Info 2950, Lecture 23

27 Apr 2017

Prob Set 7: due Wed 3 May

Prob Set 8: due 11 May (end of classes)

Reaching Out to the Voters the Left Left Behind

ps7\#4:

Thomas B. Edsall APRIL 13, 2017

White 'Deaths of Despair'

Deaths per 100,000 non-Hispanic whites aged 50 to 54 , from suicide, alcohol or other drugs, by education level.

mortality rates for whites were stable or declining in all counties with populations of one million or more - the counties, in other words, that voted decisively for Clinton. Conversely, white mortality rates rose by roughly one percent a year in all counties of less than a million - the counties that voted for Trump.

Bill Bishop, co-author of the book "The Big Sort" and a founder of The Daily Yonder, makes the case that the political split in America is not an urban-rural divide. Instead, he argues, it is between the largest cities and the rest of America.

https://wonder.cdc.gov/ucd-icd10.html

CDC Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People ${ }^{\text {TM }}$

```
CDC WONDER FAQ Help ContactUs WONDERSearch
```

About Underlying Cause of Death, 1999-2015

Defined as the Pearson correlation for the ranks, the Spearman correlation is written

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}[r, s]}{\sigma[r] \sigma[s]}, \tag{1}
\end{equation*}
$$

where $\operatorname{Cov}[r, s]=E[(r-E[r])(s-E[s])]$
(generalizing the $\operatorname{Var}[x]=E\left[(x-E[x])^{2}\right]$, with $\operatorname{Cov}[x, x]=\operatorname{Var}[x]$).

The formula for the Spearman correlation coefficient is given at http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient in terms of the difference $d_{i}=r_{i}-s_{i}$ between ranks, in this easily calculable form:

$$
\begin{equation*}
\rho=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)} . \tag{2}
\end{equation*}
$$

It is straightforward to verify that (1) reduces to (2) (see linked notes)
xdata $=[-10,20,50]$ ydata=[.5, 1000, 10000]

pearsonr(xdata,ydata) $=.91$
spearmanr(xdata,ydata) $=1$ pearsonr([1,2,3],[1,2,3]) =1
xdata=[-10, 50, 20] $y d a t a=[.5,1000,10000]$

pearsonr(xdata, y data $)=.091$
spearmanr(xdata,ydata) $=.5$
pearsonr $([1,3,2],[1,2,3])=.5$

$$
\begin{aligned}
& \operatorname{var}([1,2,3])=2 / 3 \\
& \operatorname{cov}([1,2,3],[1,3,2])=((1-2)(1-2)+(2-2)(3-2)+(3-2)(2-2)) / 3 \\
&=1 / 3
\end{aligned}
$$

Linear Regression (Least Square Fit)

The best line $y=a x+b$ is determined by parameters a, b that minimize the sum $\sum_{i=1}^{n}\left(\left(a x_{i}+b\right)-y_{i}\right)^{2}$
over the n data points $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$

The solution was
$b=E[y]-a E[x]$
$\mathrm{a}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\operatorname{Var}(\mathrm{x})}$

Fit power law data

$$
p(x)=C x^{-k}
$$

C is determined by the normalization that the sum over the probabilities (in this case the integral from some $\mathrm{x}_{\text {min }}$ to ∞) is equal to 1 .

The overall probability of the data for some given k is

$$
p(x \mid k)=p\left(x_{1} \mid k\right) p\left(x_{2} \mid k\right) p\left(x_{3} \mid k\right) \ldots p\left(x_{n} \mid k\right)
$$

so the best fit is given by the value of k that maximizes the probability
of the data. Setting to zero the derivative of the above with respect to k gave

$$
\mathrm{k}=1+\mathrm{n} / \sum_{i=1}^{\mathrm{n}} \ln \left(\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{min}}\right)
$$

In each case, there's a model M, with some parameters, intended to describe some data x.

How to determine the model parameters?
A. Maximum Likelihood Estimate (MLE)
find the parameters that maximize $p(x \mid M)$
B. Maximum a Posteriori Estimate (MAP)
find the parameters that maximize $p(\mathrm{MI}$ x)

Logistic Regression

modification of regression scheme for predicting a binary outcome rather than a linear relation
def $\operatorname{logit}(x)$: return 1/(1+exp(-x)) logistic function: $\quad \operatorname{logit}(x)=\frac{1}{1+\mathrm{e}^{-x}}$
 $x=n p$.arange $(-15,15, .1)$ $y \lim (-.03,1.03)$ $\operatorname{plot}(x, \operatorname{logit}(x d))$

For large positive values of the argument x, e^{-x} becomes very small, so the function evaluates to 1 ,
whereas for large negative values of $\mathrm{x}, \mathrm{e}^{-x}$ becomes very large and the function evaluates to zero.

The value for $\mathrm{x}=0$ is $\operatorname{logit}(0)=.5$, and that marks the middle of the transition region between 0 and 1 .
x can be considered to be any linear combination of feature values f_{i} being used to make the binary prediction, $x=\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{n}+\beta$, where the weights α_{i} and β are determined by some training procedure (to provide the best fit to labelled training data). Intermediate values of the logit function can be interpreted as the probability of the label being 1 for those values of the features.
For a single feature $x=\alpha f_{1}+\beta$, the logit is equal to .5 for $f_{1}=-\beta / \alpha$, and the width of the transition region is proportional to $1 / \alpha$:

Logistic Regression

again determine parameters by MLE

Markov chains

Consider a system with M states, labelled $1,2,3, \ldots \mathrm{M}$ which undergoes a series of transitions $2,1,8,5,6, \ldots$
$X_{i}=$ state after i transitions

$$
X_{0} X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} \ldots
$$

Markov chain property:

$$
\mathrm{T}_{\mathrm{ij}}=p\left(X_{n+1}=j \mid X_{n}=i\right)=p\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i-1, \ldots, X_{0}\right)
$$

States with probabilistic transitions

$$
\mathbf{T}=\left(\begin{array}{cccc}
.5 & .5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & .2 & .8 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

A state is recurrent if wherever you go from it, there's always a way back
If a state is not recurrent, then it's called transient.
A state is periodic if recurrent and there exists a number d such that probability of returning is zero except in steps of multiples of d

A recurrent class is a set of recurrent states which can all reach one another: they are said to communicate.

A Markov chain is ergodic if it has only one recurrent class and no periodic states. (These are the "good" Markov chains, where the states all communicate, and are inter reachable via any number of steps.)

"Mark V Shaney"

def make_trigrams(filename):
with open(filename) as f : words $=\mathrm{f} . \mathrm{read}($ ().split()
trigrams $=$ defaultdict(list)
bigram=tuple(words[:2])
for w in words[2:] + words[:2]:
\#keys of trigram dict are tuples, values are lists
trigrams[bigram].append(w)
bigram=(bigram[1],w)
return trigrams
def random_text(trigrams, startwords, num_words=100):

```
current_pair = random.choice(startwords)
random_text = list(current_pair)
# continue past num_words until ends in .
while len(random_text)< num_words:
    next = random.choice(trigrams[current_pair])
    random_text.append(next)
    current_pair = (current_pair[1], next)
    # avoid long loops if too few periods in training text
```

return ' '.join(random_text)
(We, both) sprang

(both, sprang) in

(sprang, in) and
in and away
and away we
away we went
we went to
went to the
to the ventilator
the ventilator and
ventilator and to
and to carry
to cary out carry out my

