
Prob Set 6: due Mon night 24 Apr

Info 2950, Lecture 22 
25 Apr 2017

Prob Set 7: to be issued tonight, due mid next week

Prob Set 8: due 11 May (end of classes)





Cov(X,Y) = E[(X-E[X])(Y-E[Y])]

Cov(X,X) = Var(X)

X>E[X], Y>E[Y]

X<E[X], Y<E[Y]

Cov(X,Y) > 0

X>E[X], Y<E[Y]

X<E[X], Y>E[Y]

Cov(X,Y) < 0



https://www.inferentialthinking.com/chapters/13/1/correlation.html



Correlation coefficient only measures association.
Correlation does not imply causation. 

Though the correlation between the weight and the math 
ability of children in a school district may be positive, that does 
not mean that doing math makes children heavier or that 
putting on weight improves the children's math skills.

Age is a confounding variable: older children are both heavier 
and better at math than younger children, on average

https://www.inferentialthinking.com/chapters/13/1/correlation.html



see also http://www.tylervigen.com/spurious-correlations

https://www.inferentialthinking.com/chapters/13/1/correlation.html

http://www.tylervigen.com/spurious-correlations
https://www.inferentialthinking.com/chapters/13/1/correlation.html


Recall that if we rescale the data, x -> x/c, then that divides the standard 
deviation ! [x] by the same c.

In particular, we can divide by c= ! [x], which gives a new distribution with 
standard deviation normalized to 1 (as is done to calculate z values).

Note that Pearsonr(x,y) = Cov[x,y] / ! [x] ! [y]  is unchanged by rescaling both
x and y.
On the other hand, if we rescale x-> x/! [x] and y-> y/! [y] , then the
linear regression slope Cov[x,y]/Var[x] -> Cov[x,y].

Therefore the Pearsonr(x,y) is just the linear regression slope when the
variables are rescaled to have standard deviation equal to 1.



.9 .25

0 -.55







[20,20,15,10,25] 
1) naive bayes, 2) simple probab, 3) wikipedia, 4) python, 5) research lit





Dependences are not always linear

(Except in … )



http://www.nccoast.org/uploads/documents/CRO/2012-5/SLR-bill.pdf



https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


The Pearson correlation coe�cient misses non-linear relationships and is also sensitive to

outliers — the Spearman correlation can sometimes find correlations that Pearson misses.

It is defined as the Pearson correlation of the rank order of the data.

That means it also varies from �1 (perfectly anti-correlated) to +1 (perfectly correlated),

with 0 meaning uncorrelated.

If the data has x = [.6, .4, .2, .1, .5] then the ranks are r = [5, 3, 2, 1, 4].

For data y = [403, 54, 7, 2, 148], the ranks s = [5, 3, 2, 1, 4] are the same.*

so the Spearman correlation is 1, whereas the Pearson is less than one.

Both functions are available in scipy.stats (as pearsonr() and spearmanr()).

[*Actually the second was generated from the first by taking the integer part of exp(10x)]

Defined as the Pearson correlation for the ranks, the Spearman correlation is written

! =

Cov[r, s]

" [r]" [s]
, (1)

where Cov[r, s] = E[(r � E[r])(s � E[s])] (generalizing the Var[x] = E[(x � E[x])

2
], with

Cov[x, x] = Var[x]). The formula for the Spearman correlation coe�cient is given at

http://en.wikipedia.org/wiki/Spearman’s rank correlation coe�cient in terms of the dif-

ference di = ri � si between ranks, in this easily calculable form:

! = 1�
6

! n
i=1 d

2
i

n(n

2 � 1)

. (2)

It is straightforward to verify that (1) reduces to (2):

First note that the ranks ri and si for n data points always run through the integers from

1 to n, in some orders. Thus

E[s] = E[r] =

1

n

"

i

i =

1

n

n(n+ 1)

2

=

1

2

(n+ 1)

2

,

E[s

2
] = E[r

2
] =

1

n

"

i

i

2
=

1

n

1

6

n(n+ 1)(2n+ 1) =

1

6

(n+ 1)(2n+ 1) ,

and Var[s] = Var[r] = E[r

2
]� (E[r])

2
=

1

6

(n+ 1)(2n+ 1)� 1

4

(n+ 1)

2
=

1

12

(n

2 � 1) .

INFO 2950, 20 Nov 14



The Pearson correlation coe�cient misses non-linear relationships and is also sensitive to
outliers Ñ the Spearman correlation can sometimes Þnd correlations that Pearson misses.

It is deÞned as the Pearson correlation of the rank order of the data.
That means it also varies from! 1 (perfectly anti-correlated) to +1 (perfectly correlated),
with 0 meaning uncorrelated.

If the data has x = [ .6, .4, .2, .1, .5] then the ranks arer = [5 , 3, 2, 1, 4].

For data y = [403, 54, 7, 2, 148], the rankss = [5 , 3, 2, 1, 4] are the same.*

so the Spearman correlation is 1, whereas the Pearson is less than one.
Both functions are available in scipy.stats (as pearsonr() and spearmanr()).

[*Actually the second was generated from the Þrst by taking the integer part of exp(10x)]

DeÞned as the Pearson correlation for the ranks, the Spearman correlation is written

! =
Cov[r, s]
" [r]" [s]

, (1)

where Cov[r, s] = E[(r ! E[r])(s ! E[s])]

(generalizing the Var[x] = E[(x ! E[x])2], with Cov[x, x] = Var[ x]).

The formula for the Spearman correlation coe�cient is given at
http://en.wikipedia.org/wiki/SpearmanÕs rank correlation coe�cient
in terms of the di↵erencedi = ri ! si between ranks, in this easily calculable form:

! = 1 !
6

! n
i =1 d

2
i

n(n2 ! 1)
. (2)

It is straightforward to verify that (1) reduces to (2) (see linked notes)

First note that the ranks ri and si for n data points always run through the integers from
1 to n, in some orders. Thus

E[s] = E[r] =
1
n

"

i

i =
1
n

n(n + 1)
2

=
1
2

(n + 1)
2

,

E[s2] = E[r2] =
1
n

"

i

i

2 =
1
n

1
6

n(n + 1)(2 n + 1) =
1
6

(n + 1)(2 n + 1) ,

and Var[s] = Var[ r] = E[r2] ! (E[r])2 =
1
6

(n + 1)(2 n + 1) !
1
4

(n + 1) 2 =
1
12

(n2 ! 1) .

INFO 2950, 20 Nov 14



roughly elliptically 
distributed and there are 

no prominent outliers:
same

less sensitive than the Pearson 
correlation to strong outliers that are 
in the tails of both samples
(limited to value of rank)

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


dynamically generated,
so scrape with selenium



<div class="social social-with-popup sharing-buttons header_social">

    <a href="#" data-share="http://www.facebook.com/..." class="facebook">
      <span class="icon"></span>
      <span class="count">8.9k</span>
    </a>

    <div class="twitter">
      <a href="#" data-share="http://twitter.com/..." class="twitter">
         <span class="icon"></span>
      </a>
      <a class="tw-count" href=“http://twitter.com/search?q=...">
            <span class=“count">2.1k</span>
      </a>
    </div>

    <a href="#comments" class="comments">
       <span class="icon"></span>
       <span class="count">1.4k</span>
     </a>
</div>

allsoc=[]
for url in urls:
  driver.get(url)
  social = driver.find_element_by_class_name('header_social')
  soc=[] #temporary list for this url
  for cl in ('facebook','twitter','comments'):
    elt = social.find_element_by_class_name(cl)
    subelt = elt.find_element_by_class_name('count')
    soc.append(subelt.get_attribute('innerHTML'))
allsoc.append(soc)

header_social

count count count

facebook commentstwitter


