Info 2950, Lecture 16

28 Mar 2017

Prob Set 5: due Fri night 31 Mar
Breadth first search (BFS) and Depth First Search (DFS)

Must have an ordering on the vertices of the graph.

In most examples here, the vertices have been labeled by \{1, 2, \ldots, n\} where \(n\) is the number of vertices.
Gives a natural ordering

These algorithms output a rooted spanning tree.
DFS algorithm

Initialize $T = (V, E)$:
$V = v_1$
$E = \{\}$

$v = v_1$

if there’s an edge (v,w) such that w is not already in V:
 add the edge to E
 $v = w$ (i.e., make w the new v), repeat
else:
 if $v == v_1$: done (have made it back up to root)
 else: $v = \text{parent of } v$ (make parent of v the new v), and repeat
if there's an edge \((v,w)\) such that \(w\) is not already in \(V\):
add the edge to \(E\)
\(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
if \(v == v_1\): done (have made it back up to root)
else: \(v =\) parent of \(v\) (make parent of \(v\) the new \(v\)), and repeat
DFS

if there’s an edge \((v,w)\) such that \(w\) is not already in \(V\):
add the edge to \(E\)
\(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
if \(v == v_1\) : done (have made it back up to root)
else: \(v = \) parent of \(v\) (make parent of \(v\) the new \(v\)), and repeat
if there’s an edge \((v,w)\) such that \(w\) is not already in \(V\):
 add the edge to \(E\)
 \(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
 if \(v = v_1\) : done (have made it back up to root)
 else: \(v = \) parent of \(v\) (make parent of \(v\) the new \(v\)), and repeat
if there’s an edge \((v, w)\) such that \(w\) is not already in \(V\):
 add the edge to \(E\)
 \(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
 if \(v \equiv v_1\): done (have made it back up to root)
 else: \(v = \text{parent of } v\) (make parent of \(v\) the new \(v\)), and repeat
if there’s an edge \((v, w)\) such that \(w\) is not already in \(V\):
 add the edge to \(E\)
 \(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
 if \(v == v_1\) : done (have made it back up to root)
 else: \(v = \) parent of \(v\) (make parent of \(v\) the new \(v\)), and repeat
DFS

if there’s an edge \((v,w)\) such that \(w\) is not already in \(V\):
 add the edge to \(E\)
 \(v = w\) (i.e., make \(w\) the new \(v\)), repeat
else:
 if \(v == v_1\) : done (have made it back up to root)
 else: \(v = \) parent of \(v\) (make parent of \(v\) the new \(v\)), and repeat
BFS algorithm

Suppose original G has n vertices

Initialize $T = (V, E)$:
$V = \{v_1\}$
$E = \{\}$

$v = v_1$

for all neighbors w of v not in V:
 add w to V
 add edges (v, w) to E
if $|E| == n - 1$: stop
else: $v = $ next element of V, and repeat
for all neighbors w of v not in V:
 add w to V
 add edges (v,w) to E
if $|E| = n - 1$: stop
else: $v =$ next element of V, and repeat
for all neighbors w of v not in V:
 add w to V
 add edges (v,w) to E
if $|E| = n - 1$: stop
else: $v = $ next element of V, and repeat
for all neighbors \(w \) of \(v \) not in \(V \):
 add \(w \) to \(V \)
 add edges \((v, w)\) to \(E \)
if \(|E| = n - 1\): stop
else: \(v = \) next element of \(V \), and repeat
for all neighbors w of v not in V:
 add w to V
 add edges (v, w) to E
if |E| = n - 1: stop
else: v = next element of V, and repeat
for all neighbors w of v not in V:
- add w to V
- add edges (v,w) to E
if $|E| = n - 1$: stop
else: $v = $ next element of V, and repeat
for all neighbors w of v not in V:
 add w to V
 add edges (v,w) to E
if $|E| = n - 1$: stop
else: $v =$ next element of V, and repeat

BFS
Suppose we have a directed graph whose vertices represent tasks, and edges represent dependence:

An edge \((i, j)\) means that task \(j\) cannot be accomplished until task \(i\) is complete.

Given such a graph, determine an order to complete all tasks: called a total order for a directed graph.

Is such an order possible?

If graph contains a directed cycle, no such order:

A directed graph with no directed cycle is called an acyclic graph, or DAG.
(not DAG) DAG
A directed graph has a total order if and only if it is acyclic.

Suppose we have an acyclic graph.

Algorithm for finding a total order called Topological Sort:

Let $i = 1$ and G be an acyclic graph on n vertices.

\[\text{Find a vertex } v_i \text{ such that } \text{outdeg}(v_i) = 0. \]

\[(\text{Nothing depends on it ... do it last.)} \]

If $i = n$ (last vertex): then stop

\[v_n < v_{n-1} < \ldots v_2 < v_1 \text{ is a total order.} \]

else: remove v_i from G

\[i = i + 1, \text{ repeat} \]
Example: one total ordering found by topological search is:
Example: one total ordering found by topological search is:

5
Example: one total ordering found by topological search is:
Example: one total ordering found by topological search is:

\[2 < 5 \]
Example: one total ordering found by topological search is:

\[2 < 5 \]
Example: one total ordering found by topological search is:

$$1 < 2 < 5$$
Example: one total ordering found by topological search is:

\[1 < 2 < 5\]
Example: one total ordering found by topological search is:

4 < 1 < 2 < 5
Example: one total ordering found by topological search is:

4 < 1 < 2 < 5
Example: one total ordering found by topological search is:

\[3 < 6 < 4 < 1 < 2 < 5 \]
Example: one total ordering found by topological search is:

\[3 < 6 < 4 < 1 < 2 < 5 \]
FIGURE 1 Weighted Graphs Modeling an Airline System.

FIGURE 2 Weighted Graphs Modeling a Computer Network.

(from Rosen, 10.6)
A **weighted graph** is a graph such that each edge e has an associated real number $w(e)$ called the **weight** of the edge.

Given a graph with weights on each of its edges, we want to determine a spanning tree with the smallest total weight. This is called a **minimal spanning tree**.

The total weight of a tree (or any graph) is the sum of the weights of its edges.

Here we consider a greedy algorithm, **Kruskal’s Algorithm**, to find the minimal spanning tree.
Kruskal’s Algorithm
Find minimal spanning tree

Initialize \(T = (V, E) \):
\(V = \) {vertices of \(G \)}
\(E = \) {}

1. Take an edge \(e \in G \) such that \(w(e) \) is minimal.
 If \(E \cup e \) is a tree, add \(e \) to \(E \).
2. Remove \(e \) from \(G \).
3. If \(|T| = n - 1 \) stop
 else: go to step 1
Kruskal’s Algorithm
Find minimal spanning tree

Initialize $T = (V, E)$:
$V = \{\text{vertices of } G\}$
$E = \{\}$

1. Take an edge $e \in G$ such that $w(e)$ is minimal
 If $E \cup e$ is a tree, add e to E
2. Remove e from G.
3. If $|T| = n - 1$ stop
 else: go to step 1
Kruskal’s Algorithm
Find minimal spanning tree

Initialize $T = (V, E)$:
$V = \{\text{vertices of } G\}$
$E = \{\}$

1. Take an edge $e \in G$
 such that $w(e)$ is minimal
 If $E \cup e$ is a tree, add e to E
2. Remove e from G.
3. If $|T| = n - 1$ stop
 else: go to step 1
Kruskal’s Algorithm
Find minimal spanning tree

Initialize \(T = (V, E) \):
\(V = \{ \text{vertices of G} \} \)
\(E = \{ \} \)

1. Take an edge \(e \in G \) such that \(w(e) \) is minimal
 If \(E \cup e \) is a tree, add \(e \) to \(E \)
2. Remove \(e \) from \(G \).
3. If \(|T| = n - 1 \) stop
 else: go to step 1
Kruskal’s Algorithm
Find minimal spanning tree

Initialize $T = (V, E)$:
$V = \{\text{vertices of } G\}$
$E = \{\}$

1. Take an edge $e \in G$
 such that $w(e)$ is minimal
 If $E \cup e$ is a tree, add e to E
2. Remove e from G.
3. If $|T| = n - 1$ stop
 else: go to step 1
Kruskal’s Algorithm

Find minimal spanning tree

Initialize $T = (V, E)$:
$V = \{\text{vertices of } G\}$
$E = \{\}$

1. Take an edge $e \in G$ such that $w(e)$ is minimal
 If $E \cup e$ is a tree, add e to E
2. Remove e from G.
3. If $|T| = n - 1$ stop
 else: go to step 1