
Rough incomplete sketch of history of the WorldWideWeb

(Note first that WorldWideWeb 6= Internet, WWW is rather a protocol and set of resources

that is layered on top of the pre-existing internet.)

1945 Memex, V.Bush. one of many hypertext forerunners

1989 Berners-Lee, CERN, global hyperspace idea

1990 WorldWideweb.app on NeXT computer

1991 CERN server/client released in summer of ’91, http protocol and html coded

pages, also linemode browser (lynx)

1991–1994 growth, mainly in Europe. First U.S. website at Stanford Linear Accelera-

tor Center (1992). Spring ’93 Mosaic client (NCSA), added in-line graphics, also produced

its own version of httpd server software. CERN still maintained a list of “all webservers

in world”.

Early ’94: crawlers like “jumpstation”, and “WWW Worm” (McBryan 1994, 110,000

pages and 1500 queries per day in Mar/Apr ’94).

Nov 97: 2M-100M docs (expected 1B by 2000). Altavista handled 20M queries/day.

2000: expected 100’s of million/day .

(Actual 2004 Google was 4.2B pages. In 2005 Yahoo and Google each claimed to have

indexed upwards of 15B pages, then stopped posting their claimed counts.)

If 10 times the number of pages meant every query brings up 10 times as many results

to sort through, then search engine methodology doesn’t scale with size of web. Perhaps it

only worked because the amount of material on the web was still so small? But it turned

out there’s a set of heuristics for ordering the search results, so that the desired page is

frequently ranked in the top ten, and it doesn’t matter that there are many thousands of

other pages retrieved.

The Page Rank methodology stems from a long history of citation analysis, where a

“link” is as well some signal of recommendation (or popularity). It can computed as a

property of the entire graph, independent of any particular query, and hence is efficient for

serving a large volume of queries. The Markov process it embodies was also not new, but

was applied in a particularly powerful way, again demonstrating the unexpected power of

simple algorithms and ample computing power applied to massive datasets.

1 INFO2950 25 Nov 14

Brin/Page used “Page Rank” to measure the importance of a page, and help to order

the search results. The page rank vj of page j is determined self-consistently by the

equation

vj =
p

n
+ (1− p)

∑
i|i→j

vi
di

, (1)

where p is a number between 0 and 1 (originally taken to be .15), the sum on i is over

pages i pointing to j, and di is the outgoing degree of page i. Intuitively, we see that

pages with high “Page rank” vi that have low di, i.e., don’t point to too many other pages,

convey the most page rank to page j. Formally, the above describes the steady state of

a diffusion process, where vi can be interpreted as the probability that one lands at page

j by navigating according to the following algorithm: with probability 1 − p one goes at

random to any of the pages j pointed to by page i, and with probability p one instead

jumps at random to any page anywhere on the web (so one doesn’t get caught in a single

subcomponent).

Let’s set this up as a Markov chain, modeling the behavior of a random browser

who with probability p jumps at random to any other page, and with probability 1 − p
jumps from the currently viewed page to any of the pages to which it points, with equal

probability. Recall the incidence matrix A is defined by Aij = 1 if i points to j and

otherwise Aij = 0; A matrix T giving the transition probability from page i to page j can

be constructed in terms of the incidence matrix A as

Tij =
p

n
Nij + (1− p) 1

di
Aij (2)

where n = total # of pages, di is the outdegree of node i, and Nij = 1(∀i, j) is a matrix

of all ones (i.e., N =

1 1 . . . 1
1 1 . . . 1
. . .
1 1 . . . 1

). The stationary state condition

vi =
∑
j

vjTji (3)

is then seen to be equivalent to eqn. (1), assuming that vi is normalized as a probability,

so that
∑

i viNij =
∑

i vi = 1. (This equation can also be interpreted as the eigenvalue

equation ~v T = ~v, for which the aforementioned Perron-Frobenius theorem guarantees that

matrix T has a unique principal eigenvector, corresponding to largest eigenvalue, and its

components are all positive. Since
∑

j Aij/di = 1, we find
∑

j Tij = p+ (1− p) = 1 and T

is normalized such that its principal eigenvalue is 1. Thus eqn. (3) always has a solution.)

To calculate the rank of all the pages, the crawler first visits as many pages as possible,

and calculates the link structure of the web graph. Solving eq. (3) for billions of variables

2 INFO2950 25 Nov 14

vi (equivalently calculating eigenvectors of enormous matrices) can be painful, but in this

case (the principal eigenvector) there’s a simple method which simply involves starting the

random walker in any state and iterating eq. (1).

[In the language of linear algebra, recall that any N×N matrix M has N eigenvectors

~v(i) that satisfy

M~v(i) = λi~v(i) . (4)

These eigenvectors form a basis set, meaning that any other N -dimensional vector ~w can

be expressed as a linear combination ~w =
∑N

i=1 αi~v(i), with αi constants.

Now take the largest eigenvalue to be λ1, and consider applying M a total of n times

Mn ~w =
N∑
i=1

αiλ
n
i ~v(i)

where we have used eqn (4). As n gets large we see that the term with the largest eigenvalue

will dominate,

1

λn1
Mn ~w = α1~v(1) +

N∑
i=2

αi

(λi
λ1

)n
~v(i) ≈ α1~v(1) ,

since λi/λ1 < 1 ∀i 6= 1. That means we can determine the principal eigenvector simply by

applying a matrix M sufficiently many times to any vector which has non-zero dot product

with the principal eigenvector (i.e., non-vanishing α1 in the above) — this procedure

effectively projects to the eigenvector of interest.

Some simple 2 × 2 examples show how this works. The matrix M = 1
3

(
2 1
1 2

)
has

right eigenvectors ~v1 =
(
1
1

)
and ~v2 =

(
1
−1
)
, with eigenvalues λ1 = 1 and λ2 = 1/3. Consider

acting on ~w = ~v1 + ~v2 =
(
2
0

)
with M many times:

M ~w =
1

3

(
4
2

)
, M2 ~w =

1

32

(
10
8

)
, M3 ~w =

1

33

(
28
26

)
, . . .

Mn ~w =
1

3n

(
3n + 1
3n − 1

)
= ~v1 +

1

3n
~v2 .

We see that as n grows larger, multiplying by Mn acts to project out the unique principle

eigenvector ~v1 corresponding to the largest eigenvalue, and the components of ~v1 =
(
1
1

)
are

all non-negative. This will not be the case for matrices that are either not irreducible or

have negative entries. For example, M =

(
1 0
0 1

)
is not irreducible and has two eigenvec-

tors
(
1
0

)
and

(
0
1

)
both corresponding to eigenvalue λ = 1. And the matrix M =

(
2 −1
−3 0

)
has principle eigenvector ~v1 =

(
1
−1
)

with λ = 3, but ~v1 has negative components. (The

other eigenvector v2 =
(
1
3

)
has eigenvalue λ = −1.)]

3 INFO2950 25 Nov 14

Now consider the case of n = 4 web pages linked as in the figure below (ignoring the

numbers next to the web pages for the time being):

1

3

4

2

1/4

.05 + .8*(1/4) = .25

.05 + .8*.55 = .49

.05 + .8*.31 = .30

.05 + .8*.41 = .38

.05 + .8*.41 = .38

.05 + .8*.38 = .35

.05 + .8*.40 = .37

.05 + .8*.39 = .36

.05 + .8*.39 = .36

1/4

.05 + .8*(1/4)/2 = .15

.05 + .8*.25/2 = .15

.05 + .8*.49/2 = .25

.05 + .8*.30/2 = .17

.05 + .8*.38/2 = .20

.05 + .8*.38/2 = .20

.05 + .8*.35/2 = .19

.05 + .8*.37/2 = .20

.05 + .8*.36/2 = .20

1/4

.05 + .8*((1/4)/2 + 1/4 + 1/4) = .55

.05 + .8*(.25/2 + .15 + .05) = .31

.05 + .8*(.49/2 + .15 + .05) = .41

.05 + .8*(.30/2 + .25 + .05) = .41

.05 + .8*(.38/2 + .17 + .05) = .38

.05 + .8*(.38/2 + .20 + .05) = .40

.05 + .8*(.35/2 + .20 + .05) = .39

.05 + .8*(.37/2 + .19 + .05) = .39

.05 + .8*(.36/2 + .20 + .05) = .39

1/4

.05

.05

.05

.05

.05

.05

.05

.05

.05

This graph is small and simple enough to work with the transition matrix directly. First we

write the adjacency matrix Aij for this graph (where Aij = 1 iff page i points to page j),

Aij =

0 1 1 0
0 0 1 0
1 0 0 0
0 0 1 0

. Since the graph has a single connected component, for additional

simplicity we’ll just take p = 0, so from any page there’s only a probability of jumping to

one of the pages to which it points. Then the matrix Tij is equal to Aij/di (where di is

the outgoing degree of page i), and satisfies Tij = Aij/di =

0 1/2 1/2 0
0 0 1 0
1 0 0 0
0 0 1 0

.

The exact Page rank for the four pages in the figure for p = 0 can be guessed by staring

long enough at them, or equivalently by directly calculating the principal eigenvector

~v = (v1, v2, v3, v4) of the matrix, with components normalized as probabilities,
∑4

i=1 vi = 1.

The components of the stationary equation ~v T = ~v [equivalently the eigenvalue equation

4 INFO2950 25 Nov 14

~v T = λ~v with λ = 1] are
v1
v2
v3
v4

 ·

0 1/2 1/2 0
0 0 1 0
1 0 0 0
0 0 1 0

 =

v3
v1/2

v1/2 + v2 + v4
0

 =

v1
v2
v3
v4

implying the four equations

v3 = v1 v1/2 = v2 v1/2 + v2 + v4 = v3 0 = v4 .

The stationary solution satisfies v3 = v1 = 2v2 and v4 = 0, and normalized as a probability

is ~v = (2/5, 1/5, 2/5, 0). [The other three eigenvalues are λ = 0, (−1 ± i)/2, but only the

largest one above is relevant here.] We see that page 4 has zero probability for p = 0, since

there’s no path to it. Pages 1 and 3 have the same steady state probability, since page 3

conveys all of its page rank to page 1, which gives half directly back to page 3, and the

other half flows back to page 3 via page 2.

If we didn’t know the exact solution, but start from an equal probability distribution,

in which all four pages have v
(0)
i = 1/4, and iterate the equation v

(m)
j =

∑
i|i→j v

(m−1)
i /di

two times (i.e., for m = 1, 2) to approximate the solution for the Page rank, this is equiv-

alent to the effect of acting with the matrix T with p = 0 twice on ~v(0):

~v T 2 =

v1
v2
v3
v4

 ·

1/2 0 1/2 0
1 0 0 0
0 1/2 1/2 0
1 0 0 0

 =

v1/2 + v2 + v4

v3/2
v1/2 + v3/2

0

so ~v(0)T 2 = (5/8, 1/8, 1/4, 0) and we can see quickly the process iterates to approximate

the stationary state solution.

For non-zero p, we can go back to eqn. (1) and systematically calculate vi iteratively

as follows: begin with v
(0)
i = 1/n, the vector of equal probability of being at any site. [Its

dot product with the principal eigenvector is guaranteed to be non-vanishing, since the

principal eigenvector has only positive components.] We calculate iteratively

v
(1)
j =

p

n
+ (1− p)

∑
i|i→j

v
(0)
i

di

v
(2)
j =

p

n
+ (1− p)

∑
i|i→j

v
(1)
i

di

...

v
(n)
j =

p

n
+ (1− p)

∑
i|i→j

v
(n−1)
i

di
.

5 INFO2950 25 Nov 14

The figure shows the result of these iterations for p = .2 (and n = 4). In the first iteration,

the rank v1 = 1/4 is multiplied by .8 and then shared between pages 2 and 3, giving .1 to

each. Since that is the only page pointing to 2, we see that v
(1)
2 = .05 + .1 = .15 . For

the four components of ~v corresponding to pages (1, 2, 3, 4), we see that starting from the

vector (1/4, 1/4, 1/4, 1/4), after 9 iterations the probabilities converge to approximately

(.36, .20, .39, .05). Pages 1 and 3 are roughly the same, page 2 is roughly half as probable as

those two, and page 4 is reachable only by random jumps hence has the lowest probability.

Page 3 has slightly higher probability than page 1 due to to the additional incoming link

from 4.

[The above procedure is equivalent to acting n times on with the matrix T : ~v(n) =

~v(0)Tn, and hence converges according to the eigenvalue argument following eq. (4).]

(Incomplete notes here...) In addition to link analysis, other heuristics such as location

information are used to order the search results. If the query term is a single word, then

does it occur in the title of the page (metadata), or in the anchor text pointing to the page,

or in the URL itself, or if it’s in the text, is it in a large or small font, how many times does

it occur, how near to the beginning of the page does it occur? For multiword queries, how

close together do the query terms appear in the page (proximity increases relevance). (Note

that sometimes the anchor text describing a page giraffe gives

a more accurate description of page than the page itself, though can also lead to deliberate

collaborative manipulation, see “google bombing”.) In addition, google appears to give

higher ranking to news sites and wikipedia, and has found to give lower ranking to “link

farms” (the original algorithm was conceived before the era of “adversarial information

retrieval”). It is not known how large a role the original Page Rank plays in their ranking

methodology, but it remains an important example for building our intuition for Markov

chains and navigating directed graphs.

[For random walkers on undirected graphs, in which every edge provides a possible

two-way path, it is relatively easy to show that the steady state distribution (for no “tele-

portation”, p = 0) just coincides with the degree, so doesn’t provide an alternative ranking

function. The key to the utility of the Page Rank in the directed graph context was that

it not only important to have a high in-degree, it was also important that those links came

from pages that were themselves highly ranked.]

6 INFO2950 25 Nov 14

