
INFO 6010
Computional Methods

for
Information Science Research

Meeting 4: Power law vs Poisson

Paul Ginsparg

Cornell University, Ithaca, NY

15 Feb 2013

1 / 16

General “Big Data” Procedure

Define a probabilistic model
(i.e., use data to create language model, a probability
distribution over all strings in the language, learned from
corpus, and use model to determine probability of candidates)

Enumerate candidates
(e.g., segmentations, corrected spellings)

Choose the most probable candidate:

best = argmaxc ∈ candidates P(c)

Python: best = max(candidates, key=P)

Big Data = Simple Algorithm

2 / 16

Statistical Machine Translation

Google n-gram corpus created by researchers in the machine
translation group (released 2006).
Translating from foreign language (f) into English (e) similar to
correcting misspelled words.
The best English translation is modeled as:

best = argmaxeP(e|f) = argmaxeP(f |e)P(e)

where P(e) is the language model for English, which is estimated
by the word n-gram data, and P(f |e) is the translation model,
learned from a bilingual corpus (where pairs of documents are
marked as translations of each other). Although top systems make
use of many linguistic features, including parts of speech and
syntactic parses of the sentences, seems that majority of knowledge
necessary for translation resides in the n-gram data.

Further details in Brants,Popat,Xu,Och,Dean (2007)
“Large Language Models in Machine Translation”,
http://acl.ldc.upenn.edu/D/D07/D07-1090.pdf

3 / 16

Power laws more generally

E.g., consider power law distributions of the form c r−k ,
describing the number of book sales versus sales-rank r of a book,
or the number of Wikipedia edits made by the r th most frequent
contributor to Wikipedia.

Amazon book sales: c r−k , k ≈ .87

number of Wikipedia edits: c r−k , k ≈ 1.7

(More on power laws and the long tail here:
Networks, Crowds, and Markets:

Reasoning About a Highly Connected World

by David Easley and Jon Kleinberg
Chpt 18: http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch18.pdf)

4 / 16

http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch18.pdf

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

W
ik

ip
ed

ia
 e

di
ts

/m
on

th
 |

A
m

az
on

 s
al

es
/w

ee
k

User|Book rank r

40916 / r^{.87}

1258925 / r^{1.7}

Normalization given by the roughly
1 sale/week for the
200,000th ranked Amazon title:

40916r−.87

and by the
10 edits/month for the
1000th ranked Wikipedia editor:

1258925r−1.7

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

W
ik

ip
ed

ia
 e

di
ts

/m
on

th
 |

A
m

az
on

 s
al

es
/w

ee
k

User|Book rank r

1258925 / r^{1.7}

40916 / r^{.87}

Long tail: about a quarter of
Amazon book sales estimated
to come from the long tail,
i.e., those outside the top
100,000 bestselling titles

5 / 16

Bowtie structure of the web

A.Broder,R.Kumar,F.Maghoul,P.Raghavan,S.Rajagopalan,S. Stata, A. Tomkins, and
J. Wiener. Graph structure in the web. Computer Networks, 33:309–320, 2000.

Strongly connected component (SCC) in the center
Lots of pages that get linked to, but don’t link (OUT)
Lots of pages that link to other pages, but don’t get linked to (IN)
Tendrils, tubes, islands

of in-links (in-degree) averages 8–15, not randomly distributed (Poissonian),
instead a power law:
pages with in-degree i is ∝ 1/iα, α ≈ 2.1

6 / 16

Poisson Distribution

Bernoulli process with N trials, each probability p of success:

p(m) =

(

N

m

)

pm(1 − p)N−m .

Probability p(m) of m successes, in limit N very large and p small,
parametrized by just µ = Np (µ = mean number of successes).
For N ≫ m, we have N!

(N−m)! = N(N − 1) · · · (N − m + 1) ≈ Nm,

so
(

N

m

)

≡ N!
m!(N−m)! ≈

N
m

m! , and

p(m) ≈
1

m!
Nm

(µ

N

)m(

1−
µ

N

)N−m

≈
µm

m!
lim

N→∞

(

1−
µ

N

)N

= e−µ µm

m!

(ignore (1 − µ/N)−m since by assumption N ≫ µm).
N dependence drops out for N → ∞, with average µ fixed (p → 0).
The form p(m) = e−µ µm

m! is known as a Poisson distribution

(properly normalized:
∑

∞

m=0 p(m) = e−µ
∑

∞

m=0
µm

m! = e−µ · eµ = 1).

7 / 16

Poisson Distribution for µ = 10

p(m) = e−10 10m

m!

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25 30

Compare to power law p(m) ∝ 1/m2.1

8 / 16

Power Law p(m) ∝ 1/m
2.1 and Poisson p(m) = e

−10 10m

m!

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 20 30 40 50 60 70 80 90 100

9 / 16

Power Law p(m) ∝ 1/m
2.1 and Poisson p(m) = e

−10 10m

m!

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

(log–log scale)

10 / 16

Why your friends . . .

Definitions:

Consider sampling N values Xi of some variable X .

Then the expectation value is the average: E[X] = 1
N

∑

i
Xi .

The variance is defined as Var[X] = 1
N

∑

i
(Xi − E[X])2,

and satisfies Var[X] = E[X 2] − (E[X])2.

The standard deviation is the square root: std[X] =
√

Var[X]

Feld 1991:
Node i has degree di , i.e., di friends.

total fof =
∑

nodes i

∑

friends f of i

df =
∑

i

d2
i

(since each df occurs df times in the first double sum).
Average fof per person = 1

N

∑

i
d2
i

= E[d2] = Var[d] + (E[d])2

The average fof per friend = E[d2]/E[d] = E[d] + Var[d]/E[d]
The variance is positive, so the above is always greater than E[d].
Used: detecting flu, disease innoculation, administrative propaganda

11 / 16

Digression: “naive” Bayes

Spam classifier:
Imagine a training set of 2000 messages,
1000 classified as spam (S),
and 1000 classified as non-spam (S).

180 of the S messages contain the word “offer”.
20 of the S messages contain the word “offer”.

Suppose you receive a message containing the word “offer”.
What is the probability it is S? Estimate:

180

180 + 20
=

9

10
.

(Formally, assuming “flat prior” p(S) = p(S):

p(S |offer) =
p(offer|S)p(S)

p(offer|S)p(S) + p(offer|S)p(S)
=

180
1000

180
1000 + 20

1000

=
9

10
.)

12 / 16

Basics of probability theory

A = event

0 ≤ p(A) ≤ 1

joint probability p(A,B) = p(A ∩ B)

conditional probability p(A|B) = p(A,B)/p(B)

Note p(A,B) = p(A|B)p(B) = p(B |A)p(A), gives posterior
probability of A after seeing the evidence B

Bayes ‘Thm‘ : p(A|B) =
p(B |A)p(A)

p(B)

In denominator, use
p(B) = p(B ,A) + p(B ,A) = p(B |A)p(A) + p(B |A)p(A)

Odds: O(A) =
p(A)

p(A)
=

p(A)

1 − p(A)

13 / 16

“naive” Bayes, cont’d

Spam classifier:
Imagine a training set of 2000 messages,
1000 classified as spam (S),
and 1000 classified as non-spam (S).

words wi = {“offer”,“FF0000”,“click”,“unix”,“job”,“enlarge”,. . .}
ni of the S messages contain the word wi .
mi of the S messages contain the word wi .

Suppose you receive a message containing the words
w1,w4,w5,
What are the odds it is S? Estimate:

p(S |w1,w4,w5, . . .) ∝ p(w1,w4,w5, . . . |S)p(S)

p(S |w1,w4,w5, . . .) ∝ p(w1,w4,w5, . . . |S)p(S)

Odds are

p(S |w1,w4,w5, . . .)

p(S |w1,w4,w5, . . .)
=

p(w1,w4,w5, . . . |S)p(S)

p(w1,w4,w5, . . . |S)p(S)
14 / 16

“naive” Bayes odds

Odds
p(S |w1,w4,w5, . . .)

p(S |w1,w4,w5, . . .)
=

p(w1,w4,w5, . . . |S)p(S)

p(w1,w4,w5, . . . |S)p(S)

are approximated by

≈
p(w1|S)p(w4|S)p(w5|S) · · · p(wℓ|S)p(S)

p(w1|S)p(w4|S)p(w5|S) · · · p(wℓ|S)p(S)

≈
(n1/1000)(n4/1000)(n5/1000) · · · (nℓ/1000)

(m1/1000)(m4/1000)(m5/1000) · · · (mℓ/1000)
=

n1n4n5 · · · nℓ

m1m4m5 · · ·mℓ

where we’ve assumed words are independent events
p(w1,w4,w5, . . . |S) ≈ p(w1|S)p(w4|S)p(w5|S) · · · p(wℓ|S),
and p(wi |S) ≈ ni/|S |, p(wi |S) ≈ mi/|S |
(recall ni and mi , respectively, counted the number of spam S and
non-spam S training messages containing the word wi)

15 / 16

“naive” Bayes log odds

Log Odds

log
n1n4n5 · · · nℓ

m1m4m5 · · ·mℓ

= log
n1

m1
+ log

n4

m4
+ log

n5

m5
+ · · · + log

nℓ

mℓ

So calculate the fixed weights wi = log(ni/mi) once and for all.

If word i occurs ti times in a test message, log odds of S is given
by

∑

i
tiwi

16 / 16

