H[W |d]

= −
∑
w∈W

p(w) log2 p(w) +
∑
d∈D

p(d)
∑
w∈W

p(w|d) log2 p(w|d)

= −
∑

w∈W,d∈D

p(w, d) log2 p(w) +
∑

w∈W,d∈D

p(w, d) log2 p(w, d)/p(d)

=
∑

w∈W,d∈D

p(w, d) log2

p(w, d)

p(w)p(d)
.

Perhaps surprisingly, the result is symmetric in W and D: on average we learn the same

amount about the world from measuring the data, as we learn about the probability

distribution of likely data from knowing about the world. If W and D are independent, i.e.,

p(w, d) = p(w)p(d) for all w ∈W,d ∈ D, then the argument of the logarithm is always 1 and

I[W ;D] = 0. More generally, the mutual information satisfies* I[W ;D] ≥ 0, and vanishes

only when the events are independent. Note also: I[W ;D] = H[W] + H[D] − H[W,D],

where H[W,D] is the information uncertainty of the joint distribution p(w, d).

* This can easily be proved using the inequality lnx ≤ x− 1.

6 INFO 6010, 29 Mar 13 – 5 Apr 13

Decision Trees (From Russell/Norvig Chpt 18)

First recall the definition of Supervised Learning: given a training set (x1, y1), . . .,

(xN , yN) generated by some unknown function y = f(x), learn some approximation h to f

which agrees as well as possible on the training set. If y takes some discrete set of values,

then the problem is called classification (e.g., the Boolean case of Spam/non-Spam). If y

is a continuous variable, then estimating its functional form is called regression.

Inferring the structure of a decision tree is one popular way of guessing a function that

takes a set of attribute values, and returns an output value as a single ‘decision’. In the

below, we’ll consider the Boolean case in which the decision is a yes/no value. It is deter-

mined by a sequence of tests, applied to the attributes, and branching according to their

values, until reaching an end point (leaf node) of the tree associated to an output value.

An example would be an auto-repair manual, structured as a series of troubleshooting

questions and branching according to the condition.

Another example is a Boolean decision tree, outputting a yes/no answer, for deciding

whether to wait at a restaurant, with feature vector consisting of answers to attributes:

Alternatives available?, Bar?, Fri/Sat?, Hungry?, Patrons? (none, some, full), Price?,

Raining?, Reservation?, Type?, estimated wait time? depicted here:

7 INFO 6010, 29 Mar 13 – 5 Apr 13

Suppose we do not know the underlying structure of this tree, but instead have just

some set of examples generated by this tree, in the form of (~x,y) pairs:

The challenge is to infer a decision tree consistent with above examples. In general there

will be many such trees, and the object is to find the smallest one possible, having the

minimal depth (smallest number of vertical levels). This is computationally impossible in

general, but a greedy algorithm based on an information theoretic quantity gives a good

approximation.

The twelve examples above have six Yes and six No outcomes, and hence the infor-

mation uncertainty at the outset is B(6/12) = 1 bit. The first step is to find the most

important attribute, understood as the one that gives the most information in the Shannon

sense.

Consider the Type attribute and the outcomes associated to its four values: French

(1 Yes, 1 No), Italian (1 Yes, 1 No), Thai (2 Yes, 2 No), and Burger (2 Yes, 2 No). For

each of the four values, there’s an equal number of Yes/No values and no information is

gained regardless its value.

Now consider the Patrons attribute and the outcomes for its three values: None (2

No), Some (4 Yes), Full (2 Yes, 4 No). The first two values determine the outcome and the

third value gives partial information (more likely No). The latter case (Patrons = Full)

can be further discriminated by examining another attribute: e.g., if Hungry is No, then

WillWait is No, leaving (2 Yes, 2 No) if Hungry is Yes.

To quantify the information gain associated to the attribute Patrons, we assign to

each of its values a probability proportional to the number of times it occurs in the table.

Two of twelve times, it is None, and both times WillWait is No, giving a contribution

of (2/12)B(0/2) = 0. Similarly the four times it is Some the resulting WillWait is Yes,

8 INFO 6010, 29 Mar 13 – 5 Apr 13

hence a contribution of (4/12)B(4/4). Overall branching according to its values leaves an

expected information uncertainty of

2

12
B(0/2) +

4

12
B(4/4) +

6

12
B(2/6) ,

and hence the information gain is

1−
[2

12
B(0/2) +

4

12
B(4/4) +

6

12
B(2/6)

]
= 1− 1

2
B(1/3) ≈ .541 .

By contrast, the information uncertainty after examining the four possibilities for the

Type attribute is (2/12)B(1/2) + (2/12)B(1/2) + (4/12)B(2/4) + (4/12)B(2/4) = 1 (since

B(1/2) = 1), but we started with 1 bit of uncertainty, so the information gain is 1−1 = 0.

Suppose we start with a total of p positive (Yes) and n negative (No) results in the

table of examples, a beginning uncertainty of B(p
p+n), measuring the total info needed to

reach the goal from the examples. In general, if we then test some attribute with d possi-

bilities and whose kth value has pk positive and nk negative results among the examples,

then on that branch B(pk/(pk + nk)) additional bits of info are required to answer the

question, and that branch contributes pk+nk

p+n B(pk

pk+nk
) to the expected remaining informa-

tion uncertainty. The total remaining information uncertainty after testing the attribute

is the sum over these values, so the information gained is

Gain = B
(p

p + n

)
−

d∑
k=1

pk + nk

p + n
B
(pk
pk + nk

)
.

Testing all of the attributes in turn, it turns out that the information gain from

examining the Patrons attribute at the outset is the largest, and hence Patrons is the best

initial discriminator. Testing all the other attributes in the remaining indeterminate case

Patrons=Full gives Hungry as the best discriminator at that level. In the case Hungry=yes,

then the remaining four possibilities (2 Yes, 2 No) are best split by considering the Type

(which recall was not at all useful at the top level), and the one remaining ambiguous case

(Thai: 1 Yes, 1 No) is determined by considering whether it’s Fri/Sat. The minimal depth

decision tree trained on the above examples is thus as depicted here:

9 INFO 6010, 29 Mar 13 – 5 Apr 13

This tree is simpler than the initial tree used to generate the twelve examples, but agrees

in result for all of them. Among other things, we see that neither the Rain nor Reservation

attributes are needed to match this small set of examples. A larger set of examples drawn

from the original tree might lead to inferring a more complex tree. A smaller set of

examples might undetermine the tree, i.e., we could reach a decision case still ambiguous

but with no remaining attributes to test. (In that case a plurality rule could be used to

make the decision.) It is also possible that the examples are intrinsically inconsistent (a

form of noise), in which case the learning algorithm would have to detect outliers by giving

the correct result on the largest possible number of examples.

10 INFO 6010, 29 Mar 13 – 5 Apr 13

