Note: ProbSet 1 due Thu night, 8 Feb 2018
Recall the probability space

Finite probability space

1) a set \(S \)

2) a function \(p : S \to [0, 1] \)

such that \(p(s) > 0 \) (\(\forall s \in S \))

and \(\sum_{s \in S} p(s) = 1. \)

\(S \) is the sample space, subsets of \(S \) are events, and \(p \) is the probability distribution.

Probability of event \(A \subseteq S \) is \(p(A) = \sum_{a \in A} p(a) \). (And \(p(\emptyset) = 0 \).)

Two events are disjoint if their intersection is empty.

In general we have \(p(A \cup B) = p(A) + p(B) - p(A \cap B) \)
Birthday “paradox”

Example: a) What is the probability that in a group of \(n \) people, at least two have the same birthday?

(Simplifications: assume no leap years, and assume that all birthdays are equally likely.)

Again consider the complement problem, the probability that no two birthdays coincide:

Total number of possibilities with no coincidences is \(365 \cdot 364 \cdot \ldots \cdot (366 - n) \)

(i.e., \(n \) factors each successive one with one fewer choice of day).

Total number of possibilities for \(n \) choices of birthdays is \(365^n \),

so the probability of no coincidences is \(365 \cdot 364 \cdot \ldots \cdot (366 - n)/365^n \).

The probability that at least two coincide is therefore \(1 - 365 \cdot 364 \cdot \ldots \cdot (366 - n)/365^n \).

This probability is rapidly increasing as a function of \(n \) and turns out to be greater than .5 for \(n = 23 \).
Red (upper): The probability $1 - \frac{365!}{(365-n)!365^n}$ that at least two birthdays coincide within a group of n people, as function of n.

Green (lower): The probability $1 - \left(\frac{364}{365}\right)^{n-1}$ of a birthday coinciding with yours within a group of n people including you.
We can estimate the number of coincident pairs as

\[\frac{n(n-1)}{2} \cdot \frac{1}{365} \]

since \(\frac{n(n-1)}{2} = \binom{n}{2} \) is the number of pairs, and \(1/365 \) is the probability that any pair has a coincident birthday.

(It still works for \(n \) large, though has to be corrected for pairs contained in triples, and so on.)

(For small \(n \), this formula also gives the probability of at least one colliding pair, and starts deviating by around \(n \approx 15 \).)

Example: In a group of 141 people, we expect

\[\frac{141 \times 140}{2} / 365 = 27 \] “pairs” of coincident birthdays.

(where a triple counts as 3 pairs, a quadruple as 6, …)
b) In a group of 23 people, what is the probability that at least one person has a birthday coincident specifically with yours?

First calculate probability that none of the 22 others (again under the above simplifications) has a birthday coincident with a given day:

\[\left(\frac{364}{365}\right)^{22} \]

Probability that at least one coincides with that day is therefore \(1 - \left(\frac{364}{365}\right)^{22} \approx .059 \), so a roughly 6% chance.

This probability increases more slowly as a function of the size of the group.

Note that \(1 - \left(\frac{364}{365}\right)^n \) is well approximated by \(1 - \exp(-n/365) \) for all \(n \).
Red (upper): The probability \(1 - \frac{365!}{(365-n)!365^n} \) that at least two birthdays coincide within a group of \(n \) people, as function of \(n \).

Green (lower): The probability \(1 - \left(\frac{364}{365}\right)^{n-1} \) of a birthday coinciding with yours within a group of \(n \) people including you.

\[1 - \frac{1}{e} \approx 0.632 \]
Red (upper): The probability \(1 - \frac{365!}{(365-n)!365^n}\) that at least two birthdays coincide within a group of \(n\) people, as function of \(n\).

Green (lower): The probability \(1 - \left(\frac{364}{365}\right)^{n-1}\) of a birthday coinciding with yours within a group of \(n\) people including you.
This class

<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/04</td>
<td>2</td>
</tr>
<tr>
<td>01/09</td>
<td>2</td>
</tr>
<tr>
<td>02/05</td>
<td>2</td>
</tr>
<tr>
<td>02/19</td>
<td>3</td>
</tr>
<tr>
<td>03/04</td>
<td>3</td>
</tr>
<tr>
<td>04/02</td>
<td>3</td>
</tr>
<tr>
<td>04/04</td>
<td>2</td>
</tr>
<tr>
<td>04/19</td>
<td>2</td>
</tr>
<tr>
<td>05/04</td>
<td>3</td>
</tr>
<tr>
<td>05/22</td>
<td>2</td>
</tr>
<tr>
<td>06/10</td>
<td>2</td>
</tr>
<tr>
<td>07/03</td>
<td>3</td>
</tr>
<tr>
<td>07/20</td>
<td>2</td>
</tr>
<tr>
<td>08/03</td>
<td>2</td>
</tr>
<tr>
<td>08/08</td>
<td>2</td>
</tr>
<tr>
<td>08/22</td>
<td>2</td>
</tr>
<tr>
<td>08/26</td>
<td>2</td>
</tr>
<tr>
<td>09/07</td>
<td>3</td>
</tr>
<tr>
<td>09/25</td>
<td>2</td>
</tr>
<tr>
<td>10/05</td>
<td>2</td>
</tr>
<tr>
<td>10/20</td>
<td>2</td>
</tr>
<tr>
<td>10/22</td>
<td>2</td>
</tr>
<tr>
<td>10/23</td>
<td>2</td>
</tr>
<tr>
<td>10/25</td>
<td>2</td>
</tr>
<tr>
<td>11/12</td>
<td>3</td>
</tr>
<tr>
<td>12/05</td>
<td>2</td>
</tr>
</tbody>
</table>

(See PS1 #4)
3M fraudulent voters our of 130M?

Same voter registered in different states...
But how do we know they're the same?

They have same name and same birthday — "Must" be fraudulent!

First eliminate obvious errors (e.g., given default 1 Jan due to lack of info), leaves 750k.

Now for the “birthday paradox”. Example: 8,575 ballots cast under the name John Smith in 2012, 141 of those were born in 1970 so expect \(\frac{141 \times 140}{2} / 365 = 27 \) pairs with same birthdate.

Elementary statistics, not evidence of fraud.

Take into account all similarly multiply occurring names explains > 720k of remaining “fraud”

But names and birthdays are not uniformly distributed, so even more chance of correlated collisions. [e.g. Carol, Christine, Jesús more likely on 25 Dec, Josefina more likely on 19 Mar [St. Joseph's day], ...].

That plus sampling to detect recording errors eliminates all discrepancies. No evidence of voter fraud, widespread or otherwise. End of story?

Fake Math? Sharad Goel et al:
https://www.thisamericanlife.org/630/things-i-mean-to-know
http://www.slate.com/articles/news_and_politics/jurisprudence/2016/11/we_looked_at_130_million_ballots_from_the_2012_election_and_found_zero_fraud.html
https://5harad.com/papers/1p1v.pdf
Conditional Probability

Suppose we know that one event has happened and we wish to ask about another. For two events A and B, the joint probability of A and B is defined as

$$p(A, B) = p(A \cap B)$$

the probability of the intersection of events A and B in the sample space, equivalently the probability that events A and B both occur.

The conditional probability of A relative to B is

$$p(A|B) = p(A \cap B)/p(B)$$

“the probability of A given B”
The sample space is divided into disjoint pieces. If \(a \) is a general rule, it can be rewritten equivalently as the probability that events \(A \) and \(B \) both occur:

\[
p(A \cap B) = p(A|B) \cdot p(B)
\]

Notice that the definition of conditional probability also gives us the formula for the joint probability:

\[
p(A \cap B) = p(A|B) \cdot p(B)
\]

We can also use conditional probabilities to find the probability of an event given the occurrence of another. For example, if \(A \) and \(B \) are independent events:

\[
p(A|B) = p(A)
\]

For two events \(A \) and \(B \), the conditional probability of \(A \) given \(B \) is:

\[
p(A|B) = \frac{p(A \cap B)}{p(B)}
\]

This immediately gives:

\[
p(A|B) = \frac{p(A \cap B)}{p(B)}
\]

For three events we have:

\[
p(A|B) = \frac{p(A \cap B)}{p(B)}
\]

Suppose we flip a fair coin twice. Let \(A \) be the outcomes where the first flip is heads, \(B \) be the outcomes where the first flip is tails, and \(C \) be the outcomes where the second flip is heads.

Two events are independent if:

\[
p(A|B) = p(A)
\]

In this case, \(A \) and \(B \) are independent:

\[
p(A|B) = p(A)
\]

The conditional probability is defined as:

\[
p(A|B) = \frac{p(A \cap B)}{p(B)}
\]

“the probability of \(A \) given \(B \)”
Example: Flip a fair coin 3 times.

\[B = \text{event that we have at least one } H \]

\[A = \text{event of getting exactly 2 } H \text{s} \]

What is the probability of \(A \) given \(B \)?

In this case, \((A \cap B) = A\), \(p(A) = \frac{3}{8}\), \(p(B) = \frac{7}{8}\), and therefore \(p(A|B) = \frac{3}{7}\).

Equivalently \(p(A | B) = \frac{(A \cap B)}{p(B)} = \frac{3/8}{7/8} = 3/7 \)
Two events A and B are *independent* if $p(A \cap B) = p(A)p(B)$.

Since $p(A \cap B) = p(A|B)p(B)$:

$$A \text{ and } B \text{ are independent iff } p(A|B) = p(A).$$

If $p(A \cap B) > p(A)p(B)$ then A and B are said to be *positively correlated.*

(equivalently, $p(A|B) > p(A)$)

If $p(A \cap B) < p(A)p(B)$ then A and B are said to be *negatively correlated.*

($p(A|B) < p(A)$)

Alternate notation for joint probability: $P(A, B) = P(A \cap B)$

Note that it is symmetric: $p(A, B) = p(B, A)$.
Example: flip 3 coins

Recall $B = \text{at least one } H$

$A = \text{exactly 2 } Hs$

$p(A) = 3/8$, $p(B) = 7/8$, and $p(A|B) = 3/7$

$p(A|B) \neq p(A)$, so the two events are **not** independent

(Since $p(A)p(B) = (3/8)(7/8) < 3/8 = p(A, B)$, they’re **positively** correlated.)

B

HHH HHT HTH HTT THH THT TTH TTT
Example: flip 3 coins (cont’d)

$C =$ at least one H and at least one T.

$D =$ at most one H

$p(C) = 6/8$, $p(D) = 4/8$, and $p(C \cap D) = 3/8$.

Therefore events C and D are independent.

Whereas $p(B)p(D) = (7/8)(1/2) > 3/8 = p(B, D)$

so the events B and D are negatively correlated

(not surprising for “at least one H” and “at most one H”).
63 Information Science (41%)
43 Undeclared (28%)
4 Biological Sciences (3%)
3 Applied Economics and Mgmt (2%)
3 Economics, Information Science (2%)
3 Computer Science (2%)
3 Communication, Information Science (2%)
3 Oper Research & Engineering (2%)
2 Biology and Society (1%)
2 Interdisciplinary Study in ALS (1%)
2 Policy Analysis and Management (1%)
2 Economics (1%)
2 Development Sociology (1%)
2 Biometry & Statistics (1%)
1 Linguistics (1%)
1 Information Science Sys & Tech (1%)
1 Animal Science (1%)
1 Animal Science, Information Science (1%)
1 Information Science, Performing and Media Arts (1%)
1 Urban & Regional Studies (1%)
1 Inter Agriculture & Rural Dev (1%)
1 Astronomy, Planetary Studies, Theoretical Astrophysics, Applied Physics (1%)
1 Government (1%)
1 College Scholar, Psychology (1%)
1 Information Science, Comparative Literature (1%)
1 Chemical Engineering (1%)
1 German, Information Science (1%)
1 Computer Science, Philosophy (1%)
1 Communication (1%)
1 College Scholar (1%)
1 Psychology, Information Science (1%)
1 Fine Arts (1%)
\[
p(\text{info major} | \text{CALS}) = \frac{51}{64} \\
p(\text{info major} | \text{A&S}) = \frac{23}{52} \\
p(\text{info major} | \text{ENG}) = \frac{1}{7} \\
p(\text{info major}) = \frac{75}{155} = 0.484
\]

\[
p(\text{CALS} | \text{info major}) = ? \\
\text{(calculate directly or via Bayes’ thm)}
\]

Class data for 155 Total 31 Jan 2018

<table>
<thead>
<tr>
<th>college</th>
<th>u1</th>
<th>u2</th>
<th>u3</th>
<th>u4</th>
<th>IM</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALS</td>
<td>3</td>
<td>34</td>
<td>20</td>
<td>7</td>
<td>51</td>
<td>13</td>
</tr>
<tr>
<td>A&S</td>
<td>4</td>
<td>38</td>
<td>28</td>
<td>5</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>ENG</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>other</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
Example: two children

\(E = 2 \) boys, \(F = \) at least one boy.

\[p(E|F) = 1/3 \ (E = BB, F = BB BG GB). \]

Are the events independent?

\[p(E) = 1/4, \ p(F) = 3/4, \ p(E, F) = 1/4 \neq 3/16, \] so they are positively correlated.

Example: now 3 children

\(E = \) at least one of each sex, \(F = \) at most one boy

\[p(E) = 6/8, \ p(F) = 4/8, \ p(E, F) = 3/8, \] so they’re independent: \(p(E|F) = p(E) = 3/4 \)
Example: flip a coin 3 times

\[\begin{align*} A &= \text{1st flip is H}, \quad B = \text{at least two H}, \quad C = \text{at least two T} \\
\text{Verify that } p(A) &= p(B) = p(C) = \frac{1}{2} \\
\text{but the probability }\frac{1}{2} \text{ events can be correlated or uncorrelated} \\
p(A, B) &= \frac{3}{8} \text{ so } A, B \text{ positively correlated} \\
&\quad \text{(makes sense, since 1st being H makes more likely there are at least two H).} \\
p(A, C') &= \frac{1}{8} \text{ so } A, C \text{ negatively correlated} \\
&\quad \text{(again makes sense, since 1st being H makes less likely there are at least two T).} \\
p(B, C') &= 0, \text{ disjoint events} \\
&\quad \text{(maximally negatively correlated, can’t have both two T and two H in three rolls)} \end{align*} \]
Example: 4 bit number

\[E = \text{at least two consecutive 0's} \]

\[F = \text{first bit is 0.} \]

\[(E \cap F = \{0000, 0001, 0010, 0011, 0100\}) \]

\[p(E \cap F) = \frac{5}{16}, \quad p(F) = \frac{8}{16}, \quad p(E|F) = \frac{(5/16)}{(1/2)} = \frac{5}{8} \]
The notions of “disjoint” and “independent” events are very different.

Two events A, B are disjoint if their intersection is empty,

whereas they are independent if $p(A, B) = p(A)p(B)$.

Two events that are disjoint necessarily have $p(A, B) = p(A \cap B) = 0$

so if their independent probabilities are non-zero,

they are necessarily negatively correlated $(p(A, B) < p(A)p(B))$.
Bayes’ Rule

A simple formula follows from the above definitions and symmetry of the joint probability:

$$p(A|B)p(B) = p(A, B) = p(B, A) = p(B|A)p(A):$$

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Called “Bayes’ theorem” or “Bayes’ rule” — connects inductive and deductive inference

(Rev. Thomas Bayes (1763), Pierre-Simon Laplace (1812), Sir Harold Jeffreys (1939))

For mutually disjoint sets A_i with $\bigcup_{i=1}^{n} A_i = S$, Bayes’ rule takes the form

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{p(B|A_1)p(A_1) + \ldots + p(B|A_n)p(A_n)}.$$
Example 1: Consider a casino with loaded and unloaded dice.

For a loaded die (L), probability of rolling a 6 is 50%:

$$p(6|L) = 1/2, \text{ and } p(i|L) = 1/10 \ (i = 1, \ldots, 5)$$

For a fair die (\bar{L}), the probabilities are $p(i|\bar{L}) = 1/6 \ (i = 1, \ldots, 6)$.

Suppose there’s a 1% probability of choosing a loaded die:

$$p(L) = 1/100.$$

If we select a die at random and roll three consecutive 6’s with it, what is the posterior probability, $P(L|6, 6, 6)$, that it was loaded?
The probability of the die being loaded, given 3 consecutive 6’s, is

\[
p(L|6, 6, 6) = \frac{p(6, 6, 6|L)p(L)}{p(6, 6, 6)} = \frac{p(6|L)³p(L)}{p(6|L)³p(L) + p(6|\bar{L})³p(\bar{L})}
\]

\[
= \frac{(1/2)³ \cdot (1/100)}{(1/2)³ \cdot (1/100) + (1/6)³ \cdot (99/100)}
\]

\[
= \frac{1}{1 + (1/3)³ \cdot 99} = \frac{1}{1 + 11/3} = \frac{3}{14} \approx .21 ,
\]

so only a roughly 21% chance that it was loaded.

(Note that the Bayesian “prior” in the above is \(p(L) = 1/100\), giving the expected probability before collecting the data from actual rolls, and significantly affects the inferred posterior probability.)

Example 2: Duchenne Muscular Dystrophy (DMD) can be regarded as a simple recessive sex-linked disease caused by a mutated X chromosome (\(e\)X). An \(e\)XY male expresses the disease, whereas an \(e\)XX female is a carrier but does not express the disease. Suppose neither of a woman’s parents expresses the disease, but her brother does. Then the woman’s mother must be a carrier, and the woman herself therefore has an \(a\)prior\(i\) 50/50 chance of being a carrier, \(p(C) = 1/2\). Suppose she gives birth to a healthy son (h.s.). What now is her probability of being a carrier?

Her probability of being a carrier, given a healthy son, is

\[
p(C|h.s.) = \frac{p(h.s.|C)p(C)}{p(h.s.|C)p(C) + p(h.s.|\bar{C})p(\bar{C})}
\]

\[
= \frac{1}{1 + (1/3)³ \cdot 99} = \frac{1}{1 + 11/3} = \frac{3}{14} \approx .21 ,
\]

so intuitively what is happening is that if she’s not a carrier, then there are two ways she could have a healthy son, i.e., from either of her good X’s, whereas if she’s a carrier there’s only one way. So the probability that she’s a carrier is \(1/3\), given the knowledge that she’s had exactly one healthy son.

(The other point about this example is that the woman has a hidden state, \(C\) or \(\bar{C}\), determined once and for all, and she isn’t making an independent coin flip each time she has a child as to whether or not she’s a carrier. Prior to generating data about her son or sons, she has a “Bayesian prior” of 1/2 to be a carrier. Subsequent data permits a principled reassessment of that probability, continuously decreasing for each successive healthy son, or jumping to 1 if she has a single diseased son.)

Example 3: Suppose there’s a rare genetic disease that affects 1 out of a million people, \(p(D) = 10^6\). Suppose a screening test for this disease is 100% sensitive (i.e., is 8

INFO 2950, 9–11 Feb 16