Leftover Comments:

Events $A_{1}, \ldots A_{n}$ are said to be mutually independent if

$$
p\left(\cap_{i \in S} A_{i}\right)=\prod p\left(A_{i}\right) \quad \text { for all subsets } S \subseteq\{1, \ldots, n\}
$$

(For example, flip a coin N times, then the events $\left\{A_{i}=i^{\text {th }}\right.$ flip is heads $\}$ are mutually independent.)

Example: suppose events A, B, and C are pairwise independent, i.e., A and B are independent, B and C are independent, and A and C are independent. Note that this pairwise independence does not necessarily imply mutual independence of A, B, and C. To check that $p\left(\cap_{i \in S} A_{i}\right)=\prod_{i} p\left(A_{i}\right)$ for all subsets $S \subset\{A, B, C\}$ in this case means checking the non-trivial subsets with 2 or more elements: $\{A, B\},\{A, C\},\{B, C\},\{A, B, C\}$.

By assumption it follows for the first three, so the only one we need to check is $p(A, B, C) \stackrel{?}{=} p(A) p(B) p(C)$. But that this is not always the case can be seen by an explicit counterexample: toss a fair coin twice, and consider the three events: $A=$ the first flip is heads, $B=$ the second flip is heads, $C=$ the total number of heads is exactly one. It follows that $p(A)=p(B)=p(C)=1 / 2, p(A, B)=p(B, C)=p(A, C)=1 / 4=$ $p(A) p(B)=p(A) p(C)=p(B) p(C) ;$ but $p(A, B, C)=0 \neq p(A) p(B) p(C)=1 / 8$.)

The complement of a set $A \subseteq S$ in S is denoted $\bar{A}=S-A$, i.e. the set of elements in S not contained in A. We can prove that an event A is independent of another event B if and only if A is independent of \bar{B}. To show this, first recall that if S can be written as the union of a set of non-intersecting subsets $S_{i}: S=\cup_{i} S_{i}, S_{i} \cap S_{j}=\phi$, then $p(A)=$ $\sum_{i} p\left(A \cap S_{i}\right)=\sum_{i} p\left(A, S_{i}\right)$. The two sets $S_{1}=B, S_{2}=\bar{B}$ clearly satisfy these conditions, so we can write

$$
p(A)=p(A, B)+p(A, \bar{B})
$$

Note also that $p(B)+p(\bar{B})=1$. If A and B are independent, then by definition $p(A, B)=$ $p(A) p(B)$, and substituting in the above results in $p(A, \bar{B})=p(A)-p(A, B)=p(A)-$ $p(A) p(B)=p(A)(1-p(B))=p(A) p(\bar{B})$, so A and \bar{B} are independent. In the opposite direction: if $p(A, \bar{B})=p(A) p(\bar{B})$, then substitution in the above gives $p(A, B)=p(A)-$ $p(A, \bar{B})=p(A)-p(A) p(\bar{B})=p(A)(1-p(\bar{B}))=p(A) p(B)$, and A and B are independent.

Binary Classifiers:

Binary classifiers use a set of features to determine whether objects have binary (yes or no) properties. Examples of this would be whether or not a text is classified as medicine, or whether an email is classified as spam. In those cases, the features of interest might be the words the text or email contains.

There's a more general question of how to combine information from different features in some principled fashion. Consider the following situation: you're told that if you see
a person walking along the street who's over 7^{\prime} tall, there's a 60% chance the person is a basketball player, and similarly if you see a person carrying a basketball there's a 72% chance the person is a basketball player. Then suppose you see a person over 7^{\prime} tall and carrying a basketball: can the probability that the person is a basketball player be calculated from the above information?

It may not be immediately obvious that the answer is no - the problem is incompletely specified without further assumptions. Let's first put it in a more mathematical framework: call feature $f_{1}=$ "person over 7^{\prime} tall", feature $f_{2}=$ "carrying a basketball", and $B=$ "basketball player". Then the above translates to: if $p\left(B \mid f_{1}\right)=.6$ and $p\left(B \mid f_{2}\right)=.72$, what is $p\left(B \mid f_{1}, f_{2}\right)$?

To see that this is not fully specified, write the probabilities for the various "world possibilities" as

f_{1}	f_{2}	B	
0	0	0	p_{0}
0	0	1	p_{1}
0	1	0	p_{2}
0	1	1	p_{3}
1	0	0	p_{4}
1	0	1	p_{5}
1	1	0	p_{6}
1	1	1	p_{7}

We have seven probabilities $p_{0} \ldots p_{7}$ subject to only three constraints:

$$
\begin{aligned}
& p\left(B \mid f_{1}\right)=\frac{p\left(B, f_{1}\right)}{p\left(f_{1}\right)}=\frac{p_{5}+p_{7}}{p_{4}+p_{5}+p_{6}+p_{7}} \\
& p\left(B \mid f_{2}\right)=\frac{p\left(B, f_{2}\right)}{p\left(f_{2}\right)}=\frac{p_{3}+p_{7}}{p_{2}+p_{3}+p_{6}+p_{7}} \\
& \sum_{i=0}^{7} p_{i}=1
\end{aligned}
$$

The quantity of interest

$$
p\left(B \mid f_{1}, f_{2}\right)=\frac{p\left(B, f_{1}, f_{2}\right)}{p\left(f_{1}, f_{2}\right)}=\frac{p_{7}}{p_{6}+p_{7}}
$$

can take any value between $0\left(p_{7}=0, p_{6} \neq 0\right)$ and $1\left(p_{6}=0, p_{7} \neq 0\right)$ consistent with the above constraints.

For this problem to be solvable requires additional assumptions, e.g., about the independence of the features, such as $p\left(f_{1}, f_{2} \mid B\right)=p\left(f_{1} \mid B\right) p\left(f_{2} \mid B\right)$ and $p\left(f_{1}, f_{2} \mid \bar{B}\right)=$ $p\left(f_{1} \mid \bar{B}\right) p\left(f_{2} \mid \bar{B}\right)$. These will comprise the "naive Bayes" methodology to be employed in the next few lectures.

Returning to the question of the basketball player, first we use Bayes' rule to express the probability of interest in the familiar form

$$
p\left(B \mid f_{1}, f_{2}\right)=\frac{p\left(f_{1}, f_{2} \mid B\right) p(B)}{p\left(f_{1}, f_{2}\right)}=\frac{p\left(f_{1}, f_{2} \mid B\right) p(B)}{p\left(f_{1}, f_{2} \mid B\right) p(B)+p\left(f_{1}, f_{2} \mid \bar{B}\right) p(\bar{B})}
$$

The first "naive Bayes" assumption is that features f_{1} and f_{2} are independent events: $p\left(f_{1}, f_{2} \mid B\right)=p\left(f_{1} \mid B\right) p\left(f_{2} \mid B\right)$, and $p\left(f_{1}, f_{2} \mid \bar{B}\right)=p\left(f_{1} \mid \bar{B}\right) p\left(f_{2} \mid \bar{B}\right)$. (One can check whether dependence of the events causes the true $p\left(B \mid f_{1}, f_{2}\right)$ to be larger or smaller.) For simplicity of notation, we denote by $p_{1}=p\left(B \mid f_{1}\right)$ and $p_{2}=p\left(B \mid f_{2}\right)$ the evidence for the property given the features separately. Note that since $p\left(B \mid f_{i}\right)+p\left(\bar{B} \mid f_{i}\right)=1$, we have $p\left(\bar{B} \mid f_{i}\right)=$ $1-p_{i}$. After substituting the independence relation in the above, we then use Bayes' law for the independent features, $p\left(f_{i} \mid B\right)=p\left(B \mid f_{i}\right) p\left(f_{i}\right) / p(B)=p_{i} p\left(f_{i}\right) / p(B)$ and $p\left(f_{i} \mid \bar{B}\right)=$ $p\left(\bar{B} \mid f_{i}\right) p\left(f_{i}\right) / p(\bar{B})=\left(1-p_{i}\right) p\left(f_{i}\right) / p(\bar{B})$, giving

$$
\begin{aligned}
p\left(B \mid f_{1}, f_{2}\right) & =\frac{p\left(f_{1} \mid B\right) p\left(f_{2} \mid B\right) p(B)}{\left.p\left(f_{1} \mid B\right) p\left(f_{2} \mid B\right) p(B)+p\left(f_{1} \mid \bar{B}\right)\right) p\left(f_{2} \mid \bar{B}\right) p(\bar{B})} \\
& =\frac{p_{1} p_{2} p\left(f_{1}\right) p\left(f_{2}\right) / p(B)}{p_{1} p_{2} p\left(f_{1}\right) p\left(f_{2}\right) / p(B)+\left(1-p_{1}\right)\left(1-p_{2}\right) p\left(f_{1}\right) p\left(f_{2}\right) / p(\bar{B})} \\
& =\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right) \frac{p(B)}{p(\bar{B})}}
\end{aligned}
$$

The second assumption is that it's a priori equal probability as to whether the property is possessed: $p(B)=p(\bar{B})=1 / 2$; i.e., in this case that we are maximally ignorant and have no advance knowledge one way or another as to whether a person is likely to be a basketball player. The relation for combining the evidence p_{1}, p_{2} for the two different features becomes

$$
p\left(B \mid f_{1}, f_{2}\right)=\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)} .
$$

For the sample probabilities given above, the result is $p\left(B \mid f_{1}, f_{2}\right)=.6 \cdot .72 /(1-.6)(1-.72) \approx$.794 (at least in accord with the intuition that the combined probability is larger than either of the two individually).

Spam Filters

First some words (to be added...) about the efficacy of statistical methods.
Spam filtering is a case of binary classifier in which the property is whether or not a message is to be considered spam, and the features employed are the words of the message. We assume we have a test set of messages tagged as spam or non-spam, and use the document frequency of words in the two partitions as evidence regarding whether new messages are spam.

For example (Rosen p. 422), suppose the word "Rolex" appears in 250 messages of a set of 2000 spam messages, and in 5 of 1000 non spam messages. Then we estimate $p($ "Rolex" $\mid S)=250 / 2000=.125$ and $p($ "Rolex" $\mid \bar{S})=5 / 1000=.005$. Assuming a "flat prior" $(p(S)=p(\bar{S})=1 / 2)$ in Bayes' law gives

$$
p(S \mid \text { "Rolex" })=\frac{p(\text { "Rolex" } \mid S) p(S)}{p(\text { "Rolex" } \mid S) p(S)+p(\text { "Rolex" } \mid \bar{S}) p(\bar{S})}=\frac{.125}{.125+.005}=\frac{.125}{.130}=.962 .
$$

With a rejection threshold of .9 , this would be rejected.
Now suppose in a set 2000 spam messages and 1000 non-spam messages, the word "stock" appears in 400 spam messages and 60 non-spam, and the word "undervalued" appears in 200 spam and 25 non-spam messages. Then we estimate

$$
\begin{aligned}
p(\text { "stock" } \mid S) & =400 / 2000=.2 \\
p(\text { "stock" } \mid \bar{S}) & =60 / 1000=.06 \\
p(\text { "undervalued" } \mid S) & =200 / 2000=.1 \\
p(\text { "undervalued" } \mid \bar{S}) & =25 / 1000=.025 .
\end{aligned}
$$

Again assuming a flat prior $(p(S)=p(\bar{S})=1 / 2$), and independence of the features (and writing $w_{1}=$ "stock" and $w_{2}=$ "undervalued") gives

$$
p\left(S \mid w_{1}, w_{2}\right)=\frac{p\left(w_{1} \mid S\right) p\left(w_{2} \mid S\right) p(S)}{p\left(w_{1} \mid S\right) p\left(w_{2} \mid S\right) p(S)+p\left(w_{1} \mid \bar{S}\right) p\left(w_{2} \mid \bar{S}\right) p(\bar{S})}=\frac{.2 \cdot .1}{.2 \cdot .1+.06 \cdot .025}=.930
$$

so at a .9 probability threshold a message containing those two words would again be rejected as spam.

Random variables, mean and variance:

Suppose in a collection of people there are some number with height 6^{\prime}, and equal numbers with heights $5^{\prime} 11^{\prime \prime}$ and $6^{\prime} 1^{\prime \prime}$. The mean or average of this distribution is 6^{\prime}, as can be determined by summing the heights of all the people and dividing by the number of people, or equivalently by summing over distinct heights weighted by the fractional number of people with that height. Suppose for example, that the numbers in the above height categories are $5,30,5$, then the latter calculation corresponds to $(1 / 8) \cdot 5^{\prime} 11^{\prime \prime}+(3 / 4)$. $6^{\prime}+(1 / 8) \cdot 6^{\prime} 1^{\prime \prime}=6^{\prime}$. But the average gives only limited information about a distribution. Suppose there were instead only people with heights 5^{\prime} and 7^{\prime}, and an equal number of each, then the average would still be 6 ' though these are very different distributions. It is useful to characterize the variation within the distribution from the mean. The average deviation from the mean gives zero due to equal positive and negative variations (as proven below), so the quantity known as the variance (or mean square deviation) is defined as the average of the squares of the differences between the values in the distribution and their mean. For the first distribution above, this gives the variance $V=\frac{1}{8}(-1 ")^{2}+\frac{3}{4}\left(0^{\prime \prime}\right)^{2}+\frac{1}{8}\left(1^{\prime \prime}\right)^{2}=\frac{1}{4}(\text { inch })^{2}$, and for the second distribution the much larger result $V=\frac{1}{2}\left(-1^{\prime}\right)^{2}+\frac{1}{2}\left(1^{\prime}\right)^{2}=1$ (foot) $)^{2}$. The standard or r.m.s ("root mean square") deviation σ is defined as the square root of the variance, $\sigma=\sqrt{V}$. The above two distributions have $\sigma=(1 / 2$ inch $)$ and $\sigma=(1$ foot $)$ respectively.


```
aheights =[6*12+1]*5 +[6*12]*30 + [5*12+11]*5
bheights =[5*12]*20 +[7*12]*20
figure(figsize=(5,5))
hist(aheights,bins=arange(59.5,90))
hist(bheights,bins=arange(59.5,90))
xlabel('inches')
ylabel('#people with that height')
legend(['mean {}\n stdev {}'.format(mean(d),std(d))
    for d in (aheights,bheights)])
savefig('hhist.pdf')
```

More generally, a random variable is a function $X: S \rightarrow \mathbb{R}$, assigning some real number to each element of the probability space S. The average of this variable is determined by summing the values it can take weighted by the corresponding probability,

$$
<X>=\sum_{s \in S} p(s) X(s)
$$

(An alternate notation for this is $E[X]=<X>$, for the "expectation value" of X.)
Example 1: roll two dice and let X be the sum of two numbers rolled. Thus $X(\{1,1\})=2, X(\{1,2\})=X(\{2,1\})=3, \ldots, X(\{6,6\})=12$. The average of X is $<X>=\frac{1}{36} 2+\frac{2}{36} 3+\frac{3}{36} 4+\frac{4}{36} 5+\frac{5}{36} 6+\frac{6}{36} 7+\frac{5}{36} 8+\frac{4}{36} 9+\frac{3}{36} 10+\frac{2}{36} 11+\frac{1}{36} 12=7$.

Example 2: flip a coin 3 times, and let X be the number of tails. The average is

$$
<X>=\frac{1}{8} 3+\frac{3}{8} 2+\frac{3}{8} 1+\frac{1}{8} 0=\frac{3}{2} .
$$

The expectation of the sum of two random variables X, Y (defined on the same sample space) satisfies $\langle X+Y\rangle=\langle X\rangle+\langle Y\rangle$. In general, they satisfy a "linearity of expectation" $<a X+b Y>=a<X>+b<Y>$ proven as follows: $<a X+b Y>=\sum_{s} p(s)(a X(s)+b Y(s))=a \sum_{s} p(s) X(s)+b \sum_{s} p(s) Y(s)=a<X>+b<Y>$. Thus an alternate way to calculate the mean of $X=X_{1}+X_{2}$ for the two dice rolls in example 1 above is to calculate the mean for a single die, $X_{1}=(1+2+3+4+5+6) / 6=$ $21 / 6=7 / 2$, and so for two rolls $\langle X\rangle=\left\langle X_{1}\right\rangle+\left\langle X_{2}\right\rangle=7 / 2+7 / 2=7$.

By definition, independent random variables X, Y satisfy $p(X=a \wedge Y=b)=p(X=$ a) $p(Y=b)$ (i.e., the joint probability is the product of their independent probabilities, just as for independent events). For such variables, it follows that the expectation value of their product satisfies

$$
<X Y>=<X><Y>\quad(X, Y \text { independent })
$$

since $\sum_{r, s} p(r, s) X(r) Y(s)=\sum_{r, s} p(r) p(s) X(r) Y(s)=\left(\sum_{r} p(r) X(r)\right)\left(\sum_{s} p(s) Y(s)\right)$.
To see that the above relation fails when X and Y are not independent, consider a single coin flip and let X count the number of heads, and Y count the number of tails. Then $\langle X\rangle=\langle Y\rangle=1 / 2$, but $\langle X Y\rangle=0$ since one of X or Y is always zero on any given flip. On the other hand, consider flipping a coin ten times and rolling a die 12 times, and let X count the number of heads of the coin flip, and Y the number of times a six is rolled. Then $\langle X Y\rangle=\langle X\rangle\langle Y\rangle=5 \cdot 2=10$.

As indicated above, the average of the differences of a random variable from the mean vanishes: $\sum_{s \in S} p(s)(X(s)-<X>)=<X>-<X>\sum_{s} p(s)=<X>-<X>=0$. The
variance of a probability distribution for a random variable is defined as the average of the squared differences from the mean,

$$
\begin{equation*}
V[X]=\sum_{s \in S} p(s)(X(s)-<X>)^{2} \tag{V1}
\end{equation*}
$$

The variance satisfies the important relation

$$
\begin{equation*}
V[X]=<X^{2}>-<X>^{2}, \tag{V2}
\end{equation*}
$$

following directly from the definition above:

$$
\begin{aligned}
V[X] & =\sum_{s \in S} p(s)(X(s)-<X>)^{2} \\
& =\sum_{s} X^{2}(s) p(s)-2<X>\sum_{s} p(s) X(s)+<X>^{2} \sum_{s} p(s) \\
& =<X^{2}>-2<X>^{2}+<X>^{2}=<X^{2}>-<X>^{2}
\end{aligned}
$$

In the case of independent random variables X, Y, as defined above, the variance is additive:

$$
V[X+Y]=V[X]+V[Y] .
$$

To see this, use ($V 2$) together with $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$:

$$
\begin{aligned}
V[X+Y] & =<(X+Y)^{2}>-(<X>+<Y>)^{2} \\
& =<X^{2}>+2<X Y>+<Y>^{2}-<X>^{2}-2<X><Y>-<Y>^{2} \\
& =<X^{2}>-<X>^{2}+<Y^{2}>-<Y>^{2}=V[X]+V[Y]
\end{aligned}
$$

Example: again flip a coin 3 times, and let X be the number of tails.

$$
<X^{2}>=\frac{1}{8} 0^{2}+\frac{3}{8} 1^{2}+\frac{3}{8} 2^{2}+\frac{1}{8} 3^{2}=3
$$

so $V[X]=3-(3 / 2)^{2}=3 / 4$. If we let $X=X_{1}+X_{2}+X_{3}$, where X_{i} is the number of tails (0 or 1) for the $i^{\text {th }}$ roll, then the X_{i} are independent variables with $<X_{i}>=1 / 2$ and $\left\langle X_{i}^{2}\right\rangle=(1 / 2) \cdot 1+(1 / 2) \cdot 0=1 / 2$, so $V\left[X_{i}\right]=1 / 2-1 / 4=1 / 4$ (or equivalently $\left.V\left[X_{i}\right]=1 / 2(1 / 2)^{2}+1 / 2(-1 / 2)^{2}=1 / 8+1 / 8=1 / 4\right)$. For the three rolls,

$$
V[X]=V\left[X_{1}\right]+V\left[X_{2}\right]+V\left[X_{3}\right]=1 / 4+1 / 4+1 / 4=3 / 4
$$

confirming the result above.

Here's a brief summary:

Expectation value: $E[X]=\sum_{s \in S} p(s) X(s)$
Variance: $V[X]=\sum_{s \in S} p(s)(X(s)-E[X])^{2}$

$$
=E\left[X^{2}\right]-(E[X])^{2}
$$

Standard deviation: $\sigma[X]=\sqrt{V[X]}$

For X a sum of random variable $X=\sum_{i} X_{i}$, the expectation always satisfies:

$$
E[X]=\sum_{i} E\left[X_{i}\right]
$$

If (and only if) the variables X and Y are independent, then

$$
E[X Y]=E[X] E[Y]
$$

If (and only if) all the variables X_{i} are independent, then

$$
V[X]=\sum_{i} V\left[X_{i}\right]
$$

Example of coin flips ($X_{i}=1,0$ according to whether or not flip is heads)
For the $i^{\text {th }}$ coin flip , then

$$
V\left[X_{i}\right]=1 / 2-1 / 4=1 / 4
$$

Since they're independent, for n such flips

$$
\begin{aligned}
& E[X]=n / 2 \\
& V[X]=n / 4 \\
& \sigma[X]=\sqrt{n} / 2
\end{aligned}
$$

Note that the fractional standard deviation

$$
\sigma[X] / E[X]=1 / \sqrt{n} \rightarrow 0 \text { for large } n
$$

so the relative spread of the distribution goes to zero for a large number of trials (the distribution becomes more tightly centered on the mean)

Bernoulli Trial

A Bernoulli trial is a trial with two possible outcomes: "success" with probability p, and "failure" with probability $1-p$. The probability of r successes in N trials is

$$
\binom{N}{r} p^{r}(1-p)^{N-r} .
$$

Note the correct overall normalization automatically follows from $\sum_{r=0}^{N}\binom{N}{r} p^{r}(1-p)^{N-r}=$ $[p+(1-p)]^{N}=1^{N}=1$. The overall probability for r successes is a competition between $\binom{N}{r}$, which is maximum at $r \sim N / 2$, and $p^{r}(1-p)^{N-r}$ with is largest for small r when $p<1 / 2$ (or large r for $p>1 / 2$).

In class, we considered the case of rolling a standard six-sided die, with a roll of 6 considered a success, so $p=1 / 6$. (See figures on next page showing $\binom{N}{r} p^{r}(1-p)^{N-r}$ for $N=1,2,4,10,40,80,160,320$ trials, with the number of successes r plotted along the horizontal axis for each value of N.) For a larger number N of trials, the distribution of expected number of successes becomes more narrowly peaked and more symmetrical about a fractional distance $r=N / 6$.

To analyze this in the framework outlined above, let the random variable $X_{i}=1$ if the $i^{\text {th }}$ trial is success. Then $\left\langle X_{i}\right\rangle=p$. Let $X=X_{1}+X_{2}+\ldots+X_{N}$ count the total number of successes. Then it follows that the average satisfies

$$
\begin{equation*}
<X>=\sum_{i}<X_{i}>=N p \tag{B1}
\end{equation*}
$$

From $V\left[X_{i}\right]=\left\langle X_{i}^{2}>-<X_{i}\right\rangle^{2}=p-p^{2}=p(1-p)$, it follows that the variance satisfies

$$
\begin{equation*}
V[X]=\sum_{i} V\left[X_{i}\right]=N p(1-p) \tag{B2}
\end{equation*}
$$

and the standard deviation is $\sigma=\sqrt{V[X]}=\sqrt{N p(1-p)}$. (Note that for $p=1 / 2$ and $N=3$, this gives $V[X]=3 / 4$, reproducing the result of the coin flip example above.)

This explains the observation that the probability gets more sharply peaked as the number of trials increases, since the width of the distribution (σ) divided by the average $<X>$ behaves as $\sigma /<X>\sim \sqrt{N} / N \sim 1 / \sqrt{N}$, a decreasing function of N.

By the "central limit theorem" (not proven in class), many such distributions under fairly relaxed assumptions always tend for sufficiently large number of trials to a "gaussian" or "normal" distribution, of the form (as shown explicitly in lecture 22 notes)

$$
\begin{equation*}
P(x) \approx \frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{G}
\end{equation*}
$$

This is properly normalized, with $\int_{-\infty}^{\infty} \mathrm{d} x P(x)=1$, and also has $\int_{-\infty}^{\infty} \mathrm{d} x x P(x)=\mu$, $\int_{-\infty}^{\infty} \mathrm{d} x x^{2} P(x)=\sigma^{2}+\mu^{2}$, so the above distribution has mean μ and variance σ^{2}. Setting $\mu=N p$ and $\sigma=\sqrt{N p(1-p)}$ for $p=1 / 6$ in (G) thus gives a good approximation to the distribution of successful rolls of 6 for large number of trials in the example above.

Probability of r sixes in 4 trials

Probability of r sixes in 40 trials

Probability of r sixes in 160 trials

Probability of r sixes in 2 trials

