
First a few paragraphs of review from previous lectures: A finite probability space is

a set S and a function p : S → [0, 1] such that p(s) > 0 (∀s ∈ S) and
∑

s∈S p(s) = 1. We

refer to S as the sample space, subsets of S as events, and p as the probability distribution.

The probability of an event A ⊆ S is p(A) =
∑

a∈A p(a). (And p(∅) = 0.)

Two events are disjoint if their intersection is empty. In general we have p(A ∪ B) +

p(A∩B) = p(A) + p(B),‡ and thus for disjoint events p(A∪B) = p(A) + p(B). (The first

statement follows from the principle of inclusion − exclusion: |A∪B| = |A|+|B|−|A∩B|.)
The probability of the intersection of two events is also known as the joint probability :

p(A,B) ≡ p(A ∩ B). Note that it is symmetric: p(A,B) = p(B,A). Suppose we know

that one event has happened and wish to ask about another. For two events A and B, the

conditional probability of A given B is p(A|B) = p(A,B)/p(B).

Example 1a: Suppose we flip a fair coin 3 times. Let B be the event that we have

at least one H and A be the event of getting exactly 2 Hs. What is the probability of A

given B? In this case, (A∩B) = A, p(A) = 3/8, p(B) = 7/8, and therefore p(A|B) = 3/7.

Example 2: 4 bit number. E = at least two consecutive 0’s. F = first bit is 0.

(E ∩ F = {0000 0001 0010 0011 0100}). p(E ∩ F ) = 5/16, p(F ) = 8/16,

p(E|F ) = (5/16)
/

(1/2) = 5/8.

Note that the definition of conditional probability also gives the formula: p(A,B) =

p(A|B)p(B). (For three events, we have p(A∩B ∩C) = p(A|B ∩C)p(B|C)p(C), with the

obvious generalization to n events:

p(A1 ∩A2 . . . ∩An) = p(A1|A2 ∩ . . . ∩An)p(A2|A3 ∩ . . . ∩An) · · · p(An−1|An)p(An) .)

We can also use conditional probabilities to find the probability of an event by breaking

the sample space into disjoint pieces. If S = S1∪S2 . . .∪Sn and all pairs Si, Sj are disjoint,

then for any event A, p(A) =
∑

i p(A|Si)p(Si).

Example 3: Suppose we flip a fair coin twice. Let S1 be the outcomes where the

first flip is H and S2 be the outcomes where the first flip is T . What is the probability of

A = getting 2 Hs? p(A) = p(A|S1)p(S1) + p(A|S2)p(S2) = (1/2)(1/2) + (0)(1/2) = 1/4.

Two events A and B are independent if p(A,B) = p(A)p(B).

This immediately gives: A and B are independent iff p(A|B) = p(A).

In addition, if p(A,B) > p(A)p(B) then A and B are said to be positively correlated ,

and if p(A,B) < p(A)p(B) then A and B are said to be negatively correlated .

‡ “What is the chance of rolling a die one time and getting a 6? 1/6
Now, what is the chance of rolling a die twice and getting at least one 6? THINK: 1/6 + 1/6 = 2/6 = 1/3”

(From my nephew’s fourth grade math text . . . except the two events have non-zero inter-
section.) Instead use any of: a) of the 36 possibilities, enumerate the 11 with at least one
six = 11/36, b) p(A ∪ B) = p(A) + p(B) − p(A ∩ B) = 1/6 + 1/6 − 1/36 = 11/36, or c)
probability of no sixes is (5/6)(5/6), so at least one six is 1− 25/36 = 11/36.
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Example 1b: In the example 1a of flipping 3 coins above, p(A|B) 6= p(A) and

therefore these two events are not independent. Let C be the event that we get at least

one H and at least one T . Let D be the event that we get at most one H. We see that

p(C) = 6/8, p(D) = 4/8, and C ∩ D=1H so that p(C,D) = 3/8, and independence of

events C,D follows from p(C)p(D) = (6/8)(1/2) = 3/8 = p(C,D).]

Example 4: E= 2 boys, F= at least one boy. p(E|F ) = 1/3 (E = BB, F= BB BG

GB). Are the events independent? p(E) = 1/4, p(F ) = 3/4, p(E,F ) = 1/4 6= 3/16, so

they are positively correlated.

Example 5: now 3 children, E= at least one of each sex, F = at most one boy.

p(E) = 6/8, p(F ) = 4/8, p(E,F ) = 3/8, so they are independent: p(E|F ) = p(E) = 3/4.

Example 6: two flips of a fair coin: A = two heads, B = first flip is heads, B′= at

least one head, B′′=second flip is heads, B′′′=first flip or second flip is heads.

p(A|B) = 1/2, i.e., one of these (HH,HT) satisfying B,

or equivalently p(A,B)/p(B) = (1/4)
/

(1/2) = 1/2.

p(A|B′) = 1/3, i.e., one of these three: (TH,HT,HH) satisfying B′,

or equivalently p(A,B)/p(B) = (1/4)
/

(3/4) = 1/3.

(In each case we can calculate directly in the reduced space of event B, or we calculate

p(A,B) in the full space and divide by p(B).)

Finally p(A|B′′) = p(A|B) by symmetry between flips, and p(A|B′′′) = p(A|B′) be-

cause B′′′ = B′.

Note: A minor variant (heads=girl, tails=boy) makes this equivalent to an example

from the book Innumeracy , J.A.Paulos, p.86.∗: Every family in the town has exactly two

children, the probability that any given child is a girl (or boy) is the usual 50%, and a

daughter, if there is one, always answers the door. You ring the doorbell of a home, and

a girl comes to the door.

a) What is the probability that the family has a boy? p(A|B′) = 2/3

b) What is the probability that the girl has a brother? p(A|B′) = 2/3

c) You find a random girl walking around downtown. What is the probability she has

a brother? p(A|B) = 1/2 (or equivalently p(A|B′′) = 1/2)

∗ “Consider a randomly selected family of four that is known to have at least one daughter. One
possible way you may come to learn this: You’re in a town where every family includes a mother, father,

and two children, and picking a house at random you are greeted by a girl. You're told that in this town

a daughter, if there is one, always answers the door. In any case, given that a family has at least one

daughter, what is the conditional probability that it also has a son? The perhaps surprising answer is 2/3,

since there are three equally likely possibilities — older boy, younger girl; older girl, younger boy; older
girl, younger girl — and in two of them the family has a son. The fourth possibility — older boy, younger

boy — is ruled out by the fact that a girl answered the door. By contrast if you were simply to run into

a girl on the street, the probability that her sibling is a boy would be 1/2.”
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The latter statement (c) is surprising because it contains an implicit random sampling

assumption. (He never says that he’s excluded, e.g., the possibility that families specifi-

cally with two daughters are super-cautious and never let either girl out on the street, in

which case the probability that her sibling is a boy would be 1.) There’s some additional

discussion of this on p.7, after introducing Bayes’ thm.

Example 7: flip a coin 3 times. A= 1st flip is H, B = at least two H, C= at least

two T. Then you can verify that p(A) = p(B) = p(C) = 1/2, but the probability 1/2

events can be correlated or uncorrelated. p(A,B) = 3/8 so A,B positively correlated

(makes sense, since the 1st being H makes it more likely that there are at least two H).

p(A,C) = 1/8 so A,C negatively correlated (again makes sense, since the 1st being H

makes it less likely that there are at least two T). p(B,C) = 0, disjoint events (maximally

negatively correlated, can’t have both two T and two H in three rolls)

[Note that the notions of “disjoint” and “independent” events are very different. Two

events A,B are disjoint if their intersection is empty, whereas they are independent if

p(A,B) = p(A)p(B). Two events that are disjoint necessarily have p(A,B) = p(A∩B) = 0,

so if their independent probabilites are non-zero they are necessarily negatively correlated

(p(A,B) < p(A)p(B)). For example, if we flip 2 coins, and event A = exactly 1 H, and

event B = exactly 2 H, these are disjoint but not independent events: they’re negatively

correlated since p(A,B) = 0 is less than p(A)p(B) = (1/2)(1/4). Non-disjoint events can

be positively or negatively correlated, or they can be independent. If we take event C =

exactly 1T, then A and C are not disjoint (they’re equal): and they’re positively correlated

since p(A,C) = 1/2 is greater than p(A)p(C) = 1/4. In the three coin flip of Example

1b, we saw an example of independent events C,D with p(C)p(D) = (6/8)(1/2) = 3/8 =

p(C,D).]

Example 8: Alice and Bob in the library. A = Alice is in the library between 6 and

10 pm. B = Bob is in the library between 6 and 10 pm. Imagine that data is collected

by tracking their comings and goings by tracking the bluetooth ids on their smartphones

(which they’ve inadvertently left in public mode). The joint probabilities are generally

constrained to satisfy p(A,B) + p(A,B) + p(A,B) + p(A,B) = 1 (for the four possibilities

in this sample space, both in the library, one or the other not there, or neither there). We

also have p(A) = p(A,B) + p(A,B) and p(B) = p(A,B) + p(A,B).

Suppose they each average about two hours per night, hence p(A) = p(B) = 1/2. If

those events are independent, then we would expect that the joint probability p(A,B) =

p(A)p(B) = 1/4. From the data, it is also possible to determine the percentage of time

they’re both present. In the extreme case, the two events might be disjoint and p(A,B) = 0

— for some reason they never coincide. In the opposite extreme, we might have p(A,B) =
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1/2, so they’re maximally positively correlated and always coincide. For 0 ≤ p(A,B) < 1/4,

they’re negatively correlated, and for 1/4 < p(A,B) ≤ 1/2, they’re positively correlated.

If either of those two cases emerged, it might be tempting to assume they (i.e., the two

events A and B) are in some causal relationship, and that one or both people are trying

either to avoid or to coincide with the other. But in general when inferring structure

in data, it’s important to remember that “correlation /=⇒ causation” necessarily. In this

example, there could be some third party or effect exerting an influence on the two of them

independently, resulting in the correlation, as in the possibilities suggested in class.
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Bayes Theorem†

A simple formula follows from the above definitions and symmetry of the joint prob-

ability: p(A|B)p(B) = p(A,B) = p(B,A) = p(B|A)p(A). The resulting relation

p(A|B) =
p(B|A)p(A)

p(B)
(Bayes)

is frequently called “Bayes’ theorem” or “Bayes’ rule”, and makes the connection between

inductive and deductive inference. In the case of sets Ai that are mutually disjoint, and

with
⋃n

i=1 Ai = S, then Bayes’ rule takes the form

p(Ai|B) =
p(B|Ai)p(Ai)

p(B|A1)p(A1) + . . . + p(B|An)p(An)
.

Example 1: Consider a casino with loaded and unloaded dice. For a loaded die, the

probability of rolling a 6 is 50%: p(6|L) = 1/2, and p(i|L) = 1/10 (i = 1, . . . , 5). For a fair

die the probabilities are p(i|L) = 1/6 (i = 1, . . . , 6). Suppose there’s a 1% probability of

choosing a loaded die, p(L) = 1/100. If we select a die at random and roll three consecutive

6’s with it, what is the posterior probability, P (L|6, 6, 6), that it was loaded?

The probability of the die being loaded, given 3 consecutive 6’s, is

p(L|6, 6, 6) =
p(6, 6, 6|L)p(L)

p(6, 6, 6)
=

p(6|L)3p(L)

p(6|L)3p(L) + p(6|L)3p(L)

=
(1/2)3 · (1/100)

(1/2)3 · (1/100) + (1/6)3 · (99/100)
=

3

14
≈ .21 ,

so only a roughly 21% chance that it was loaded. (Note that the Bayesian “prior” in the

above is p(L) = 1/100, giving the probability assigned prior to collecting the data from

actual rolls, and note that the prior significantly affects the resulting probability inference.)

Example 2: Duchenne Muscular Dystrophy (DMD) can be regarded as a simple

recessive sex-linked disease caused by a mutated X chromosome (X̃). An X̃Y male expresses

the disease, whereas an X̃X female is a carrier but does not express the disease. Suppose

neither of a woman’s parents expresses the disease, but her brother does. Then the woman’s

mother must be a carrier, and the woman herself therefore has an a priori 50/50 chance

of being a carrier, p(C) = 1/2. Suppose she gives birth to a healthy son (h.s.). What now

is her probability of being a carrier?

Her probability of being a carrier, given a healthy son, is

p(C|h.s.) =
p(h.s.|C)p(C)

p(h.s.)
=

p(h.s.|C)p(C)

p(h.s.|C)p(C) + p(h.s.|C)p(C)
=

(1/2) · (1/2)

(1/2) · (1/2) + 1 · (1/2)
=

1

3

† Rev. Thomas Bayes (1763), Pierre-Simon Laplace (1812), Sir Harold Jeffreys (1939)
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(where C means “not carrier”). Intuitively what is happening is that if she’s not a carrier,

then there are two ways she could have a healthy son, i.e., from either of her good X’s,

whereas if she’s a carrier there’s only one way. So the probability that she’s a carrier is

1/3, given the knowledge that she’s had exactly one healthy son.

(The other point about this example is that the woman has a hidden state, C or

C, determined once and for all, and she isn’t making an independent coin flip each time

she has a child as to whether or not she’s a carrier. Prior to generating data about her

son or sons, she has a “Bayesian prior” of 1/2 to be a carrier. Subsequent data permits

a principled reassessment of that probability, continuously decreasing for each successive

healthy son, or jumping to 1 if she has a single diseased son).

Example 3: Suppose there’s a rare genetic disease that affects 1 out of a million

people, p(D) = 10−6. Suppose a screening test for this disease is 100% sensitive (i.e., is

always correct if one has the disease), and 99.99% specific (i.e., has a .01% false positive

rate). Is it worthwhile to be screened for this disease?

The above sensitivity and specificity imply that p(+|D) = 1 and p(+|D) = 10−4, so

the probability of having the disease, given a positive test (+), is

p(D|+) =
p(+|D)p(D)

p(+)
=

p(+|D)p(D)

p(+|D)p(D) + p(+|D)p(D)
=

1 · 10−6

1 · 10−6 + 10−4(1− 10−6)
≈ 10−2

and there’s little point to being screened (only once).

(We can also look at this as follows: if one million people were screened, we would

expect roughly one to have the disease, but the test will give roughly 100 false positives. So

a positive result would mean only roughly a 1 out of 100 chance for one of those positives

to have the disease. In this case the result is biased by the small [one in a million] Bayesian

prior p(D).)

Example 4: Simplified version of “doomsday” scenarios:

Suppose you’re told that you will wake up in a random room in one or the other of two

large buildings with consecutively numbered rooms: one with one hundred rooms (H) and

one with one billion rooms (B). You are permitted to see what room number you’re in, and

then you can use that information to infer the likelihood of being in the larger building B

(assuming the two possibilities are a priori equal probability, p(H) = p(B) = 1/2). Suppose

you wake up in room 65 (or any room numbered less than one hundred). The probability

of waking up in such a room in the large building is p(< 100|B) = 100/109 = 10−7, while

of course p(< 100|H) = 1 for the smaller building. Hence

p(B| < 100) =
p(< 100|B)p(B)

p(< 100)
=

p(< 100|B)p(B)

p(< 100|B)p(B) + p(< 100|H)p(H)
=

10−7

10−7 + 1
≈ 10−7 ,
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and it is very unlikely that you are in some low numbered room in the large building.

Now consider the large and small buildings to be abstractions of long- and short-

lived civilizations, and the room number to correspond to where in the development of a

civilization you find yourself. The inference is that it’s very unlikely to find yourself at

an extremely early stage of a very long-lived civilization, and much more likely to find

yourself close to the end of a short-lived one, hence the “doomsday” metaphor. There

are more elaborate versions in which the length of the civilization has a continuous set

of possibilities (rather than 2), and which take into account sampling from ever-growing

populations, but the result is basically the same. It is intriguing to extract the hidden

assumptions which seemingly permit getting a result from so little input.

Now we return to the sibling probabilities discussed in the postscript to Example 6 on

p.2. To isolate from the social brain wiring used to consider children, consider the analog

coin problem. Suppose someone flips two fair coins, and reports that at least one is a head.

With the possibilities reduced to {HH,HT, TH}, the probability of two heads is

q = p(2H| ≥ 1H) = 1/3 . (0)

Now the person shows you one of the two coins, and it a head. Refining the above proba-

bility based on additional info fits naturally in the Bayesian framework. Using Bayes’ thm,

we refine the estimate of the probability of two heads:

p(2H|see H) =
p(see H|2H)q

p(see H)

=
q

p(see H)
(1)

since p(see H|2H) = 1. The denominator can be expanded as usual

p(see H) = p(see H|1H)p(1H) + p(see H|2H)p(2H)

= p(see H|1H)(2/3) + 1(1/3) . (2)

The value of p(see H|1H) depends on the protocol employed by the person who shows the

H.

a) If the protocol is the person looks at the two coins and always shows one with an

H (if there is one, which is always the case here), then p(see H|1H) = 1, and

p(see H) = 2/3 + 1/3 = 1 , (2a)

and you’ve learned nothing (you already knew there was at least 1 H):

p(2H|see H) = q/p(see H) = q = 1/3 . (1a)
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b) But if the coin shown is instead sampled, say the person always shows coin 1,

or more generally shows coin 1 with probability x and coin 2 with probability 1 − x,

independent of the result of the flip. (This includes as special cases all of random sampling,

x=1/2, or always showing first or second coin, x=0,1). Then p(see H|1H) = 1/2 , and

p(see H) = (1/2)(2/3) + 1/3 = 2/3 (2b)

so that

p(2H|see H) =
q

p(see H)
=

q

2/3
= 1/2 . (1b)

This framework makes explicit how the probability estimate is refined based on what one

learns from random sampling, beyond already knowing that there was at least one H.∗

A slight generalization of this is the person dealt a two card ‘hand’ from a four card

‘deck’, containing two each of aces and deuces (suppose hearts and spades of each). There

are
(

4
2

)
= 4!/2!2! = 6 possible hands: {2♠, 2♥}, {2♠, A♥}, {A♠, 2♥}, {2♠, A♠}, {A♥, 2♥},

{A♠, A♥}. If you’re told the person has an ace, then the probability of two aces given at

least one ace is p(2A| ≥ 1A) = 1/5, since you’ve excluded only {2♠, 2♥} of the six possible

hands. But if you’re told the person has the A♠, then p(2A|A♠) = 1/3, since there are

now three possible hands. But the same is true if you’re told the person has the A♥:

p(2A|A♥) = 1/3. So why isn’t p(2A| ≥ 1A) instead equal to 1/3, since it doesn’t matter

which ace one has (and it has to be one or the other)?

Again the protocol dependence enters: if, e.g., you’re always informed of the A♠ when

the person has two aces, then p(2A|A♥) = 0. If you’re told about the A♠ with probability

1/2 when the person has two aces, then p(2A|A♠) = (1/10)/(1/5 + 1/5 + 1/10) = 1/5,

recovering the original result. Other protocols will give values between 0 and 1/3.

∗ Because in particular it can show a T . For a hybrid sampler, say using protocol a)

with probability y and protocol b) with probability 1−y, then p(2H|see H) will interpolate

between 1/3 and 1/2 as y decreases from 1 to 0.
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Now return to the social context and consider the case of a family known to have at

least one boy. Then the probability of two boys is 1/3. But then add the information that

at least one of the boys is born on Tuesday. Let BT denote a boy born on Tuesday, and

BT denote a boy born on other than Tuesday. Simple counting of possibilities now gives a

probability of 13/27 for two boys: 6+6=12 ways for two boys born on different days (6 for

BT ,BT and 6 for BT ,BT ), 1 way for both born on Tues (BT ,BT ), and 7+7=14 additional

ways for the boy and a girl (BT , G + G,BT ).

For the analogous conventional Bayes treatment of this case, let q = p(2B| ≥ 1B) =

1/3, and 1− q = p(1B| ≥ 1B) = 2/3. The probability of two boys given that at least one

is born on Tues (≥ 1BT ) is given by Bayes Thm as

p(2B| ≥ 1BT ) =
p(≥ 1BT |2B)q

p(≥ 1BT )
. (1)

We expand the denominator as

p(≥ 1BT ) = p(≥ 1BT |2B)q + p(≥ 1BT |1B)(1− q) (2)

where p(≥ 1BT |1B) = 1/7 , and we will take p(≥ 1BT |2B) = 1− (6/7)2 = 13/49, because

the probability of a boy not being born on Tues is 6/7 . Inserting into (1) gives

p(2B| ≥ 1BT ) =
(13/49)(1/3)

(13/49)(1/3) + (1/7)(2/3)

= 13/(13 + 14) = 13/27 . (1a)

This makes explicit the additional information obtained by pinpointing the weekday of

birth: from the terms in the denominator we see that there’s an enhanced probability of

two boys, due to the increased likelihood (from 1/7 to 13/49) of having one on Tues if

there are two. (or equivalently the greater difficulty of not having one on Tues if you have

two).

In other words, it’s more likely to have two boys if one was born on Tues, because it’s

more likely to have one born specifically on Tues if there are two boys. But this result of

course depends on the protocol for reporting a Tues birth.

The probability p(≥ 1BT |2B) = 1 − (6/7)2 = 13/49 embedded in the above Bayes

methodology, eqns. (1), (2), implicitly assumed the following protocol: if the parent has

two children, including at least one boy born on Tues, then the parent will always inform

that he or she has a boy born on Tuesday. But there are other protocols: suppose if

there are two boys, only one of whom is born on Tues, then the parent will always give

the weekday of the other child’s birth. Then learning that there is a boy who was born

on Tues makes it less likely that there are two boys: p(report 1BT |1B) remains 1/7, but
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p(report 1BT |2B) = 1/49 because you only get to learn about the Tues boy in this protocol

when both are born on Tues. Substituting into (1) gives

p(2B|report 1BT ) =
(1/49)(1/3)

(1/49)(1/3) + (1/7)(2/3)
= 1/15 . (1b)

So hearing that there is a boy born on Tues in this protocol makes it less likely that there

are two boys, because you are that much more likely to hear about Tues births when

they’re paired with girls.

There is a simple class of such protocols in which if there are two boys with only

one born on Tues, the parent preferentially reports Tues over exactly m of the 6 other

weekdays when they occur. An example of the m = 3 case would be if the other boy is

born on Wed, Thu, Fri, then you’ll be told that day, but otherwise (Sat, Sun, Mon) you’ll

be told Tues. The first case above corresponds to m = 6 (always inform Tues if there is at

least one Tues), and the second case corresponds to m = 0 (only inform Tues if both boys

are born on Tues).

There is a total of 26 = 64 such protocols, with pm(report BT |2B) = (2m + 1)/49.

Here is the bottom line: suppose we don’t know which of the protocols is being employed.

In the case of maximal ignorance (Bayesian flat prior), we assume any of the 64 possible

protocols is used with equal probability. The middle value for m = 3 is 1/7, and that is

also the average: 〈p(report BT |2B)〉flat prior = 1/7. Substitution into (1) now gives

p(2B|report 1BT ) =
(1/7)(1/3)

(1/7)(1/3) + (1/7)(2/3))
= 1/3 . (1c)

So if we assume maximal ignorance of the protocol for reporting Tues, we learn nothing

from the statement that a boy is born on Tues. This is ultimately the resolution to the

seeming paradox of why the probability shifts from 1/3 to 13/27, just from learning that

a boy is born on Tues. (‘We already knew the boy had to be born on some day, so what

additional information did we receive?’). If we don’t know the protocol that determines

why a Tues birth is disclosed, then indeed we have learned nothing, and the expectation

of the probability of two boys, given that one is born on Tues, remains 1/3. But if the

underlying protocol is known to asymmetrically favor reporting a Tues birth, then it is

possible to learn something from the report of a Tues birth.
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