

Consider the Markov chain depicted above. The only recurrent states are 1 and 5 , each trivially recurrent since it can only go to itself, and hence each forms its own recurrent class. (The stationary distributions have $p_{1}=1$ and $p_{5}=1$.)

Assume the Markov chain is in state 0 just before the first step, some questions:
(a) What is the probability of being in state 7 after n steps?

The unique path is a first step from 0 to 7 , then $n-1$ steps from 7 to itself, hence the probability is $.5(.4)^{n-1}$.
(b) What is the probability of reaching state 2 for the first time on the $k^{\text {th }}$ step?

The unique path for this is a first step from 0 to 7 , then $k-2$ steps from 7 to itself, then a step from 7 to 2 , hence the probability is $(.5)(.4)^{k-2}(.2)$
(c) What is the probability of never reaching state 1 ?

The only way to avoid state 1 is to follow the path from $0 \rightarrow 7 \rightarrow 4$. From state 7 it's twice as likely to go to state 4 as to state 2 , therefore $2 / 3$ of the time one will eventually end up in the direction of state 4 from state 7 . Since the probability of going from state 0 to state 7 is $1 / 2$, the overall probability of going from state 0 to state 4 , and never reaching state 1 , is $(1 / 2) \cdot(2 / 3)=1 / 3$.
[Another way to reproduce the above is to note that the overall probability to reach state 2 from state 7 is to sum over paths that return k times to state 7 (and use $\sum_{n=0}^{\infty} r^{n}=$ $1 /(1-r)): p_{72} \sum_{k=0}^{\infty} p_{77}^{k}=\frac{p_{72}}{1-p_{77}}=.2 / .6=1 / 3$. Similarly, the probability to eventually reach state 4 from state 7 is $p_{74} \sum_{k=0}^{\infty} p_{77}^{k}=\frac{p_{74}}{1-p_{77}}=.4 / .6=2 / 3$.]
(d) What is the expected number of steps until hitting state 5 ?

If the probability of leaving a state is p, then the probability of leaving after exactly n steps is $(1-p)^{n-1} p$. With $q=1-p$, the expectation value for the number of steps is

$$
E[n]=\sum_{n=0}^{\infty} n q^{n-1} p=p \frac{\partial}{\partial q} \sum_{n=0}^{\infty} q^{n}=p \frac{\partial}{\partial q} \frac{1}{1-q}=p \frac{1}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

Thus the expected numbers of steps to remain at states $7,4,6$ respectively are $1 / .6=5 / 3$, $1 / .8=5 / 4,1 / .3=10 / 3$, and the expected number of steps until hitting state 5 is thus $1+5 / 3+5 / 4+10 / 3=71 / 4$. [Note that the number of steps to leave a state is also called the "waiting time". It gives the expected number of times to flip a first H as $1 / p=1 /(1 / 2)=2$, and the expected number of times to roll a first 1 as $1 / p=1 /(1 / 6)=6$.]
(e) What is the probability of eventually hitting state 5 ?

This is the same probability of $1 / 3$ as (c), since any path that doesn't reach 1 eventually hits 5 . More specifically, the probability of going from state 0 to state 7 is $1 / 2$, the probability of eventually going from $7 \rightarrow 4$ is $2 / 3$, and from state 4 one eventually hits state 5 , so the overall probability of going from state 0 to state 5 is $p(0 \rightarrow 5)=(1 / 2) \cdot(2 / 3)=1 / 3$.
(f) What is the probability of being in state 4 after two steps, given that one is in state 5 after 8 steps?

This is given by the joint probability of being in state 4 after two steps and being in state 5 after 8 steps, divided by the overall probability of being in state 5 after 8 steps
$p($ state 4 after 2 steps \mid state 5 after 8 steps $)=\frac{p(\text { state } 4 \text { after } 2 \text { steps, state } 5 \text { after } 8 \text { steps })}{p(\text { state } 5 \text { after } 8 \text { steps })}$.
The probability of being in state 5 after 8 steps is
$p($ state 5 after 8 steps $)=p_{07} p_{74} p_{46} p_{65} \sum_{\substack{\{i, j, k, \ell \mid \\ i+j+k+\ell=4\}}} p_{77}^{i} p_{44}^{j} p_{66}^{k} p_{55}^{\ell}=.5 \cdot .4 \cdot .8 \cdot .3 \cdot(6.6759) \approx .32$,
where the sum is over all ways of returning to states $7,4,6$, and 5 for an overall total of four times. (Note in this case that $p_{55}=1$ so it doesn't matter when state 5 is reached or how many times one returns to it.) There are many ways to calculate the above sum. One way is to consider the product

$$
\begin{gathered}
\left(1+.6 x+.6^{2} x^{2}+.6^{3} x^{3}+.6^{4} x^{4}\right)\left(1+.2 x+.2^{2} x^{2}+.2^{3} x^{3}+.2^{4} x^{4}\right)\left(1+.7 x+.7^{2} x^{2}+.7^{3} x^{3}+.7^{4} x^{4}\right) \\
=1+1.5 x+1.57 x^{2}+1.419 x^{3}+1.1869 x^{4}+\ldots
\end{gathered}
$$

The powers of x count the sum of the number of steps back to states $7,4,6$, so returning to those states four or fewer times corresponds to $1+1.5+1.57+1.419+1.1869=6.6759$.

The joint probability of being in state 4 after two steps and being in state 5 after 8 steps is given by the same sum as above except with $i=0$, since there can be no transitions from state 7 back to itself if state 4 is reached in just 2 steps. This gives
$p($ state 4 after 2 steps, state 5 after 8 steps $)=$

$$
=p_{07} p_{74} p_{46} p_{65} \sum_{\{j, k, \ell \mid j+k+\ell=4\}} p_{44}^{j} p_{66}^{k} p_{55}^{\ell}=.5 \cdot .4 \cdot .8 \cdot .3 \cdot(3.3825) \approx .162
$$

In this case the sum was given by considering the product

$$
\begin{gathered}
\left(1+.2 x+.2^{2} x^{2}+.2^{3} x^{3}+.2^{4} x^{4}\right)\left(1+.7 x+.7^{2} x^{2}+.7^{3} x^{3}+.7^{4} x^{4}\right) \\
=1+.9 x+.67 x^{2}+.477 x^{3}+.3355 x^{4}+\ldots
\end{gathered}
$$

where the power of x counts the combined number of steps back to 4 and 6 , and for a total of four or fewer times corresponds to the sum $1+.9+.67+.477+.3355=3.3825$.

The result for the conditional probability is

$$
p(\text { state } 4 \text { after } 2 \text { steps } \mid \text { state } 5 \text { after } 8 \text { steps })=\frac{.5 \cdot .4 \cdot .8 \cdot .3 \cdot(3.3825)}{.5 \cdot .4 \cdot .8 \cdot .3 \cdot(6.6759)} \approx .506
$$

