
Discrete Probability and Counting INFO 2950 (week 1, Spring ’10)

A finite probability space is a set S and a real function p(s) on S such that:

• p(s) ≥ 0 , ∀s ∈ S, and

•
∑

s∈S p(s) = 1 .

We refer to S as the sample space, subsets of S as events, and p as the probability distribution.

The probability of an event A ⊆ S is
∑

a∈A p(a).

(Note that p(∅) = 0.)

Example: Suppose we flip a fair coin. “Fair” implies that it is equally likely to come up

H (heads) or T (tails), and therefore p(H) = p(T ) = 1/2.

If we assign all elements of S the same probability, as in the example above, then p is

the uniform distribution.

Example: Suppose we flip a biased coin where the probability of H is twice the proba-

bility of T . Since p(H) + p(T ) = 1, this implies p(H) = 2/3 and p(T ) = 1/3.

Example: Suppose we flip a fair coin twice. What is the probability of getting one

H and one T ? The possible outcomes are {HH, HT, TH, TT}. Two out of the possible 4

outcomes give one H and one T , each outcome has probability 1/4, and therefore the total

probability is 1/2

Suppose we flip a fair coin n times. How many possible outcomes are there? There are

two choices for each flip of the coin, so there are 2n possible outcomes. Each coin flip is an

independent event (a notion shortly to be made precise), so the probability of getting any

one of these is 1/2n. Now suppose we want to know the probability of getting exactly k Hs.

We need to know how many of the 2n strings have exactly k Hs.

The number of ways of rearranging k objects is given by

k! = k(k − 1)(k − 2) · · ·2 · 1 ,

and is read k factorial. (We define 0! = 1.) That is because there are k choices for the first

object, then k − 1 choices for the second object, and so on, down to two choices for the last

two objects, and a single choice for the last remaining.

Similarly, the number of ways (permutations) to choose k objects from a set of n objects

is given by n(n−1) · · · (n−k +1) = n!/(n−k)!, since there are n choices for the first object

down to n − k + 1 choices for the kth object (after having chosen the first k − 1 objects).

If the order in which the objects are chosen does not matter, then the number of ways

(combinations) to choose k objects from a set of n is given by dividing the above by k! (the

number of ways of rearranging those k objects). The number of ways to choose k objects

from n, independent of order, is thus given by:
(

n

k

)

=
n!

(n − k)!k!
.
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Note that

(

n

k

)

=

(

n

n − k

)

.

These numbers are also known as the binomial coefficients, because they appear in the

expansion of binomials (expressions of the form (x+y)n). Consider (x+y)2 = x2 +2xy +y2.

The coefficients of this polynomial are {1, 2, 1}, i.e., the numbers
(

2
0

)

,
(

2
1

)

,
(

2
2

)

. In general,

(x + y)n =
(

n

0

)

xn +
(

n

1

)

xn−1y +
(

n

2

)

xn−2y2 + . . . +
(

n

n−1

)

xyn−1 +
(

n

n

)

yn. This is because each

term contains a total of n x’s and y’s, and the number of times the term xkyn−k occurs in

the expansion is given by the number of combinations of n x’s and y’s with exactly k x’s.

Example: Suppose we flip a fair coin 10 times. What is the probability of getting

exactly 4 Hs? First we compute
(

10
4

)

= 210. Then we compute the total number of outcomes

210 = 1024. Therefore the probability of getting exactly 4 Hs is 210/1024 ≈ .205.

Two events are disjoint if their intersection is empty.

Example: In the example of flipping 2 coins, the event A = ‘getting exactly one H ’ and

the event B = ‘getting exactly 2Hs’ are disjoint. But, A is not disjoint from the event C =

‘getting exactly one T ’. In fact, events A and C are the same in this case.

In general we have: p(A∪B)+p(A∩B) = p(A)+p(B). Therefore, for disjoint events we

have: p(A ∪B) = p(A) + p(B). The first statement follows from the principle of inclusion -

exclusion, which states that |A ∪ B| = |A| + |B| − |A ∩ B|.

Example: Say we flip a coin 10 times. What is the probability that the first flip is a T

or the last flip is a T ? The number of outcomes with the first flip T is 29. The number of

outcomes where the last flip is a T is 29. The number of strings with both properties is 28.

Hence, the number of strings with either property is 29 + 29 − 28 = 768, and the probability

of first or last T is 768/1024 = .75.
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Two more examples given in class:

1) If we roll four dice, what is the probability of at least one six? a) Consider the

complement problem: there is a 5/6 probability of not rolling a six for any given die, and

since the four dice are independent, the probability of not rolling a six is (5/6)4 = 54/64 =

625/1296. The probability of rolling at least one six is therefore 1− 625/1296 = 671/1296 ≈

.517. b) Alternatively, recall that the number of ways of choosing r objects from a collection

of N is
(

N

r

)

= N !/r!(N − r)! .

Any of the four dice can be the one that comes up six, and the other three don’t, so the

number of ways that exactly one of the four dice is six is
(

4
1

)

· 53 = 4 · 53 = 500

exactly two sixes:
(

4
2

)

· 52 = (4 · 3/2) · 52 = 150

exactly three sixes:
(

4
3

)

· 5 = 4 · 5 = 20

exactly four sixes:
(

4
4

)

= 1

The total number of possibilities is 500 + 150 + 20 + 1 = 671, and hence the probability is

671/64, in agreement with the above.

2) a) What is the probability that in a group of N people, at least two have the same

birthday?

(Simplifications: assume no leap years, and assume that all birthdays are equally likely.)

Again consider the complement problem, the probability that no two birthdays coincide.

The total number of possibilities with no coincidences is 365·364· . . .·(366−n) (i.e., n factors

each successive one with one fewer choice of day). The total number of possibilities for n

choices of birthdays is 365n, so the probability of no coincidences is 365·364·. . .·(366−n)/365n.

The probability that at least two coincide is therefore 1 − 365 · 364 · . . . · (366 − n)/365n.

This probability is rapidly increasing as a function of n and turns out to be greater than

.5 for n = 23. (See graph on next page). b) In a group of 23 people, what it the probability

that at least one person has a birthday coincident specifically with yours?

In this case, we first calculate the probability that none of the 22 others (again under

the above simplifications) has a birthday coincident with a given day: (364/365)22. The

probability that at least one coincides with that day is therefore 1 − (364/365)22 ≈ .059, so

a roughly 6% chance. This probability increases more slowly as a function of the size of the

group (see graphs next page).
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Red (upper): The probability 1 − 365!
(365−n)!365n

that at least two birthdays coincide within a

group of n people, as function of n.

Green (lower): The probability 1 −
(

364
365

)n−1
of a birthday coinciding with yours within a

group of n people including you.
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Same as above, expanded to show n up to 365. The probability for the lower case at n = 365

is roughly 1 − 1/e ≈ .632.
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Conditional Probability Info 2950 (28 Jan ’10)

Suppose we know that one event has happened and we wish to ask about another.

For two events A and B, the joint probability of A and B is defined as p(A, B) = p(A∩B),

i.e., the probability of the intersection of events A and B in the sample space, or equivalently

the probability that events A and B both occur.

The conditional probability of A relative to B is

p(A|B) = p(A ∩ B)/p(B)

and read the probability of A given B.

Example: Suppose we flip a fair coin 3 times. Let B be the event that we have at least

one H , and A be the event of getting exactly 2 Hs. What is the probability of A given B? In

this case, (A∩B) = A, p(A) = 3/8 (why?), p(B) = 7/8 (why?), and therefore p(A|B) = 3/7.

Notice that the definition of conditional probability also gives us the formula: p(A∩B) =

p(A|B)p(B). For three events we have: p(A ∩ B ∩ C) = p(A|B ∩ C)p(B|C)p(C). (What is

a general rule?)

We can also use conditional probabilities to find the probability of an event by breaking

the sample space into disjoint pieces. If S = S1 ∪ S2 . . .∪ Sn and all pairs Si, Sj are disjoint

then for any event A, p(A) =
∑

p(A|Si)p(Si).

Example: Suppose we flip a fair coin twice. Let S1 be the outcomes where the first flip

is H and S2 be the outcomes where the first flip is T . What is the probability of A = getting

2 Hs? p(A) = (1/2)(1/2) + (0)(1/2) = 1/4.

Two events A and B are independent if p(A ∩ B) = p(A)p(B). This immediately gives:

A and B are independent iff p(A|B) = p(A).

If p(A ∩ B) > p(A)p(B) then A and B are said to be positively correlated.

If p(A ∩ B) < p(A)p(B) then A and B are said to be negatively correlated.

Example: In the example of flipping 3 coins, p(A|B) 6= p(A), and therefore these two

events are not independent. Let C be the event that we get at least one H and at least

one T . Let D be the event that we get at most one H . p(C) = 6/8, p(D) = 4/8, and

p(C ∩ D) = 3/8. Therefore events C and D are independent.

We say events A1, . . . An are mutually independent if for all subsets S ⊆ {1, . . . , n},

p(∩i∈SAi) =
∏

i p(Ai). (What is an example of a set of mutually independent events?)
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