Info 2950, Lecture 16 28 Mar 2017

Prob Set 5: due Fri night 31 Mar

Breadth first search (BFS) and Depth First Search (DFS)

Must have an ordering on the vertices of the graph.

In most examples here, the vertices have been labeled by $\{1, 2, \ldots, n\}$ where n is the number of vertices. Gives a natural ordering

These algorithms output a rooted spanning tree.

DFS algorithm

Initialize T = (V, E): $V = V_1$ $E = \{\}$

 $V = V_1$

if there's an edge (v,w) such that w is not already in V: add the edge to E v = w (i.e., make w the new v), repeat else: if $v == v_1$: done (have made it back up to root)

else: v = parent of v (make parent of v the new v), and repeat

BFS algorithm

Suppose original G has n vertices

Initialize T = (V, E): $V = \{V_1\}$ $\mathsf{E} = \{\}$

 $\mathbf{V} = \mathbf{V}_1$

for all neighbors w of v not in V: add w to V add edges (v,w) to E if |E| == n - 1: stop else: v = next element of V, and repeat

Suppose we have a directed graph whose vertices represent tasks, and edges represent dependence:

Given such a graph, determine an order to complete all tasks: called a total order for a directed graph.

Is such an order is possible?

If graph contains a directed cycle, no such order:

- An edge (i, j) means that task j cannot be accomplished until task i is complete

(not DAG)

DAG

Suppose we have an acyclic graph.

Let i = 1 and G be an acyclic graph on n vertices.

Find a vertex v_i such that $outdeg(v_i) = 0$.

If i = n (last vertex): then stop

 $v_n < v_{n-1} < \ldots v_2 < v_1$ is a total order.

else: remove v_i from G i = i + 1, repeat

- A directed graph has a total order if and only if it is acyclic.
- Algorithm for finding a total order called Topological Sort:

- (Nothing depends on it ... do it last.)

5

5

2 < 5

2 < 5

1 < 2 < 5

1 < 2 < 5

4 < 1 < 2 < 5

4 < 1 < 2 < 5

3 < 6 < 4 < 1 < 2 < 5

3 < 6 < 4 < 1 < 2 < 5

Weighted Graphs Modeling an Airline System. FIGURE 1

A weighted graph is a graph such that each edge e has an associated real number w(e) called the weight of the edge.

Given a graph with weights on each of its edges, we want to determine a spanning tree with the smallest total weight

This is called a minimal spanning tree.

The total weight of a tree (or any graph) is the sum of the weights of its edges.

Here we consider a greedy algorithm, Kruskal's Algorithm, to find the minimal spanning tree.

Initialize T = (V, E):
V = {vertices of G}
E = {}

Initialize T = (V, E):
V = {vertices of G}
E = {}

Initialize T = (V, E):
V = {vertices of G}
E = {}

Initialize T = (V, E):
V = {vertices of G}
E = {}

Initialize T = (V, E):
V = {vertices of G}
E = {}

Initialize T = (V, E):
V = {vertices of G}
E = {}

