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|3 Dec 2pm-5pm Olin Hall 218

Final Exam Topics

® Probabilility / Statistics

® Naive Bayes (classifier, inference, ...)
® Graphs, Networks

® Power Law Data

® Markov and other correlated data

Open book, computer, notebook, except email/IM

(Note: likely redo of Midterm problem 3; likely graph statistics; certain Markov)
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CS109 Data Science BT | HARVARD
School of Engineering

and Applied Sciences

Home Piazza Syllabus Schedule Homework Readings Projects Resources

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key
facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data management
to be able to access big data quickly and reliably; exploratory data analysis to generate hypotheses and
intuition; prediction based on statistical methods such as regression and classification; and communication of
results through visualization, stories, and interpretable summaries.

We will be using Python for all programming assignments and projects. All lectures will be posted here and
should be available 24 hours after meeting time.

The course is also listed as AC209, STAT121, and E-109.
Important Links
o Lecture videos

» Blackboard



1. Introduction: What Is Data Science?

2. Statistical Inference, Exploratory Data Analysis, and the Data
Science Process

3. Algorithms

4. Spam Filters, Naive Bayes, and Wrangling

9. Logistic Regression

6. Time Stamps and Financial Modeling

7. Extracting Meaning from Data

8. Recommendation Engines: Building a User-Facing Data Product at
Scale

9. Data Visualization and Fraud Detection

10. Social Networks and Data Journalism

11. Causality

12. Epidemiology

13. Lessons Learned from Data Competitions: Data Leakage and
Model Evaluation

14. Data Engineering: MapReduce, Pregel, and Hadoop

15. The Students Speak

16. Next-Generation Data Scientists, Hubris, and Ethics

17.Index

18.Colophon

(assumes “prerequisites of linear algebra, some probability
and statistics, and some experience coding in any language”)



Some notes from chapt | of “Doing Data Science”

Definitions lacking for most basic terminology:

® What is “Big Data™?

® What does “data science” mean?

® What is the relationship between Big Data and data science!
® |s data science the science of Big Data!

® |s data science only the stuff going on in companies like
Google and Facebook and tech companies?

® Why do many people refer to Big Data as crossing disciplines
(astronomy, finance, tech, etc.) and to data science as only
taking place in tech?

® Just how big is big!

(terms so ambiguous, perhaps meaningless)



Data Science Venn Diagram

(Drew Conway, Sep’10
Phd Pol.Sci. NYU ’13)



Data Scientist

Should be able to identify problems that can be solved with data
and be well-versed in the tools of modeling and code

Interdisciplinary teams of people should include a data-savvy,
quantitatively minded, coding-literate problem-solver

e.g. at Google: interdisciplinary teams of PhDs: statistician, social
scientist, engineer, physicist, and computer scientist.

bring mix of skills: coding, software engineering, statistics,
mathematics, machine learning, communication, visualization,
exploratory data analysis, data sense, and intuition, plus
expertise in social networks and the social space

[Courses in school need not be out of touch with reality ...]



Data Science has roots in many other disciplines:

® statistical inference
® algorithms

® statistical modeling
® machine learning

® experimental design
® optimization

® probability

® artificial intelligence
® data visualization

® exploratory data analysis



In colloquial terms

Data science is the civil engineering of data, requires a practical knowledge of
tools and materials, coupled with a theoretical understanding of what’s possible

® Statistics (traditional analysis familiar to statisticians)
® Data munging (parsing, scraping, and formatting data)

® Visualization (graphs, tools, etc.)



Why us!  Why Now!

Massive amounts of data collected about many aspects of our lives, plus
abundance of inexpensive computing power:

shopping, communicating, reading news, listening to music, searching for
information, expressing opinions --- all tracked online

“datafication” of offline behavior has started as well, mirroring the revolution in
collection of online data:

an enormous amount to learn about our individual and collective behavior

Not just Internet data, also finance, medical industry, pharmaceuticals,
bioinformatics, social welfare, government, education, retail, ....

A perceived growing influence of data in most sectors and most industries.

In some cases, the amount of data collected might be enough to be considered
“big”



Browse the Web: passively (unintentionally) datafied through
“cookies” and other tracking devices.

In a store, or on the street, datafied in other unintentional ways,
via sensors, cameras, or Google glasses.

NSA!?
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The Rise of Big Data

How It's Changing the Way We Think About the World

By Kenneth Neil Cukier and Viktor Mayer-Schoenberger FROM OUR MAY/JUNE 2013 ISSUE

Everyone knows that the Internet has changed how businesses operate,
g e governments function, and people live. But a new, less visible technological trend is
, TWEET just as transformative: “big data.” Big data starts with the fact that there is a lot more
information floating around these days than ever before, and it is being put to
f SHARE extraordinary new uses. Big data is distinct from the Internet, although the Web
% vl makes it much easier to collect and share data. Big data is about more than just
communication: the idea is that we can learn from a large body of information
=)
N

PRINT things that we could not comprehend when we used only smaller amounts.

el In the third century BC, the Library of Alexandria was believed to house the sum of
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http://www.foreignaffairs.com/articles/139104/kenneth-neil-cukier-and-viktor-mayer-schoenberger/the-rise-of-big-data

In industry context

The data itself, often in real time, becomes the building blocks of data
products.

® On the Internet: Amazon recommendation systems, friend
recommendations on Facebook, film and music recommendations, ...

® |n finance: credit ratings, trading algorithms, and models
® |n education: dynamic personalized learning and assessments (?)
® |n government: policies based on data

Technology makes this possible: infrastructure for large-scale data
processing, increased memory, and bandwidth, as well as a cultural
acceptance of technology in the fabric of our lives.

(Wasn’t true a decade ago.)



D] Patil and Jeff Hammerbacher — then at Linkedln and Facebook,
respectively — coined the term “data scientist” in 2008.

So that is when “data scientist” emerged as a job title.

(Wikipedia finally gained an entry on data science in 2012.)

[But the basic idea also goes back further. In 2001,William Cleveland wrote a
position paper about data science called “Data Science: An action plan
to expand the field of statistics.”]

Chief data scientist sets the data strategy of the company: everything from
the engineering and infrastructure for collecting data and logging, to privacy
concerns, to deciding what data will be user-facing, how data is going to be
used to make decisions, and how built back into the product.



Once the skill set required to thrive at Google — working with a team on
problems that required a hybrid skill set of stats and computer science
paired with personal characteristics including curiosity and persistence —
spread to other Silicon Valley tech companies, it required a new job title.

Once it became a pattern, it deserved a name.
And once it acquired a name, everyone and their mother wanted to be one.

It became even worse when Harvard Business Review declared data
scientist to be the “Sexiest Job of the 21st Century” (Oct 2012)



