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Breadth first search (BFS) and Depth First Search (DFS)

Must have an ordering on the vertices of the graph.

In most examples here, the vertices have been labeled by {1, 2, ..., n}
where n Is the number of vertices.

Gives a natural ordering

These algorithms output a rooted spanning tree.



DFS algorithm

Initialize T = (V, E):
V=V

If there’s an edge (v,w) such that w is not already in V:
add the edge to E
v=w (l.e., make w the new v), repeat
else:
if v==vi: done (have made it back up to root)
else: v = parent of v (make parent of v the new v), and repeat
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BFS algorithm

Suppose original G has n vertices

Initialize T = (V, E):

V ={vi}
E={
V = V1

for all neighbors w of v not in V.
add wtoV
add edges (v,w) to E
If IEl ==n-1: stop
else: v = next element of V, and repeat
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Suppose we have a directed graph whose vertices represent tasks,
and edges represent dependence:

An edge (i, |) means that task | cannot be accomplished until task i is complete

Given such a graph, determine an order to complete all tasks:
called a total order for a directed graph. 5

(not DAG)
Is such an order is possible?
If graph contains a directed cycle, no such order: 1 3

A directed graph with no directed cycle is called an acyclic graph, or DAG






A directed graph has a total order if and only if it is acyclic.
Suppose we have an acyclic graph.
Algorithm for finding a total order called Topological Sort:

Leti =1 and G be an acyclic graph on n vertices.

Find a vertex vi such that outdeg(vi) = 0.
(Nothing depends on it ... do it last.)
If | = n (last vertex): then stop
Vhn<Vn-1<...V2<VqIs a total order.
else: remove v; from G
=1+ 1, repeat



Example: one total ordering found by topological search is:
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Example: one total ordering found by topological search is:
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Example: one total ordering found by topological search is:

3<b<4< 1<?2<5
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A weighted graph is a graph such that each edge e
has an associated real number w(e) called the weight of the edge.

Given a graph with weights on each of its edges,
we want to determine a spanning tree with the smallest total weight

This is called a minimal spanning tree.
The total weight of a tree (or any graph) is the sum of the weights of its edges.

Here we consider a greedy algorithm, Kruskal’s Algorithm,
to find the minimal spanning tree.



Kruskal’'s Algorithm

Find minimal spanning tree

Initialize T = (V, E):
V ={vertices of G}
E={}

1. Take an edge e € G

such that w(e) is minimal
fEuveisatree,addeto E
2. Remove e from G.
3. lfITI==n -1 stop
else: go to step 1
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