Info 2950, Lecture 18
 11 Apr 2017

Prob Set 6: out tonight (?)

Triadic Closure

Triadic Closure

Triadic Closure

The clustering coefficient of a node A is defined as the probability that two randomly selected friends of A are friends with each other.

In other words, it is the fraction of pairs of A's friends that are connected to each other by edge.
(ranges from 0 to 1)

For a node i of degree n, there are

The clustering coefficient of a node A is defined as the probability that two randomly selected friends of A are friends with each other.

In other words, it is the fraction of pairs of A's friends that are connected to each other by edge.
(ranges from 0 to 1)

For a node i of degree n, there are $\binom{n}{2}=n(n-1) / 2$
possible friend pairs, and hence $C_{i}=m /(n(n-1) / 2)$, where m is the number of those pairs themselves friends

Easley/Kleinberg Figure 3.2

Easley/Kleinberg Figure 3.2

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Watts Strogatz (1998)

D. Watts and S. Strogatz Collective dynamics of 'small-world' networks Nature 393, 440-442 (1998)
"rewire" with probability p

Random

$$
p=0 \longrightarrow p=1
$$

$C(p)=$ average clustering coefficient, $\quad L(p)=$ average path length

$C(p)=$ average clustering coefficient, $\quad L(p)=$ average path length

Poisson Distribution

Bernoulli process with N trials, each probability p of success:

$$
p(m)=\binom{N}{m} p^{m}(1-p)^{N-m} .
$$

Probability $p(m)$ of m successes, in limit N very large and p small, parametrized by just $\mu=N p$ ($\mu=$ mean number of successes).
For $N \gg m$, we have $\frac{N!}{(N-m)!}=N(N-1) \cdots(N-m+1) \approx N^{m}$,
so $\binom{N}{m} \equiv \frac{N!}{m!(N-m)!} \approx \frac{N^{m}}{m!}$, and
$p(m) \approx \frac{1}{m!} N^{m}\left(\frac{\mu}{N}\right)^{m}\left(1-\frac{\mu}{N}\right)^{N-m} \approx \frac{\mu^{m}}{m!} \lim _{N \rightarrow \infty}\left(1-\frac{\mu}{N}\right)^{N}=\mathrm{e}^{-\mu} \frac{\mu^{m}}{m!}$
(ignore $(1-\mu / N)^{-m}$ since by assumption $N \gg \mu m$).
N dependence drops out for $N \rightarrow \infty$, with average μ fixed ($p \rightarrow 0$).
The form $p(m)=\mathrm{e}^{-\mu \frac{\mu^{m}}{m!}}$ is known as a Poisson distribution
(properly normalized: $\sum_{m=0}^{\infty} p(m)=\mathrm{e}^{-\mu} \sum_{m=0}^{\infty} \frac{\mu^{m}}{m!}=\mathrm{e}^{-\mu} \cdot \mathrm{e}^{\mu}=1$).

Poisson Distribution for $\mu=10$

$$
p(m)=\mathrm{e}^{-10} \frac{10^{m}}{m!}
$$

Compare to power law $p(m) \propto 1 / m^{2.1}$

Power Law $p(m) \propto 1 / m^{2.1}$ and Poisson $p(m)=\mathrm{e}^{-10 \frac{10^{m}}{m!}}$

Power Law $p(m) \propto 1 / m^{2.1}$ and Poisson $p(m)=\mathrm{e}^{-10 \frac{10^{m}}{m!}}$

"Bowtie" structure of the web

A.Broder,R.Kumar,F.Maghoul,P.Raghavan,S.Rajagopalan,S. Stata, A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks, 33:309-320, 2000.

- Strongly connected component (SCC) in the center
- Lots of pages that get linked to, but don't link (OUT)
- Lots of pages that link to other pages, but don't get linked to (IN)
- Tendrils, tubes, islands
\# of in-links (in-degree) averages 8-15, not randomly distributed (Poissonian), instead a power law:
$\#$ pages with in-degree i is $\propto 1 / i^{\alpha}, \alpha \approx 2.1$

Power Laws in log-log space

$$
y=c x^{k}(k=1 / 2,1,2)
$$

$$
\log _{10} y=k * \log _{10} x+\log _{10} c
$$

Power Laws in log-log space

$$
y=c x^{-k}(k=1 / 2,1,2)
$$

$\log _{10} y=-k * \log _{10} x+\log _{10} c$

