
Kruskal’s Algorithm and Clustering

(following Kleinberg and Tardos, Algorithm design, pp 158–161)

Recall that Kruskal’s algorithm for a graph with weighted links gives a minimal span-

ning tree, i.e., with minimum total weight. This solves, for example, the problem of

constructing the lowest cost network connecting a set of sites, where the weight on the link

represents the cost.

The minimal spanning tree is also relevant to the clustering problem. Given some

notion of similarity between objects, it is frequently useful to group objects into clusters,

where clusters contain objects that are in some sense most similar. The objects could be

photographs, documents, micro-organisms, . . .. Given a set of objects p1, . . . , pn, a distance

function d(pi, pj) specifies their similarity (or lack thereof). This function is symmetric:

d(pi, pj) = d(pj , pi), and satisfies d(pi, pj) ≥ 0 (=0 iff i = j).

Suppose the n objects are to be separated into k clusters C1, . . .Ck. The “spacing” of

any particular clustering is defined as the minimum distance between objects in any pair of

different clusters. One reasonable criterion for a “good” clustering is to find k clusters with

maximum spacing. Since the number of possible clusterings grows exponentially with the

number of objects, we need an efficient algorithm to find the one with maximum spacing.

Consider growing a graph on the objects pi considered as vertices. Start by drawing

an edge between the closest pair of points, then next closest, etc., and at any given con-

figuration the sets of connected vertices represent the clusters. (This procedure is known

as single-link agglomerative clustering.) Note that since only the sets of clusters are of

interest, it is not necessary to add any edges that connect vertices already in the same

connected component. Hence the graph has no cycles — it is a union of trees.

This graph-growing procedure, though motivated by the idea of merging clusters,

is identically Kruskal’s algorithm. To produce a k-clustering of the objects, Kruskal’s

algorithm is simply halted when there are k connected components, and the last k − 1

edges are not added. This iterative merging procedure is also equivalent to computing the

full minimal spanning tree, then deleting the k − 1 most expensive edges and taking the

resulting k connected components to define a clustering C = {C1, . . .Ck}.

To see that this indeed produces k clusters with maximal spacing, note that the spacing

of C = {C1, . . . Ck} is the weight d∗ of the (k − 1)st most expensive edge (i.e., the next

edge that would have been added) in the mimimal spanning tree. If C′ = {C′

1
, . . .C′

k} is

some other clustering, then there is some cluster Cr 6⊂ C′

s such that there exist pi, pj ∈ Cr

with pi ∈ C′

s and pj ∈ C′

t 6= C′

s. Note that each edge on the path from pi to pj within Cr

has weight ≤ d∗. Let p′ be the first vertex along this path no longer in C′

s and let p be the

one just before p′ (i.e., still in C′

s). p and p′ are in different clusters of C′ but d(p, p′) ≤ d∗,

so the spacing of C′ is no greater than that of C. The clustering C defined by the above

procedure thus identifies a k-clustering with maximum spacing.

INFO 295, 5 Oct 06


