
Consider a Bernoulli process with some large number N of trials, and some small

probability p of success on each trial. In the limit of N very large and p small, the

probability p(m) of m successes turns out to be parametrized entirely by just the mean

number of successes, z = Np. First recall that

p(m) =

(

N

m

)

pm(1 − p)N−m .

For N ≫ m, we can approximate N !/(N − m)! = N(N − 1) · · · (N − m + 1) ≈ Nm, so
(

N

m

)

= N !
m!(N−m)! ≈

N
m

m! , and

p(m) ≈
1

m!
Nm(z/N)m(1 − z/N)N−m

≈
zm

m!
lim

N→∞

(1 − z/N)N = e−z
zm

m!
,

where the factor of (1 − z/N)−m can be ignored since by assumption N ≫ z.

Note that the N dependence drops out of this probability in the limit as N → ∞,

with average z fixed (so that p → 0). The form p(m) = e−z z
m

m!
is known as a Poisson

distribution. (Note also that
∑

∞

m=0 p(m) = e−z
∑

∞

m=0
z

m

m!
= e−z · ez = 1, so these are

properly normalized probabilities.)

According to the current version (24 Oct 2006) of the Wikipedia entry,

http://en.wikipedia.org/wiki/Poisson distribution :

“Examples of events that can be modelled as Poisson distributions include:
• The number of cars that pass through a certain point on a road during a given period

of time.
• The number of spelling mistakes a secretary makes while typing a single page.
• The number of phone calls at a call center per minute.
• The number of times a web server is accessed per minute.
• For instance, the number of edits per hour recorded on Wikipedia’s Recent Changes

page follows an approximately Poisson distribution.
• The number of roadkill found per unit length of road.
• The number of mutations in a given stretch of DNA after a certain amount of radiation.
• The number of unstable nuclei that decay within a given period of time in a piece of

radioactive substance. . . .
• The number of pine trees per unit area of mixed forest.
• The number of stars in a given volume of space.
• The number of soldiers killed by horse-kicks each year in each corps in the Prus-

sian cavalry. This example was made famous by a book of Ladislaus Josephovich
Bortkiewicz (1868–1931).

• The distribution of visual receptor cells in the retina of the human eye.
• The number of V2 rocket attacks per area in England, according to the fictionalized

account in Thomas Pynchon’s Gravity’s Rainbow.
• The number of light bulbs that burn out in a certain amount of time.

• The number of viruses that can infect a cell in cell culture.”
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We considered the example of soldiers killed by horse-kicks in class, based on data

collected from the Prussian army from 1875–1894. The army was divided into 280 corps,

each containing a large number of soldiers, and data was obtained on the average number

of deaths due to horse-kicks (a relatively rare event) per corp:

#deaths/year #corps

0 144

1 91

2 32

3 11

4 2

≥ 5 0

From this data, the total average number of deaths/year is 0·144+1·91+2·32+3·11+

4 · 2 = 196, so the average number of deaths/year per corp is 196/280 = .7 . According to

a Poisson distribution, the probability that a corp will have m deaths per year is therefore

p(m) = (.7)m

m!
e−.7 :

#deaths/year data (.7)m

m!
e−.7

0 144/280=.51 .5

1 91/280=.33 .35

2 32/280=.11 .12

3 11/280=.04 .03

4 2/280=.01 .005

≥ 5 0/280=0 .0007

The probabilities predicted by the Poisson distribution are in close agreement with the

data. Note that one number, the average number of deaths/year per corp of .7, permits

understanding all six of the data points above. Note also that the corps with fewer or

greater than average deaths are not somehow responsible for implementing safer or less

safe practices, since the numbers follow the expected statistical distribution. (Only if

they deviated from the expected Poisson statistics would some additional explanation be

necessary.)
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Another example is given by the number of distinct hostnames hitting a web site in

any given second. Here the number of potential users is large, but there’s only a small

probability that any given one will be active within a one second period. The arXiv.org

data below are taken from two different one-hour periods on 24 Oct 2006: one a relatively

quiet hour starting at midnight, during which there was an average of (0 · 717 + 1 · 1156 +

2 · 922 + 3 · 493 + 4 · 232 + 5 · 63 + 6 · 12 + 7 · 3 + 8 · 2)/3600 = 5831/3600 = 1.62 distinct

hosts/second; the second a more active hour from 10:00–11:00 in the morning with an

average of (0 · 106 + 1 · 414 + 2 · 714 + 3 · 767 + 4 · 674 + 5 · 455 + 6 · 268 + 7 · 131 + 8 ·

46 + 9 · 16 + 10 · 6 + 11 · 2 + 12 · 1)/3600 = 12245/3600 = 3.40 distinct hosts/second. The

data are prescreened to eliminate robotic activity, and are again well-described by Poisson

distributions.

Data for 24 Oct 2006, 00:00–01:00 EDT

#hosts/sec data (1.62)m

m!
e−1.62

0 717/3600 = .199 .198

1 1156/3600 = .321 .320

2 922/3600 = .256 .260

3 493/3600 = .137 .140

4 232/3600 = .064 .057

5 63/3600 = .0175 .0184

6 12/3600 = .0033 .0050

7 3/3600 = .0008 .0011

8 2/3600 = .0006 .0002

Data for 24 Oct 2006, 10:00–11:00 EDT

#hosts/sec data (3.40)m

m! e−3.40

0 106/3600 = .029 .033
1 414/3600 = .115 .113
2 714/3600 = .198 .193
3 767/3600 = .213 .219
4 674/3600 = .187 .186
5 455/3600 = .126 .126
6 268/3600 = .074 .072
7 131/3600 = .036 .035
8 46/3600 = .013 .015
9 16/3600 = .0044 .0056
10 6/3600 = .0017 .0019
11 2/3600 = .0006 .0006
12 1/3600 = .0003 .0002
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arXiv.org web log data, 3600 seconds from 00:00-01:00 EDT 24 Oct 2006

data
Poisson (avg=1.62/s)
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arXiv.org web log data, 3600 seconds from 10:00-11:00 EDT 24 Oct 2006

data
Poisson (avg=3.40/s)
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