
INFO 6010
Computional Methods

for
Information Science Research

Meeting 3: Big Data and Power Laws

Paul Ginsparg

Cornell University, Ithaca, NY

8 Feb 2013

1 / 36

More Statistical Methods

Peter Norvig, “How to Write a Spelling Corrector”
http://norvig.com/spell-correct.html

(See video:
http://www.youtube.com/watch?v=yvDCzhbjYWs

“The Unreasonable Effectiveness of Data”, given 23 Sep 2010.)

Additional related references:
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.36

A. Halevy, P. Norvig, F. Pereira,
The Unreasonable Effectiveness of Data,
Intelligent Systems Mar/Apr 2009 (copy at resources/unrealdata.pdf)

http://norvig.com/ngrams/ch14.pdf

P. Norvig, “Natural Language Corpus Data”

2 / 36

http://norvig.com/spell-correct.html
http://www.youtube.com/watch?v=yvDCzhbjYWs
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.36
http://norvig.com/ngrams/ch14.pdf

A little theory

Find the correction c that maximizes the probability of c given the
original word w :

argmaxc P(c |w)

By Bayes’ Theorem, equivalent to argmaxc P(w |c)P(c)/P(w).
P(w) the same for every possible c , so ignore, and consider:

argmaxc P(w |c)P(c) .

Three parts :

P(c), the probability that a proposed correction c stands on
its own. The language model: “how likely is c to appear in an
English text?” (P(“the”) high, P(“zxzxzxzyyy”) near zero)

P(w |c), the probability that w would be typed when author
meant c . The error model: “how likely is author to type w by
mistake instead of c?”

argmaxc , the control mechanism: choose c that gives the best
combined probability score.

3 / 36

Example

w=“thew”

two candidate corrections c=“the” and c=“thaw”.

which has higher P(c |w)?

“thaw” has only small change “a” to “e”

“the” is a very common word, and perhaps the typist’s finger
slipped off the “e” onto the “w”.

To estimate P(c |w), have to consider both the probability of c and
the probability of the change from c to w

[Recall the joint probability “p of A given B”, written P(A|B), for
events A and B , can be estimated by counting the number of
times that A and B both occur, and dividing by the total number
of times B occurs. Intuitively it is the fraction of times A occurs
out of the total times that B occurs.]

4 / 36

Complete Spelling Corrector

import re, collections

def words(text): return re.findall(’[a-z]+’, text.lower())

def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:

model[f] += 1
return model

NWORDS = train(words(file(’big.txt’).read()))

alphabet = ’abcdefghijklmnopqrstuvwxyz’

=⇒

5 / 36

def edits1(word):
s = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [a + b[1:] for a, b in s if b]
transposes = [a + b[1] + b[0] + b[2:] for a, b in s if len(b)>1]
replaces = [a + c + b[1:] for a, b in s for c in alphabet if b]
inserts = [a + c + b for a, b in s for c in alphabet]
return set(deletes + transposes + replaces + inserts)

def known edits2(word):

return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):
candidates = known([word]) or known(edits1(word))

or known edits2(word) or [word]
return max(candidates, key=NWORDS.get)

(For word of length n: n deletions, n-1 transpositions, 26n alterations,

and 26(n+1) insertions, for a total of 54n+25 at edit distance 1)

6 / 36

Improvements

language model P(c): need more words. add -ed to verb or -s to
noun, -ly for adverbs

bad probabilities: wrong word appears more frequently?(didn’t
happen)

error model P(w |c): sometimes edit distance 2 is better
(’adres’ to ’address’, not ’acres’)
or wrong word of many at edit distance 1
(in addition better error model permits adding more obscure words)
allow edit distance 3?

best improvement:
look for context (’they where going’, ’There’s no there thear’)
⇒ Use n-grams
(See Whitelaw et al. (2009), “Using the Web for Language Independent

Spellchecking and Autocorrection”: Precision, recall, F1, classification

accuracy)

7 / 36

Outline

1 More Statistical Learning

2 Term Statistics

8 / 36

More Data

Figure 1. Learning Curves for Confusion Set Disambiguation
http://acl.ldc.upenn.edu/P/P01/P01-1005.pdf
Scaling to Very Very Large Corpora for Natural Language Disambiguation

M. Banko and E. Brill (2001)
9 / 36

More Data for this Task
http://acl.ldc.upenn.edu/P/P01/P01-1005.pdf
Scaling to Very Very Large Corpora for Natural Language Disambiguation

M. Banko and E. Brill (2001)

The amount of readily available on-line text has reached hundreds of
billions of words and continues to grow. Yet for most core natural
language tasks, algorithms continue to be optimized, tested and
compared after training on corpora consisting of only one million words or
less. In this paper, we evaluate the performance of different learning
methods on a prototypical natural language disambiguation task,
confusion set disambiguation, when trained on orders of magnitude more
labeled data than has previously been used. We are fortunate that for
this particular application, correctly labeled training data is free. Since
this will often not be the case, we examine methods for effectively
exploiting very large corpora when labeled data comes at a cost.

(Confusion set disambiguation is the problem of choosing the correct use
of a word, given a set of words with which it is commonly confused.
Example confusion sets include: {principle , principal}, {then , than},
{to , two , too} , and {weather,whether}.)

10 / 36

Segmentation

nowisthetimeforallgoodmentocometothe

Probability of a segmentation = P(first word) × P(rest)

Best segmentation = one with highest probability

P(word) = estimated by counting

Trained on 1.7B words English, 98% word accuracy

11 / 36

Spelling with Statistical Learning

Probability of a spelling correction, c = P(c as a word) ×
P(original is a typo for c)

Best correction = one with highest probability

P(c as a word) = estimated by counting

P(original is a typo for c) = proportional to number of
changes

Similarly for speech recognition, using language model p(c) and
acoustic model p(s|c)
(Russel & Norvig, “Artificial Intelligence”, section 24.7)

12 / 36

And others

Statistical Machine Translation

Collect parallel texts (“Rosetta stones”), Align
(Brants, Popat, Xu, Och, Dean (2007), “Large Language
Models in Machine Translation”)

fill in occluded portions of photos (Hayes and Efros, 2007)

13 / 36

General “Big Data” Procedure

Define a probabilistic model
(i.e., use data to create language model, a probability
distribution ver all strings in the language, learned from
corpus, and use model to determine probability of candidates)

Enumerate candidates
(e.g., segmentations, corrected spellings)

Choose the most probable candidate:

best = argmaxc ∈ candidates P(c)

Python: best = max(candidates, key=P)

Big Data = Simple Algorithm

14 / 36

back to segmentation

e.g., unigram model for segmentation:

P(w1 . . . wn) = P(w1) . . . P(wn)

To segment ‘wheninrome’, consider candidates such as “when in
rome”, and compute P(when) × P(in) × P(rome).
Gives best answer If product is larger than any other candidate’s.

’wheninthecourseofhumaneventsitbecomesnecessary’ has 35 trillion
segmentations, but can be read by finding probable words in
sequence (not by considering all 2n−1 segmentations)

So use the largest product recursively: P(first) × P(remaining)

15 / 36

Other Tasks

Secret codes

Language Identification

Spam Detection and Other Classification Tasks

Author Identification (Stylometry)

16 / 36

Statistical Machine Translation

Google n-gram corpus created by researchers in the machine
translation group (released 2006).
Translating from foreign language (f) into English (e) similar to
correcting misspelled words.
The best English translation is modeled as:

best = argmaxeP(e|f) = argmaxeP(f |e)P(e)

where P(e) is the language model for English, which is estimated
by the word n-gram data, and P(f |e) is the translation model,
learned from a bilingual corpus (where pairs of documents are
marked as translations of each other). Although top systems make
use of many linguistic features, including parts of speech and
syntactic parses of the sentences, seems that majority of knowledge
necessary for translation resides in the n-gram data.

17 / 36

Outline

1 More Statistical Learning

2 Term Statistics

18 / 36

How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

The vocabulary will keep growing with collection size.

Heaps’ law: M = kT b

M is the size of the vocabulary, T is the number of tokens in
the collection.

Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.

Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law

19 / 36

Power Laws in log-log space

y = cxk (k=1/2,1,2) log10 y = k ∗ log10 x + log10 c

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

sqrt(x)
x

x**2

 1

 10

 100

 1 10 100

sqrt(x)
x

x**2

20 / 36

Model collection: The Reuters collection

symbol statistic value

N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000

1Gb of text sent over Reuters newswire 20 Aug ’96 – 19 Aug ’97

21 / 36

Heaps’ law for Reuters

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g1

0
M

Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. For these
data, the dashed line
log10 M = 0.49 ∗ log10 T + 1.64
is the best least squares fit.
Thus, M = 101.64T 0.49

and
k = 101.64 ≈ 44
and
b = 0.49.

M = kT b = 44T .49

22 / 36

Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44 × 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.

23 / 36

Zipf’s law

Now we have characterized the growth of the vocabulary in
collections.

We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law (linguist/philologist George Zipf, 1935):
The i th most frequent term has frequency proportional to 1/i .

cf i ∝
1
i

cf i is collection frequency: the number of occurrences of the
term ti in the collection.

24 / 36

http://en.wikipedia.org/wiki/Zipf’s law

Zipf’s law: the frequency of any word is inversely proportional to
its rank in the frequency table. Thus the most frequent word will
occur approximately twice as often as the second most frequent
word, which occurs twice as often as the fourth most frequent
word, etc. Brown Corpus:

“the”: 7% of all word occurrences (69,971 of
˜
>1M).

“of”: ∼3.5% of words (36,411)

“and”: 2.9% (28,852)

Only 135 vocabulary items account for half the Brown Corpus.

The Brown University Standard Corpus of Present-Day American English

is a carefully compiled selection of current American English, totaling

about a million words drawn from a wide variety of sources . . . for many

years among the most-cited resources in the field.

25 / 36

Zipf’s law

Zipf’s law: The i th most frequent term has frequency
proportional to 1/i .

cf i ∝
1
i

cf is collection frequency: the number of occurrences of the
term in the collection.

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 = 1

2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 = 1

3cf1 etc.

Equivalent: cf i = cik and log cf i = log c + k log i (for k = −1)

Example of a power law

26 / 36

Power Laws in log-log space

y = cx−k (k=1/2,1,2) log10 y = −k ∗ log10 x + log10 c

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

100/sqrt(x)
100/x

100/x**2

 1

 10

 100

 1 10 100

100/sqrt(x)
100/x

100/x**2

27 / 36

Zipf’s law for Reuters

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

log10 rank

lo
g1

0
cf

Fit far from perfect, but nonetheless key insight:
Few frequent terms, many rare terms.

28 / 36

more from http://en.wikipedia.org/wiki/Zipf’s law

“A plot of word frequency in Wikipedia (27 Nov 2006). The plot is in log-log coordinates. x is rank of a word in the

frequency table; y is the total number of the words occurrences. Most popular words are “the”, “of” and “and”, as

expected. Zipf’s law corresponds to the upper linear portion of the curve, roughly following the green (1/x) line.”

29 / 36

Power laws more generally

E.g., consider power law distributions of the form c r−k ,
describing the number of book sales versus sales-rank r of a book,
or the number of Wikipedia edits made by the r th most frequent
contributor to Wikipedia.

Amazon book sales: c r−k , k ≈ .87

number of Wikipedia edits: c r−k , k ≈ 1.7

(More on power laws and the long tail here:
Networks, Crowds, and Markets:

Reasoning About a Highly Connected World

by David Easley and Jon Kleinberg
Chpt 18: http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch18.pdf)

30 / 36

http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch18.pdf

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

W
ik

ip
ed

ia
 e

di
ts

/m
on

th
 |

A
m

az
on

 s
al

es
/w

ee
k

User|Book rank r

40916 / r^{.87}

1258925 / r^{1.7}

Normalization given by the roughly
1 sale/week for the
200,000th ranked Amazon title:

40916r−.87

and by the
10 edits/month for the
1000th ranked Wikipedia editor:

1258925r−1.7

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

W
ik

ip
ed

ia
 e

di
ts

/m
on

th
 |

A
m

az
on

 s
al

es
/w

ee
k

User|Book rank r

1258925 / r^{1.7}

40916 / r^{.87}

Long tail: about a quarter of
Amazon book sales estimated
to come from the long tail,
i.e., those outside the top
100,000 bestselling titles

31 / 36

Another Wikipedia count (15 May 2010)

http://imonad.com/seo/wikipedia-word-frequency-list/

All articles in the English version of Wikipedia, 21GB in XML
format (five hours to parse entire file, extract data from markup
language, filter numbers, special characters, extract statistics):

Total tokens (words, no numbers): T = 1,570,455,731

Unique tokens (words, no numbers): M = 5,800,280

32 / 36

http://imonad.com/seo/wikipedia-word-frequency-list/

“Word frequency distribution follows Zipf’s law”

33 / 36

rank 1–50 (86M-3M), stop words (the, of, and, in, to, a, is,
. . .)

rank 51–3K (2.4M-56K), frequent words (university, January,
tea, sharp, . . .)

rank 3K–200K (56K-118), words from large comprehensive
dictionaries (officiates, polytonality, neologism, . . .)
above rank 50K mostly Long Tail words

rank 200K–5.8M (117-1), terms from obscure niches,
misspelled words, transliterated words from other languages,
new words and non-words (euprosthenops, eurotrochilus,
lokottaravada, . . .)

34 / 36

Some selected words and associated counts

Google 197920

Twitter 894

domain 111850

domainer 22

Wikipedia 3226237

Wiki 176827

Obama 22941

Oprah 3885

Moniker 4974

GoDaddy 228

35 / 36

Project Gutenberg (per billion)

http://en.wiktionary.org/wiki/Wiktionary:Frequency lists#Project Gutenberg

Over 36,000 items (Jun 2011), average of > 50 new e-books / week
http://en.wiktionary.org/wiki/Wiktionary:Frequency lists/PG/2006/04/1-10000

the 56271872

of 33950064

and 29944184

to 25956096

in 17420636

I 11764797

that 11073318

was 10078245

his 8799755

he 8397205

it 8058110

with 7725512

is 7557477

for 7097981

as 7037543

had 6139336

you 6048903

not 5741803

be 5662527

her 5202501

. . . 100, 000th

36 / 36

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#Project_Gutenberg
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2006/04/1-10000

	More Statistical Learning
	Term Statistics

