As discussed in class, the Pearson correlation coefficient misses non-linear relationships and is also sensitive to outliers - the Spearman correlation can sometimes find correlations that Pearson misses. It is defined as the Pearson correlation of the rank order of the data. That means it also varies from -1 (perfectly anti-correlated) to +1 (perfectly correlated), with 0 meaning uncorrelated.

If the data has $x=[.6, .4, .2, .1, .5]$ then the ranks are $r=[5,3,2,1,4]$. For data $y=[403,54,7,2,148]$, the ranks $s=[5,3,2,1,4]$ are the same ${ }^{\dagger}$, so the Spearman correlation is 1 , whereas the Pearson is less than one. Both functions are available in scipy.stats (as pearsonr() and spearmanr()).

Defined as the Pearson correlation for the ranks, the Spearman correlation is written

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}[r, s]}{\sigma[r] \sigma[s]}, \tag{1}
\end{equation*}
$$

where $\operatorname{Cov}[r, s]=E[(r-E[r])(s-E[s])]$ (generalizing the $\operatorname{Var}[x]=E\left[(x-E[x])^{2}\right]$, with $\operatorname{Cov}[x, x]=\operatorname{Var}[x])$. The formula for the Spearman correlation coefficient is given at http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient in terms of the difference $d_{i}=r_{i}-s_{i}$ between ranks, in this easily calculable form:

$$
\begin{equation*}
\rho=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)} . \tag{2}
\end{equation*}
$$

It is straightforward to verify that (1) reduces to (2):
First note that the ranks r_{i} and s_{i} for n data points always run through the integers from 1 to n, in some orders. Thus

$$
\begin{aligned}
E[s]=E[r] & =\frac{1}{n} \sum_{i} i=\frac{1}{n} \frac{n(n+1)}{2}=\frac{1}{2} \frac{(n+1)}{2}, \\
E\left[s^{2}\right]=E\left[r^{2}\right] & =\frac{1}{n} \sum_{i} i^{2}=\frac{1}{n} \frac{1}{6} n(n+1)(2 n+1)=\frac{1}{6}(n+1)(2 n+1),
\end{aligned}
$$

and $\quad \operatorname{Var}[s]=\operatorname{Var}[r]=E\left[r^{2}\right]-(E[r])^{2}=\frac{1}{6}(n+1)(2 n+1)-\frac{1}{4}(n+1)^{2}=\frac{1}{12}\left(n^{2}-1\right)$.
Next write the covariance in the form $\operatorname{Cov}[r, s]=E[r s]-E[r] E[s]$ (generalizing $\operatorname{Var}[x]=$ $E\left[x^{2}\right]-(E[x])^{2}$, and derived in the same way). Then use $E\left[(r-s)^{2}\right]=E\left[r^{2}\right]-2 E[r s]+E\left[s^{2}\right]$ to write $E[r s]=E\left[r^{2}\right]-\frac{1}{2} E\left[(r-s)^{2}\right]$, together with $\sigma[r]=\sigma[s]=\sqrt{\operatorname{Var}[r]}$, to give:

$$
\rho=\frac{\operatorname{Cov}[r, s]}{\sigma[r] \sigma[s]}=\frac{E[r s]-(E[r])^{2}}{\operatorname{Var}[r]}=\frac{\operatorname{Var}[r]-\frac{1}{2} E\left[(r-s)^{2}\right]}{\operatorname{Var}[r]}=1-\frac{\frac{1}{2} \frac{1}{n} \sum_{i=1}^{n}\left(r_{i}-s_{i}\right)^{2}}{\frac{1}{12}\left(n^{2}-1\right)}=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)},
$$

in agreement with (2).
\dagger Actually the second was generated from the first by taking the integer part of $\exp (10 x)$

