Why your friends ...

Definitions:
Consider sampling N values X_{i} of some variable X.
Then the expectation value is the average: $\mathrm{E}[X]=\frac{1}{N} \sum_{i} X_{i}$.
The variance is defined as $\operatorname{Var}[X]=\frac{1}{N} \sum_{i}\left(X_{i}-\mathrm{E}[X]\right)^{2}$, and satisfies $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$.
The standard deviation is the square root: $\operatorname{std}[X]=\sqrt{\operatorname{Var}[X]}$
Feld 1991:
Node i has degree d_{i}, i.e., d_{i} friends.

$$
\text { total_fof }=\sum_{\text {nodes } i} \sum_{\text {friends fof i }} d_{f}=\sum_{i} d_{i}^{2}
$$

(since each d_{f} occurs d_{f} times in the first double sum). Average fof per person $=\frac{1}{N} \sum_{i} d_{i}^{2}=\mathrm{E}\left[d^{2}\right]=\operatorname{Var}[d]+(\mathrm{E}[d])^{2}$ The average fof per friend $=\mathrm{E}\left[d^{2}\right] / \mathrm{E}[d]=\mathrm{E}[d]+\operatorname{Var}[d] / \mathrm{E}[d]$ The variance is positive, so the above is always greater than $E[d]$. Used: detecting flu, disease innoculation, administrative propaganda

