INFO 2950
Intro to Data Science

Lecture 18: Big Data

Paul Ginsparg
Cornell University, Ithaca, NY

31 Oct 2013

1/17

More Statistical Methods

Peter Norvig, “How to Write a Spelling Corrector”
http://norvig.com/spell-correct.html

(See video:
http://www.youtube.com/watch?v=yvDCzhbjYWs
“The Unreasonable Effectiveness of Data”, given 23 Sep 2010.)

Additional related references:
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.36
A. Halevy, P. Norvig, F. Pereira,

The Unreasonable Effectiveness of Data,

Intelligent Systems Mar/Apr 2009 (copy at resources/unrealdata.pdf)

http://norvig.com/ngrams/chl4.pdf
P. Norvig, “Natural Language Corpus Data”

17

http://norvig.com/spell-correct.html
http://www.youtube.com/watch?v=yvDCzhbjYWs
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.36
http://norvig.com/ngrams/ch14.pdf

A little theory

Find the correction ¢ that maximizes the probability of ¢ given the
original word w:

argmax. P(c|w)
By Bayes' Theorem, equivalent to argmax. P(w|c)P(c)/P(w).
P(w) the same for every possible ¢, so ignore, and consider:

argmax,. P(w|c)P(c) .

Three parts :

@ P(c), the probability that a proposed correction ¢ stands on
its own. The language model: “how likely is ¢ to appear in an
English text?” (P("“the”) high, P("“zxzxzxzyyy") near zero)

@ P(w|c), the probability that w would be typed when author
meant ¢. The error model: “how likely is author to type w by
mistake instead of ¢?”

@ argmaxc, the control mechanism: choose ¢ that gives the best
combined probability score.

Example

w="“thew"
@ two candidate corrections c="the" and c="thaw".
@ which has higher P(c|w)?
@ “thaw” has only small change “a" to “¢"

@ “the” is a very common word, and perhaps the typist's finger

slipped off the “e” onto the “w".

To estimate P(c|w), have to consider both the probability of ¢ and
the probability of the change from ¢ to w

[Recall the joint probability “p of A given B", written P(A|B), for
events A and B, can be estimated by counting the number of
times that A and B both occur, and dividing by the total number
of times B occurs. Intuitively it is the fraction of times A occurs
out of the total times that B occurs.]

17

Complete Spelling Corrector

import re, collections
def words(text): return re.findall('[a-z]+', text.lower())

def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] +=1
return model

NWORDS = train(words(file('big.txt").read()))

alphabet = 'abcdefghijklmnopqrstuvwxyz’

def edits1(word):
s = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [a + b[1:] for a, b in s if b]
transposes = [a + b[1] + b[0] + b[2:] for a, b in s if len(b)>1]
replaces = [a + ¢ + b[1:] for a, b in s for c in alphabet if b]
inserts = [a + ¢ + b for a, b in s for c in alphabet]
return set(deletes + transposes + replaces + inserts)

def known_edits2(word):
return set(e2 for el in editsl(word) for €2 in editsl(el) if €2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):
candidates = known([word]) or known(edits1(word))
or known_edits2(word) or [word]
return max(candidates, key=NWORDS.get)

(For word of length n: n deletions, n-1 transpositions, 26n alterations,
and 26(n+1) insertions, for a total of 54n+25 at edit distance 1)

17

Improvements

language model P(c): need more words. add -ed to verb or -s to
noun, -ly for adverbs

bad probabilities: wrong word appears more frequently? (didn't
happen)

error model P(w|c): sometimes edit distance 2 is better

('adres’ to 'address’, not 'acres’)

or wrong word of many at edit distance 1

(in addition better error model permits adding more obscure words)
allow edit distance 37

best improvement:

look for context ('they where going’, 'There’s no there thear’)
= Use n-grams

(See Whitelaw et al. (2009), “Using the Web for Language Independent
Spellchecking and Autocorrection”: Precision, recall, F1, classification

accuracy)

17

Outline

@ More Statistical Learning

8/17

More Data *-;

.85 4

Test Accuracy
o

—&— Memory-Based

0.75 4 ——Winnow
—&— Perceptron

—m—Naive Bayes

0.70

0.1 1 10 100 1000
Millions of Words

Figure 1. Learning Curves for Confusion Set Disambiguation
http://acl.ldc.upenn.edu/P/P01/P01-1005.pdf
Scaling to Very Very Large Corpora for Natural Language Disambiguation

M. Banko and E. Brill (2001)

17

More Data for this Task

http://acl.Idc.upenn.edu/P/P01/P01-1005.pdf
Scaling to Veery Very Large Corpora for Natural Language Disambiguation
M. Banko and E. Brill (2001)

The amount of readily available on-line text has reached hundreds of
billions of words and continues to grow. Yet for most core natural
language tasks, algorithms continue to be optimized, tested and
compared after training on corpora consisting of only one million words or
less. In this paper, we evaluate the performance of different learning
methods on a prototypical natural language disambiguation task,
confusion set disambiguation, when trained on orders of magnitude more
labeled data than has previously been used. We are fortunate that for
this particular application, correctly labeled training data is free. Since
this will often not be the case, we examine methods for effectively
exploiting very large corpora when labeled data comes at a cost.

(Confusion set disambiguation is the problem of choosing the correct use
of a word, given a set of words with which it is commonly confused.
Example confusion sets include: {principle , principal}, {then , than},
{to, two , too} , and {weather,whether}.)

10/17

Segmentation

nowisthetimeforallgoodmentocometothe

Probability of a segmentation = P(first word) x P(rest)
Best segmentation = one with highest probability
P(word) = estimated by counting

Trained on 1.7B words English, 98% word accuracy

11/17

Spelling with Statistical Learning

©

Probability of a spelling correction, ¢ = P(c as a word) x
P(original is a typo for c)

©

Best correction = one with highest probability

(%]

P(c as a word) = estimated by counting

©

P(original is a typo for c) = proportional to number of
changes

Similarly for speech recognition, using language model p(c) and
acoustic model p(s|c)
(Russel & Norvig, “Artificial Intelligence”, section 24.7)

12 /17

And others

@ Statistical Machine Translation

@ Collect parallel texts (“Rosetta stones”), Align
(Brants, Popat, Xu, Och, Dean (2007), “Large Language
Models in Machine Translation™")

o fill in occluded portions of photos (Hayes and Efros, 2007)

13 /17

General “Big Data” Procedure

@ Define a probabilistic model
(i.e., use data to create language model, a probability
distribution over all strings in the language, learned from
corpus, and use model to determine probability of candidates)

@ Enumerate candidates
(e.g., segmentations, corrected spellings)

@ Choose the most probable candidate:
best = argmax. € candidates P(c)
Python: best = max(candidates, key=P)

Big Data = Simple Algorithm

14 /17

back to segmentation

e.g., unigram model for segmentation:

P(wy...wy) = P(wy)...P(w,)

To segment ‘wheninrome’, consider candidates such as “when in
rome”, and compute P(when) x P(in) x P(rome).
Gives best answer If product is larger than any other candidate’s.

'wheninthecourseofhumaneventsitbecomesnecessary’ has 35 trillion
segmentations, but can be read by finding probable words in
sequence (not by considering all 2"~! segmentations)

So use the largest product recursively: P(first) x P(remaining)

15 /17

Other Tasks

@ Secret codes

o Language ldentification

@ Spam Detection and Other Classification Tasks
@ Author Identification (Stylometry)

16 /17

Statistical Machine Translation

Google n-gram corpus created by researchers in the machine
translation group (released 2006).

Translating from foreign language (f) into English (&) similar to
correcting misspelled words.

The best English translation is modeled as:

best = argmax,P(e|f) = argmax,P(f|e)P(e)

where P(e) is the language model for English, which is estimated
by the word n-gram data, and P(f|e) is the translation model,
learned from a bilingual corpus (where pairs of documents are
marked as translations of each other). Although top systems make
use of many linguistic features, including parts of speech and
syntactic parses of the sentences, seems that majority of knowledge
necessary for translation resides in the n-gram data.

Further details in Brants,Popat,Xu,Och,Dean (2007)

“Large Language Models in Machine Translation”,
http://acl.ldc.upenn.edu/D/D07,/D07-1090.pdf

17 /17

	More Statistical Learning

