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Discrete Probability and Counting INFO 2950 (week 2, Spr ’16)

A finite probability space is a set S and a real function p(s) on S such that:

• p(s) ≥ 0 , ∀s ∈ S, and

•
∑

s∈S p(s) = 1 .

We refer to S as the sample space, subsets of S as events, and p as the probability distribution.

The probability of an event A ⊆ S is p(A) =
∑

a∈A p(a).

(Note that p(∅) = 0.)

Example: Suppose we flip a fair coin. “Fair” implies that it is equally likely to come up

H (heads) or T (tails), and therefore p(H) = p(T ) = 1/2.

If we assign all elements of S the same probability, as in the example above, then p is

the uniform distribution.

Example: Suppose we flip a biased coin where the probability of H is twice the proba-

bility of T . Since p(H) + p(T ) = 1, this implies p(H) = 2/3 and p(T ) = 1/3.

Example: Suppose we flip a fair coin twice. What is the probability of getting one

H and one T ? The possible outcomes are {HH,HT, TH, TT}. Two out of the possible 4

outcomes give one H and one T , each outcome has probability 1/4, and therefore the total

probability is 1/2

Suppose we flip a fair coin n times. How many possible outcomes are there? There are

two choices for each flip of the coin, so there are 2n possible outcomes. Each coin flip is an

independent event (a notion shortly to be made precise), so the probability of getting any

one of these is 1/2n. Now suppose we want to know the probability of getting exactly k Hs.

We need to know how many of the 2n strings have exactly k Hs.

The number of ways of rearranging k objects is given by

k! = k(k − 1)(k − 2) · · ·2 · 1 ,

and is read k factorial. (We define 0! = 1.) That is because there are k choices for the first

object, then k − 1 choices for the second object, and so on, down to two choices for the last

two objects, and a single choice for the last remaining.

Similarly, the number of ways (permutations) to choose k objects from a set of n objects

is given by n(n−1) · · · (n−k+1) = n!/(n−k)!, since there are n choices for the first object

down to n− k + 1 choices for the kth object (after having chosen the first k − 1 objects).

If the order in which the objects are chosen does not matter, then the number of ways

(combinations) to choose k objects from a set of n is given by dividing the above by k! (the

number of ways of rearranging those k objects). The number of ways to choose k objects

from n, independent of order, is thus given by:
(

n

k

)

=
n!

(n− k)!k!
.
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Discrete Probability and Counting INFO 2950 (week 2, Spr ’16)

Example: Flip a fair coin. S = {H, T}

“Fair” implies that it is equally likely to come up H (heads) or T (tails), and therefore

p(H) = p(T ) = 1/2.

Note: when all elements of S have same probability, then p is the uniform distribution.

Example: Flip a biased coin where the probability of H is twice the probability of T .

Since p(H) + p(T ) = 1, this implies p(H) = 2/3 and p(T ) = 1/3.

Example: Flip a fair coin twice.

What is the probability of getting one H and one T ?

Possible outcomes are S = {HH,HT, TH, TT}.

Two out of the possible 4 outcomes give one H and one T ,

each outcome has probability 1/4, so the total probability is 1/4 + 1/4 = 1/2

Example: flip a fair coin 4 times.

What is the probability of getting exactly two heads?

The set of all possibilities

S = {HHHH,HHHT,HHTH,HHTT,HTHH,HTHT,HTTH,HTTT

THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}

has size |S| = 24 = 16

There are six ways of getting exactly two heads,

E = {HHTT, HTHT, HTTH, THHT, THTH, TTHH},

so p(E) =
∑

a∈E p(a) = |E|/|S| =6/16=3/8.

Example: Suppose we flip a fair coin 10 times.

What is the probability of getting exactly 4 Hs?

Wait, this is getting tedious ...
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Learn to Count I

The number of ways of rearranging k objects is called “k factorial”:

k! = k(k − 1)(k − 2) · · ·2 · 1

because there are k choices for the first, k − 1 for the second, and so on

(and where by definition 0! = 1)

Example: There are 4! = 4 · 3 · 2 · 1 = 24 ways of rearranging four objects

Permutations: The number of ways to choose k objects from a set of n objects is given by

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

since there are n choices for the first object down to n − k + 1 choices for the kth object

(after having chosen the first k − 1 objects).

Example: There are 4 · 3 = 4!/2! = 12 ways of choosing two objects from four.

Combinations: If the order in which the objects are chosen does not matter, then the

number of ways (combinations) to choose k objects from a set of n is given by dividing the

above by k! (the number of ways of rearranging those k objects).

The number of ways to choose k objects from n, independent of order, is thus given by:
(

n

k

)

=
n!

(n− k)!k!
.

Note that

(

n

k

)

=

(

n

n− k

)

.

That is because there are k choices for the first object, then k − 1 choices for the second

object, and so on, down to two choices for the last two objects, and a single choice for the

last remaining.
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abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca

cabd cadb cbad cbda cdab cdba dabc dacb dbac dbca dcab dcba



Learn to Count II

The number of ways of rearranging k objects is called “k factorial”:

k! = k(k − 1)(k − 2) · · ·2 · 1

because there are k choices for the first, k − 1 for the second, and so on

(and where by definition 0! = 1)

Example: There are 4! = 4 · 3 · 2 · 1 = 24 ways of rearranging four objects

Permutations: The number of ways to choose k objects from a set of n objects is given by
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above by k! (the number of ways of rearranging those k objects).
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(

n

k

)

=
n!

(n− k)!k!
.

Note that

(

n

k

)
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(

n
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)

.

That is because there are k choices for the first object, then k − 1 choices for the second

object, and so on, down to two choices for the last two objects, and a single choice for the

last remaining.

2

ab ac ad    ba bc bd   ca cb cd   da db dc



Learn to Count III

ab ac ad    ba bc bd   ca cb cd   da db dc

The number of ways of rearranging k objects is called “k factorial”:

k! = k(k − 1)(k − 2) · · ·2 · 1

because there are k choices for the first, k − 1 for the second, and so on

(and where by definition 0! = 1)

Example: There are 4! = 4 · 3 · 2 · 1 = 24 ways of rearranging four objects.

Permutations: The number of ways to choose k objects from a set of n objects is given by

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

since there are n choices for the first object down to n − k + 1 choices for the kth object

(after having chosen the first k − 1 objects).

Example: There are 4 · 3 = 4!/2! = 12 ways of choosing two objects from four.

Combinations: If the order in which the objects are chosen does not matter, then the

number of ways (combinations) to choose k objects from a set of n is given by dividing the

above by k! (the number of ways of rearranging those k objects).

The number of ways to choose k objects from n, independent of order, is thus given by:
(

n

k

)

=
n!

(n− k)!k!

because we now divide by the k choices for the first object, k− 1 choices for the second, and

so on, down to two choices for the last two, and a single choice for the last remaining.
(

n

k

)

is called the “binomial coefficient”, and pronounced “n choose k”

Example: There are 4 · 3/2 = 4!/2!2! = 6 ways of choosing two objects from four, if order

doesn’t matter (ab = ba):
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Natural example of the distinction between permutations and combinations:

Deal from a standard 52 card deck

If one card to each of four players, then the number of possibilities is 52 · 51 · 50 · 49 =

52!/48! = 6497400.

If instead four cards to a single player, then “the hand” doesn’t depend what order

they’re dealt, and the number of distinct possibilities is 52 ·51 ·50 ·49/4 ·3 ·2 ·1 = 52!/48!4! =
(

52

4

)

= 270725.

(

n

k

)

=
n!

(n− k)!k!

Note that

(

n

k

)

=

(

n

n− k

)

These numbers are called the binomial coefficients, because they appear in the expansion

of binomials (expressions of the form (x+ y)n).

Consider (x+ y)2 = x2 + 2xy + y2.

The coefficients of this polynomial are {1, 2, 1}, i.e., the numbers
(

2

0

)

,
(

2

1

)

,
(

2

2

)

.

In general, (x+ y)n =
(

n

0

)

xn +
(

n

1

)

xn−1y +
(

n

2

)

xn−2y2 + . . .+
(

n

n−1

)

xyn−1 +
(

n

n

)

yn.

This is because each term contains a total of n x’s and y’s, and the number of times the

term xkyn−k occurs in the expansion is given by the number of combinations of n x’s and

y’s with exactly k x’s.

Repeat Example: flip a fair coin 4 times.

What is the probability of getting exactly two heads?

The set of all possibilities has size |S| = 24 = 16 There are
(

4

2

)

= 4!/2!2! = 4·3/2 = 6 ways

of getting exactly two heads, E = {HHTT, HTHT, HTTH, THHT, THTH, TTHH},

so p(E) =
∑

a∈E
p(a) = |E|/|S| =6/16=3/8.

Example: Suppose we flip a fair coin 10 times.
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Binomial Coefficients

Natural example of the distinction between permutations and combinations:

Deal from a standard 52 card deck

If one card to each of four players, then the number of possibilities is 52 · 51 · 50 · 49 =

52!/48! = 6497400.

If instead four cards to a single player, then “the hand” doesn’t depend what order

they’re dealt, and the number of distinct possibilities is 52 ·51 ·50 ·49/4 ·3 ·2 ·1 = 52!/48!4! =
(

52

4

)

= 270725.

(

n

k

)

=
n!

(n− k)!k!
is the number of ways of choosing k objects from n, independent of order

Note that

(

n

k

)

=

(

n

n− k

)

(same count if we’re choosing the n− k to exclude)

These numbers are called binomial coefficients, because they appear as coefficients in the

expansion of binomials (expressions of the form (x+ y)n).

Consider (x+ y)2 = x2 + 2xy + y2.

The coefficients of this polynomial are {1, 2, 1}, i.e., the numbers
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(each term contains a total of n x’s and y’s, and the number of times the term xkyn−k occurs

in the expansion is given by the number of combinations of n x’s and y’s with exactly k x’s)

Repeat Example: flip a fair coin 4 times.

What is the probability of getting exactly two heads?

The set of all possibilities has size |S| = 24 = 16 There are
(

4

2

)

= 4!/2!2! = 4·3/2 = 6 ways

of getting exactly two heads, E = {HHTT, HTHT, HTTH, THHT, THTH, TTHH},

so p(E) =
∑

a∈E
p(a) = |E|/|S| =6/16=3/8.

Example: Suppose we flip a fair coin 10 times.

What is the probability of getting exactly 4 Hs?
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Repeat Example: flip a fair coin 4 times.

What is the probability of getting exactly two heads?

The set of all possibilities has size |S| = 24 = 16

There are
(

4
2

)

= 4!/2!2! = 4 · 3/2 = 6 ways of getting exactly two heads,

E = {HHTT, HTHT, HTTH, THHT, THTH, TTHH},

so p(E) =
∑

a∈E p(a) = |E|/|S| =6/16=3/8.

Example: Flip a fair coin 10 times.

What is the probability of getting exactly four Hs?

First compute

(

10

4

)

=
10 · 9 · 8

4 · 3 · 2
= 210

(counts all E = {TTTTTTHHHH, ..., HTTHTHTTTH, ...HHHHTTTTTT} places that

the four Hs can occur)

The total number of outcomes is 210 = 1024.

The probability of getting exactly four Hs is |E|/|S| = 210/1024 ≈ .205.

In General: Flip a fair coin n times.

How many possible outcomes?

Two choices for each flip of the coin, so 2n possible outcomes.

Each coin flip an independent event (notion soon to be made precise), so the probability

of any one of these is 1/2n.

Now suppose we want the probability of getting exactly k Hs.

How many of the 2n strings have exactly k Hs?
(

n

k

)

=
n!

k!(n− k)!
counts number of ways the k H ’s can be distributed among the n tosses.

So the probability of k H ’s in n flips is

(

n

k

)

/

2n.
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Slightly more generality:

If the coin is biased, with probability p for H (and hence probability 1− p for T), then

probability(k Hs in N flips) =

(

N

k

)

pk(1− p)N−k

where

pk is the probability of k Hs,

(1− p)N−k is the probability of N − k T s,

and

(

N

k

)

counts the number of ways that k Hs can be distributed among the N flips.

6

Slightly more generality:

If the coin is biased, with probability p for H (and hence probability 1− p for T), then

probability(k Hs in N flips) =

(

N

k

)

pk(1− p)N−k

where

pk is the probability of k Hs,

(1− p)N−k is the probability of N − k T s,

and

(

N

k

)

counts the number of ways that k Hs can be distributed among the N flips.

(or if p = 1/6, counts the number of ways that k 6s can be distributed among N rolls of a die)

6



Slightly more generality:

If the coin is biased, with probability p for H (and hence probability 1− p for T), then

probability(k Hs in N flips) =

(

N

k

)

pk(1− p)N−k

where

pk is the probability of k Hs,

(1− p)N−k is the probability of N − k T s,

and

(

N

k

)

counts the number of ways that k Hs can be distributed among the N flips.

(or if p = 1/6, counts the number of ways that k 6s can be distributed among N rolls of a die)

Independent Events: joint probability is equal to the product of independent probabilities

Suppose event A in sample space S1 has |A| = m equal probability elements, and |S1| = M ,

so p(A) = m/M

(examples: roll a fair die, flip a fair coin)

Suppose event B in sample space S2 has |B| = n equal probability elements, and |S1| = N ,

so p(B) = n/N

Then the combined sample space S1 × S2 has MN elements.

[Recall S1 × S2 is the set of all pairs (s1, s2) for s1 ∈ S1 and s1 ∈ S2]

Of those, there are mn elements with s1 ∈ A and s2 ∈ B, so

p(A ∩ B) =
mn

MN
=

m

M
·
n

N
= p(A) · p(B)

6



Example: Roll four dice, what is the probability of at least one six?

a) Consider the complement problem:

there is a 5/6 probability of not rolling a six for any given die, and since the four dice

are independent,

the probability of not rolling a six is (5/6)4 = 54/64 = 625/1296.

The probability of rolling at least one six is therefore 1− 625/1296 = 671/1296 ≈ .517

Example: Roll four dice, what is the probability of at least one six?

b) Alternatively, recall that the number of ways of choosing r objects from a collection

of N is
(

N
r

)

= N !/r!(N − r)! .

Any of the four dice can be the one that comes up six, and the other three don’t, so the

number of ways that

exactly one of the four dice is six is
(

4
1

)

· 53 = 4 · 53 = 500

exactly two sixes:
(

4
2

)

· 52 = (4 · 3/2) · 52 = 150

exactly three sixes:
(

4
3

)

· 5 = 4 · 5 = 20

exactly four sixes:
(

4
4

)

= 1

The total number of possibilities is 500 + 150 + 20 + 1 = 671, and hence the probability is

671/64 = 671/1296, as on previous slide.

Example: a) What is the probability that in a group of N people, at least two have the

same birthday?

(Simplifications: assume no leap years, and assume that all birthdays are equally likely.)

Again consider the complement problem, the probability that no two birthdays coincide.

Total number of possibilities with no coincidences is 365 · 364 · . . . · (366− n)

(i.e., n factors each successive one with one fewer choice of day).

Total number of possibilities for n choices of birthdays is 365n,
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Recall that events are sets. Two events are disjoint if their intersection is empty.

Example: In the example of flipping 2 coins, the events

A = ‘getting exactly one H ’

B = ‘getting exactly 2Hs’

are disjoint. But, A is not disjoint from the event

C = ‘getting exactly one T ’.

In fact, events A and C are the same in this case.

Principle of inclusion - exclusion:

|A ∪ B| = |A|+ |B|− |A ∩B|.

This gives

p(A ∪ B) + p(A ∩ B) = p(A) + p(B).

Therefore, for disjoint events we have:

p(A ∪ B) = p(A) + p(B).

Example: Say we flip a coin 10 times. What is the probability that the first flip is a T

or the last flip is a T ? The number of outcomes with the first flip T is 29. The number of

outcomes where the last flip is a T is 29. The number of strings with both properties is 28.

Hence, the number of strings with either property is 29 + 29 − 28 = 768, and the probability

of first or last T is 768/1024 = .75.
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