Sets

Definition. A set is a collection of objects.

The objects of a set are referred to as the *elements* of the set. If S is a set and x is some element in S we write $x \in S$. To show that some object x is not in a set S, we write $x \notin S$. The objects of a set can be anything and the order and multiplicity of the elements does not change the set.

Example: we could have a set $X = \{1, 2, 3, 4, 5\}$ or $C = \{Ithaca, Boston, Chicago\}$. Also, the objects of a set do not have to seem related. We could have a set Stuff = $\{1, \text{ snow}, \text{ Cornell}, y\}$. A set can also have no elements, this is called the empty set and written \emptyset .

We do not need to define a set by listing all the elements in the set. A set can be defined by a rule or equation.

Example: define E to be the set of even numbers. To express this we write $E = \{x \mid x \text{ is even}\}$ or $\{x \mid x+1 \text{ is odd}\}$.

The cardinality |S| of a set is the number of elements in the set.

Example: |X| = 5, |C| = 3, |Stuff| = 4 and $|\emptyset| = 0$. (Note that the set E is infinite. We we will not be considering the cardinalities of infinite sets in this class.)

A subset T of a set S is a set of elements all of which are contained in S. Note that T can be all of S. We write $T \subset S$ if we want to require that T is not equal to S, and say T is a proper subset. Otherwise we write $T \subseteq S$. The empty set is a subset of every set.

Example: $C' = \{ \text{Ithaca, Chicago} \}$ is a proper subset of C and $X' = \{ x \mid x \text{ is a whole number between 2 and 5} \}$ is a subset of X.

The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.

Example: For the set $A = \{1, 2, 3\}$, $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

Question: For a set S with n elements, what is $|\mathcal{P}(S)|$?

Set Operations

The union of two sets $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}.$

Example:

 $X \cup \text{Stuff} = \{1, 2, 3, 4, 5, \text{ snow, Cornell, } y\}.$

 $C \cup \emptyset = \{ \text{Ithaca, Boston, Chicago } \}.$

$$A \cup X = \{1, 2, 3, 4, 5\}$$
. In this case, $A \cup X = X$.

The intersection of two sets $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}.$

Example:

$$X \cap \text{Stuff} = \{1\}.$$

$$C \cap \emptyset = \emptyset$$
.

$$X \cap E = \{2, 4\}.$$

$$A \cap X = \{1, 2, 3\}$$
. In this case, $A \cap X = A$.

The difference of two sets $A - B = \{ x \mid x \in A \text{ and } x \notin B \}.$

Example:

$$X - \text{Stuff} = \{2, 3, 4, 5\}.$$

Stuff $-X = \{\text{snow, Cornell, } y\}.$

 $C - \emptyset = \{ \text{Ithaca, Boston, Chicago} \}.$

$$X - E = \{1, 3, 5\}.$$

The symmetric difference $A \triangle B = \{ x | x \in A \text{ or } x \in B, \text{ and } x \notin A \cap B \}.$

Example:

$$X \triangle$$
 Stuff = $\{2, 3, 4, 5,$ snow, Cornell, $y\}$.

$$C \triangle \emptyset = \{ \text{Ithaca, Boston, Chicago} \}.$$

$$X \triangle A = \{4, 5\}.$$

The Cartesian product of two sets $A \times B = \{ (x, y) | x \in A \text{ and } y \in B \}.$

Example:

$$A\times A=\{(1,1),(1,2),(1,3),\,(2,1),(2,2),(2,3),\,(3,1),(3,2),(3,3)\}.$$

For two sets to be the same, they must have the same elements. Namely, A = B says that for every element $x, x \in A$ if and only if $x \in B$. Equivalently, A = B says that $A \subseteq B$ and $B \subseteq A$.