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Breadth first search (BFS) and Depth First Search (DFS)

Must have an ordering on the vertices of the graph. 

In most examples here, the vertices have been labeled by {1, 2, . . . , n}
where n is the number of vertices.
Gives a natural ordering

These algorithms output a rooted spanning tree.



DFS algorithm
Initialize T = (V, E):
V= v1
E = {}

v = v1

______________________________________________________________________________
if there’s an edge (v,w) such that w is not already in V:
     add the edge to E
     v = w  (i.e., make w the new v), repeat
else:
     if v == v1 :  done (have made it back up to root)
     else:  v = parent of v  (make parent of v the new v), and repeat
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BFS algorithm
Suppose original G has n vertices

Initialize T = (V, E):
V = {v1}
E = {}

v = v1

______________________________________________
for all neighbors w of v not in V:
    add w to V
    add edges (v,w) to E
if |E| == n - 1:  stop
else: v = next element of V, and repeat
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Suppose we have a directed graph whose vertices represent tasks,
and edges represent dependence:

An edge (i, j) means that task j cannot be accomplished until task i is complete

Given such a graph, determine an order to complete all tasks:
called a total order for a directed graph.

Is such an order is possible?

If graph contains a directed cycle, no such order: 

A directed graph with no directed cycle is called an acyclic graph, or DAG

1 3

2 (not DAG)



DAG(not DAG)



A directed graph has a total order if and only if it is acyclic.

Suppose we have an acyclic graph.

Algorithm for finding a total order called Topological Sort:

Let i = 1 and G be an acyclic graph on n vertices.

___________________________________________
Find a vertex vi such that outdeg(vi) = 0.
                            (Nothing depends on it … do it last.)
If i = n (last vertex): then stop
       vn < vn−1 < . . . v2 < v1 is a total order.
else:  remove vi from G
          i = i + 1,  repeat



Example: one total ordering found by topological search is:
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(from Rosen,
10.6)



A weighted graph is a graph such that each edge e
has an associated real number w(e) called the weight of the edge.

Given a graph with weights on each of its edges,
we want to determine a spanning tree with the smallest total weight

This is called a minimal spanning tree.

The total weight of a tree (or any graph) is the sum of the weights of its edges.

Here we consider a greedy algorithm, Kruskal’s Algorithm,
to find the minimal spanning tree.



Kruskal’s Algorithm
Find minimal spanning tree

Initialize T = (V, E):
V = {vertices of G}
E = {}

1. Take an edge e ∈ G
           such that w(e) is minimal
    If E ∪ e is a tree, add e to E
2. Remove e from G.
3. If |T| == n − 1 stop
    else: go to step 1
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